| /* |
| * arch/sh/mm/cache-sh4.c |
| * |
| * Copyright (C) 1999, 2000, 2002 Niibe Yutaka |
| * Copyright (C) 2001 - 2007 Paul Mundt |
| * Copyright (C) 2003 Richard Curnow |
| * Copyright (c) 2007 STMicroelectronics (R&D) Ltd. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/io.h> |
| #include <linux/mutex.h> |
| #include <linux/fs.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cacheflush.h> |
| |
| /* |
| * The maximum number of pages we support up to when doing ranged dcache |
| * flushing. Anything exceeding this will simply flush the dcache in its |
| * entirety. |
| */ |
| #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */ |
| #define MAX_ICACHE_PAGES 32 |
| |
| static void __flush_cache_one(unsigned long addr, unsigned long phys, |
| unsigned long exec_offset); |
| |
| /* |
| * This is initialised here to ensure that it is not placed in the BSS. If |
| * that were to happen, note that cache_init gets called before the BSS is |
| * cleared, so this would get nulled out which would be hopeless. |
| */ |
| static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) = |
| (void (*)(unsigned long, unsigned long))0xdeadbeef; |
| |
| /* |
| * Write back the range of D-cache, and purge the I-cache. |
| * |
| * Called from kernel/module.c:sys_init_module and routine for a.out format, |
| * signal handler code and kprobes code |
| */ |
| static void __uses_jump_to_uncached sh4_flush_icache_range(void *args) |
| { |
| struct flusher_data *data = args; |
| unsigned long start, end; |
| unsigned long flags, v; |
| int i; |
| |
| start = data->addr1; |
| end = data->addr2; |
| |
| /* If there are too many pages then just blow away the caches */ |
| if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) { |
| local_flush_cache_all(NULL); |
| return; |
| } |
| |
| /* |
| * Selectively flush d-cache then invalidate the i-cache. |
| * This is inefficient, so only use this for small ranges. |
| */ |
| start &= ~(L1_CACHE_BYTES-1); |
| end += L1_CACHE_BYTES-1; |
| end &= ~(L1_CACHE_BYTES-1); |
| |
| local_irq_save(flags); |
| jump_to_uncached(); |
| |
| for (v = start; v < end; v += L1_CACHE_BYTES) { |
| unsigned long icacheaddr; |
| |
| __ocbwb(v); |
| |
| icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v & |
| cpu_data->icache.entry_mask); |
| |
| /* Clear i-cache line valid-bit */ |
| for (i = 0; i < cpu_data->icache.ways; i++) { |
| __raw_writel(0, icacheaddr); |
| icacheaddr += cpu_data->icache.way_incr; |
| } |
| } |
| |
| back_to_cached(); |
| local_irq_restore(flags); |
| } |
| |
| static inline void flush_cache_one(unsigned long start, unsigned long phys) |
| { |
| unsigned long flags, exec_offset = 0; |
| |
| /* |
| * All types of SH-4 require PC to be in P2 to operate on the I-cache. |
| * Some types of SH-4 require PC to be in P2 to operate on the D-cache. |
| */ |
| if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) || |
| (start < CACHE_OC_ADDRESS_ARRAY)) |
| exec_offset = 0x20000000; |
| |
| local_irq_save(flags); |
| __flush_cache_one(start | SH_CACHE_ASSOC, P1SEGADDR(phys), exec_offset); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Write back & invalidate the D-cache of the page. |
| * (To avoid "alias" issues) |
| */ |
| static void sh4_flush_dcache_page(void *arg) |
| { |
| struct page *page = arg; |
| #ifndef CONFIG_SMP |
| struct address_space *mapping = page_mapping(page); |
| |
| if (mapping && !mapping_mapped(mapping)) |
| set_bit(PG_dcache_dirty, &page->flags); |
| else |
| #endif |
| { |
| unsigned long phys = PHYSADDR(page_address(page)); |
| unsigned long addr = CACHE_OC_ADDRESS_ARRAY; |
| int i, n; |
| |
| /* Loop all the D-cache */ |
| n = boot_cpu_data.dcache.n_aliases; |
| for (i = 0; i < n; i++, addr += PAGE_SIZE) |
| flush_cache_one(addr, phys); |
| } |
| |
| wmb(); |
| } |
| |
| /* TODO: Selective icache invalidation through IC address array.. */ |
| static void __uses_jump_to_uncached flush_icache_all(void) |
| { |
| unsigned long flags, ccr; |
| |
| local_irq_save(flags); |
| jump_to_uncached(); |
| |
| /* Flush I-cache */ |
| ccr = ctrl_inl(CCR); |
| ccr |= CCR_CACHE_ICI; |
| ctrl_outl(ccr, CCR); |
| |
| /* |
| * back_to_cached() will take care of the barrier for us, don't add |
| * another one! |
| */ |
| |
| back_to_cached(); |
| local_irq_restore(flags); |
| } |
| |
| static inline void flush_dcache_all(void) |
| { |
| (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size); |
| wmb(); |
| } |
| |
| static void sh4_flush_cache_all(void *unused) |
| { |
| flush_dcache_all(); |
| flush_icache_all(); |
| } |
| |
| static void __flush_cache_mm(struct mm_struct *mm, unsigned long start, |
| unsigned long end) |
| { |
| unsigned long d = 0, p = start & PAGE_MASK; |
| unsigned long alias_mask = boot_cpu_data.dcache.alias_mask; |
| unsigned long n_aliases = boot_cpu_data.dcache.n_aliases; |
| unsigned long select_bit; |
| unsigned long all_aliases_mask; |
| unsigned long addr_offset; |
| pgd_t *dir; |
| pmd_t *pmd; |
| pud_t *pud; |
| pte_t *pte; |
| int i; |
| |
| dir = pgd_offset(mm, p); |
| pud = pud_offset(dir, p); |
| pmd = pmd_offset(pud, p); |
| end = PAGE_ALIGN(end); |
| |
| all_aliases_mask = (1 << n_aliases) - 1; |
| |
| do { |
| if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) { |
| p &= PMD_MASK; |
| p += PMD_SIZE; |
| pmd++; |
| |
| continue; |
| } |
| |
| pte = pte_offset_kernel(pmd, p); |
| |
| do { |
| unsigned long phys; |
| pte_t entry = *pte; |
| |
| if (!(pte_val(entry) & _PAGE_PRESENT)) { |
| pte++; |
| p += PAGE_SIZE; |
| continue; |
| } |
| |
| phys = pte_val(entry) & PTE_PHYS_MASK; |
| |
| if ((p ^ phys) & alias_mask) { |
| d |= 1 << ((p & alias_mask) >> PAGE_SHIFT); |
| d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT); |
| |
| if (d == all_aliases_mask) |
| goto loop_exit; |
| } |
| |
| pte++; |
| p += PAGE_SIZE; |
| } while (p < end && ((unsigned long)pte & ~PAGE_MASK)); |
| pmd++; |
| } while (p < end); |
| |
| loop_exit: |
| addr_offset = 0; |
| select_bit = 1; |
| |
| for (i = 0; i < n_aliases; i++) { |
| if (d & select_bit) { |
| (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE); |
| wmb(); |
| } |
| |
| select_bit <<= 1; |
| addr_offset += PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * Note : (RPC) since the caches are physically tagged, the only point |
| * of flush_cache_mm for SH-4 is to get rid of aliases from the |
| * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that |
| * lines can stay resident so long as the virtual address they were |
| * accessed with (hence cache set) is in accord with the physical |
| * address (i.e. tag). It's no different here. So I reckon we don't |
| * need to flush the I-cache, since aliases don't matter for that. We |
| * should try that. |
| * |
| * Caller takes mm->mmap_sem. |
| */ |
| static void sh4_flush_cache_mm(void *arg) |
| { |
| struct mm_struct *mm = arg; |
| |
| if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT) |
| return; |
| |
| /* |
| * If cache is only 4k-per-way, there are never any 'aliases'. Since |
| * the cache is physically tagged, the data can just be left in there. |
| */ |
| if (boot_cpu_data.dcache.n_aliases == 0) |
| return; |
| |
| /* |
| * Don't bother groveling around the dcache for the VMA ranges |
| * if there are too many PTEs to make it worthwhile. |
| */ |
| if (mm->nr_ptes >= MAX_DCACHE_PAGES) |
| flush_dcache_all(); |
| else { |
| struct vm_area_struct *vma; |
| |
| /* |
| * In this case there are reasonably sized ranges to flush, |
| * iterate through the VMA list and take care of any aliases. |
| */ |
| for (vma = mm->mmap; vma; vma = vma->vm_next) |
| __flush_cache_mm(mm, vma->vm_start, vma->vm_end); |
| } |
| |
| /* Only touch the icache if one of the VMAs has VM_EXEC set. */ |
| if (mm->exec_vm) |
| flush_icache_all(); |
| } |
| |
| /* |
| * Write back and invalidate I/D-caches for the page. |
| * |
| * ADDR: Virtual Address (U0 address) |
| * PFN: Physical page number |
| */ |
| static void sh4_flush_cache_page(void *args) |
| { |
| struct flusher_data *data = args; |
| struct vm_area_struct *vma; |
| unsigned long address, pfn, phys; |
| unsigned int alias_mask; |
| |
| vma = data->vma; |
| address = data->addr1; |
| pfn = data->addr2; |
| phys = pfn << PAGE_SHIFT; |
| |
| if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) |
| return; |
| |
| alias_mask = boot_cpu_data.dcache.alias_mask; |
| |
| /* We only need to flush D-cache when we have alias */ |
| if ((address^phys) & alias_mask) { |
| /* Loop 4K of the D-cache */ |
| flush_cache_one( |
| CACHE_OC_ADDRESS_ARRAY | (address & alias_mask), |
| phys); |
| /* Loop another 4K of the D-cache */ |
| flush_cache_one( |
| CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask), |
| phys); |
| } |
| |
| alias_mask = boot_cpu_data.icache.alias_mask; |
| if (vma->vm_flags & VM_EXEC) { |
| /* |
| * Evict entries from the portion of the cache from which code |
| * may have been executed at this address (virtual). There's |
| * no need to evict from the portion corresponding to the |
| * physical address as for the D-cache, because we know the |
| * kernel has never executed the code through its identity |
| * translation. |
| */ |
| flush_cache_one( |
| CACHE_IC_ADDRESS_ARRAY | (address & alias_mask), |
| phys); |
| } |
| } |
| |
| /* |
| * Write back and invalidate D-caches. |
| * |
| * START, END: Virtual Address (U0 address) |
| * |
| * NOTE: We need to flush the _physical_ page entry. |
| * Flushing the cache lines for U0 only isn't enough. |
| * We need to flush for P1 too, which may contain aliases. |
| */ |
| static void sh4_flush_cache_range(void *args) |
| { |
| struct flusher_data *data = args; |
| struct vm_area_struct *vma; |
| unsigned long start, end; |
| |
| vma = data->vma; |
| start = data->addr1; |
| end = data->addr2; |
| |
| if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) |
| return; |
| |
| /* |
| * If cache is only 4k-per-way, there are never any 'aliases'. Since |
| * the cache is physically tagged, the data can just be left in there. |
| */ |
| if (boot_cpu_data.dcache.n_aliases == 0) |
| return; |
| |
| /* |
| * Don't bother with the lookup and alias check if we have a |
| * wide range to cover, just blow away the dcache in its |
| * entirety instead. -- PFM. |
| */ |
| if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES) |
| flush_dcache_all(); |
| else |
| __flush_cache_mm(vma->vm_mm, start, end); |
| |
| if (vma->vm_flags & VM_EXEC) { |
| /* |
| * TODO: Is this required??? Need to look at how I-cache |
| * coherency is assured when new programs are loaded to see if |
| * this matters. |
| */ |
| flush_icache_all(); |
| } |
| } |
| |
| /** |
| * __flush_cache_one |
| * |
| * @addr: address in memory mapped cache array |
| * @phys: P1 address to flush (has to match tags if addr has 'A' bit |
| * set i.e. associative write) |
| * @exec_offset: set to 0x20000000 if flush has to be executed from P2 |
| * region else 0x0 |
| * |
| * The offset into the cache array implied by 'addr' selects the |
| * 'colour' of the virtual address range that will be flushed. The |
| * operation (purge/write-back) is selected by the lower 2 bits of |
| * 'phys'. |
| */ |
| static void __flush_cache_one(unsigned long addr, unsigned long phys, |
| unsigned long exec_offset) |
| { |
| int way_count; |
| unsigned long base_addr = addr; |
| struct cache_info *dcache; |
| unsigned long way_incr; |
| unsigned long a, ea, p; |
| unsigned long temp_pc; |
| |
| dcache = &boot_cpu_data.dcache; |
| /* Write this way for better assembly. */ |
| way_count = dcache->ways; |
| way_incr = dcache->way_incr; |
| |
| /* |
| * Apply exec_offset (i.e. branch to P2 if required.). |
| * |
| * FIXME: |
| * |
| * If I write "=r" for the (temp_pc), it puts this in r6 hence |
| * trashing exec_offset before it's been added on - why? Hence |
| * "=&r" as a 'workaround' |
| */ |
| asm volatile("mov.l 1f, %0\n\t" |
| "add %1, %0\n\t" |
| "jmp @%0\n\t" |
| "nop\n\t" |
| ".balign 4\n\t" |
| "1: .long 2f\n\t" |
| "2:\n" : "=&r" (temp_pc) : "r" (exec_offset)); |
| |
| /* |
| * We know there will be >=1 iteration, so write as do-while to avoid |
| * pointless nead-of-loop check for 0 iterations. |
| */ |
| do { |
| ea = base_addr + PAGE_SIZE; |
| a = base_addr; |
| p = phys; |
| |
| do { |
| *(volatile unsigned long *)a = p; |
| /* |
| * Next line: intentionally not p+32, saves an add, p |
| * will do since only the cache tag bits need to |
| * match. |
| */ |
| *(volatile unsigned long *)(a+32) = p; |
| a += 64; |
| p += 64; |
| } while (a < ea); |
| |
| base_addr += way_incr; |
| } while (--way_count != 0); |
| } |
| |
| /* |
| * Break the 1, 2 and 4 way variants of this out into separate functions to |
| * avoid nearly all the overhead of having the conditional stuff in the function |
| * bodies (+ the 1 and 2 way cases avoid saving any registers too). |
| * |
| * We want to eliminate unnecessary bus transactions, so this code uses |
| * a non-obvious technique. |
| * |
| * Loop over a cache way sized block of, one cache line at a time. For each |
| * line, use movca.a to cause the current cache line contents to be written |
| * back, but without reading anything from main memory. However this has the |
| * side effect that the cache is now caching that memory location. So follow |
| * this with a cache invalidate to mark the cache line invalid. And do all |
| * this with interrupts disabled, to avoid the cache line being accidently |
| * evicted while it is holding garbage. |
| * |
| * This also breaks in a number of circumstances: |
| * - if there are modifications to the region of memory just above |
| * empty_zero_page (for example because a breakpoint has been placed |
| * there), then these can be lost. |
| * |
| * This is because the the memory address which the cache temporarily |
| * caches in the above description is empty_zero_page. So the |
| * movca.l hits the cache (it is assumed that it misses, or at least |
| * isn't dirty), modifies the line and then invalidates it, losing the |
| * required change. |
| * |
| * - If caches are disabled or configured in write-through mode, then |
| * the movca.l writes garbage directly into memory. |
| */ |
| static void __flush_dcache_segment_writethrough(unsigned long start, |
| unsigned long extent_per_way) |
| { |
| unsigned long addr; |
| int i; |
| |
| addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask); |
| |
| while (extent_per_way) { |
| for (i = 0; i < cpu_data->dcache.ways; i++) |
| __raw_writel(0, addr + cpu_data->dcache.way_incr * i); |
| |
| addr += cpu_data->dcache.linesz; |
| extent_per_way -= cpu_data->dcache.linesz; |
| } |
| } |
| |
| static void __flush_dcache_segment_1way(unsigned long start, |
| unsigned long extent_per_way) |
| { |
| unsigned long orig_sr, sr_with_bl; |
| unsigned long base_addr; |
| unsigned long way_incr, linesz, way_size; |
| struct cache_info *dcache; |
| register unsigned long a0, a0e; |
| |
| asm volatile("stc sr, %0" : "=r" (orig_sr)); |
| sr_with_bl = orig_sr | (1<<28); |
| base_addr = ((unsigned long)&empty_zero_page[0]); |
| |
| /* |
| * The previous code aligned base_addr to 16k, i.e. the way_size of all |
| * existing SH-4 D-caches. Whilst I don't see a need to have this |
| * aligned to any better than the cache line size (which it will be |
| * anyway by construction), let's align it to at least the way_size of |
| * any existing or conceivable SH-4 D-cache. -- RPC |
| */ |
| base_addr = ((base_addr >> 16) << 16); |
| base_addr |= start; |
| |
| dcache = &boot_cpu_data.dcache; |
| linesz = dcache->linesz; |
| way_incr = dcache->way_incr; |
| way_size = dcache->way_size; |
| |
| a0 = base_addr; |
| a0e = base_addr + extent_per_way; |
| do { |
| asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); |
| asm volatile("movca.l r0, @%0\n\t" |
| "ocbi @%0" : : "r" (a0)); |
| a0 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "ocbi @%0" : : "r" (a0)); |
| a0 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "ocbi @%0" : : "r" (a0)); |
| a0 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "ocbi @%0" : : "r" (a0)); |
| asm volatile("ldc %0, sr" : : "r" (orig_sr)); |
| a0 += linesz; |
| } while (a0 < a0e); |
| } |
| |
| static void __flush_dcache_segment_2way(unsigned long start, |
| unsigned long extent_per_way) |
| { |
| unsigned long orig_sr, sr_with_bl; |
| unsigned long base_addr; |
| unsigned long way_incr, linesz, way_size; |
| struct cache_info *dcache; |
| register unsigned long a0, a1, a0e; |
| |
| asm volatile("stc sr, %0" : "=r" (orig_sr)); |
| sr_with_bl = orig_sr | (1<<28); |
| base_addr = ((unsigned long)&empty_zero_page[0]); |
| |
| /* See comment under 1-way above */ |
| base_addr = ((base_addr >> 16) << 16); |
| base_addr |= start; |
| |
| dcache = &boot_cpu_data.dcache; |
| linesz = dcache->linesz; |
| way_incr = dcache->way_incr; |
| way_size = dcache->way_size; |
| |
| a0 = base_addr; |
| a1 = a0 + way_incr; |
| a0e = base_addr + extent_per_way; |
| do { |
| asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1" : : |
| "r" (a0), "r" (a1)); |
| a0 += linesz; |
| a1 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1" : : |
| "r" (a0), "r" (a1)); |
| a0 += linesz; |
| a1 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1" : : |
| "r" (a0), "r" (a1)); |
| a0 += linesz; |
| a1 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1" : : |
| "r" (a0), "r" (a1)); |
| asm volatile("ldc %0, sr" : : "r" (orig_sr)); |
| a0 += linesz; |
| a1 += linesz; |
| } while (a0 < a0e); |
| } |
| |
| static void __flush_dcache_segment_4way(unsigned long start, |
| unsigned long extent_per_way) |
| { |
| unsigned long orig_sr, sr_with_bl; |
| unsigned long base_addr; |
| unsigned long way_incr, linesz, way_size; |
| struct cache_info *dcache; |
| register unsigned long a0, a1, a2, a3, a0e; |
| |
| asm volatile("stc sr, %0" : "=r" (orig_sr)); |
| sr_with_bl = orig_sr | (1<<28); |
| base_addr = ((unsigned long)&empty_zero_page[0]); |
| |
| /* See comment under 1-way above */ |
| base_addr = ((base_addr >> 16) << 16); |
| base_addr |= start; |
| |
| dcache = &boot_cpu_data.dcache; |
| linesz = dcache->linesz; |
| way_incr = dcache->way_incr; |
| way_size = dcache->way_size; |
| |
| a0 = base_addr; |
| a1 = a0 + way_incr; |
| a2 = a1 + way_incr; |
| a3 = a2 + way_incr; |
| a0e = base_addr + extent_per_way; |
| do { |
| asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "movca.l r0, @%2\n\t" |
| "movca.l r0, @%3\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1\n\t" |
| "ocbi @%2\n\t" |
| "ocbi @%3\n\t" : : |
| "r" (a0), "r" (a1), "r" (a2), "r" (a3)); |
| a0 += linesz; |
| a1 += linesz; |
| a2 += linesz; |
| a3 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "movca.l r0, @%2\n\t" |
| "movca.l r0, @%3\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1\n\t" |
| "ocbi @%2\n\t" |
| "ocbi @%3\n\t" : : |
| "r" (a0), "r" (a1), "r" (a2), "r" (a3)); |
| a0 += linesz; |
| a1 += linesz; |
| a2 += linesz; |
| a3 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "movca.l r0, @%2\n\t" |
| "movca.l r0, @%3\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1\n\t" |
| "ocbi @%2\n\t" |
| "ocbi @%3\n\t" : : |
| "r" (a0), "r" (a1), "r" (a2), "r" (a3)); |
| a0 += linesz; |
| a1 += linesz; |
| a2 += linesz; |
| a3 += linesz; |
| asm volatile("movca.l r0, @%0\n\t" |
| "movca.l r0, @%1\n\t" |
| "movca.l r0, @%2\n\t" |
| "movca.l r0, @%3\n\t" |
| "ocbi @%0\n\t" |
| "ocbi @%1\n\t" |
| "ocbi @%2\n\t" |
| "ocbi @%3\n\t" : : |
| "r" (a0), "r" (a1), "r" (a2), "r" (a3)); |
| asm volatile("ldc %0, sr" : : "r" (orig_sr)); |
| a0 += linesz; |
| a1 += linesz; |
| a2 += linesz; |
| a3 += linesz; |
| } while (a0 < a0e); |
| } |
| |
| extern void __weak sh4__flush_region_init(void); |
| |
| /* |
| * SH-4 has virtually indexed and physically tagged cache. |
| */ |
| void __init sh4_cache_init(void) |
| { |
| unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT); |
| |
| printk("PVR=%08x CVR=%08x PRR=%08x\n", |
| ctrl_inl(CCN_PVR), |
| ctrl_inl(CCN_CVR), |
| ctrl_inl(CCN_PRR)); |
| |
| if (wt_enabled) |
| __flush_dcache_segment_fn = __flush_dcache_segment_writethrough; |
| else { |
| switch (boot_cpu_data.dcache.ways) { |
| case 1: |
| __flush_dcache_segment_fn = __flush_dcache_segment_1way; |
| break; |
| case 2: |
| __flush_dcache_segment_fn = __flush_dcache_segment_2way; |
| break; |
| case 4: |
| __flush_dcache_segment_fn = __flush_dcache_segment_4way; |
| break; |
| default: |
| panic("unknown number of cache ways\n"); |
| break; |
| } |
| } |
| |
| local_flush_icache_range = sh4_flush_icache_range; |
| local_flush_dcache_page = sh4_flush_dcache_page; |
| local_flush_cache_all = sh4_flush_cache_all; |
| local_flush_cache_mm = sh4_flush_cache_mm; |
| local_flush_cache_dup_mm = sh4_flush_cache_mm; |
| local_flush_cache_page = sh4_flush_cache_page; |
| local_flush_cache_range = sh4_flush_cache_range; |
| |
| sh4__flush_region_init(); |
| } |