| /* |
| * QLogic Fibre Channel HBA Driver |
| * Copyright (c) 2003-2005 QLogic Corporation |
| * |
| * See LICENSE.qla2xxx for copyright and licensing details. |
| */ |
| #include "qla_def.h" |
| |
| #include <linux/delay.h> |
| |
| static int qla_uprintf(char **, char *, ...); |
| |
| /** |
| * qla2300_fw_dump() - Dumps binary data from the 2300 firmware. |
| * @ha: HA context |
| * @hardware_locked: Called with the hardware_lock |
| */ |
| void |
| qla2300_fw_dump(scsi_qla_host_t *ha, int hardware_locked) |
| { |
| int rval; |
| uint32_t cnt, timer; |
| uint32_t risc_address; |
| uint16_t mb0, mb2; |
| |
| uint32_t stat; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint16_t __iomem *dmp_reg; |
| unsigned long flags; |
| struct qla2300_fw_dump *fw; |
| uint32_t dump_size, data_ram_cnt; |
| |
| risc_address = data_ram_cnt = 0; |
| mb0 = mb2 = 0; |
| flags = 0; |
| |
| if (!hardware_locked) |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| |
| if (ha->fw_dump != NULL) { |
| qla_printk(KERN_WARNING, ha, |
| "Firmware has been previously dumped (%p) -- ignoring " |
| "request...\n", ha->fw_dump); |
| goto qla2300_fw_dump_failed; |
| } |
| |
| /* Allocate (large) dump buffer. */ |
| dump_size = sizeof(struct qla2300_fw_dump); |
| dump_size += (ha->fw_memory_size - 0x11000) * sizeof(uint16_t); |
| ha->fw_dump_order = get_order(dump_size); |
| ha->fw_dump = (struct qla2300_fw_dump *) __get_free_pages(GFP_ATOMIC, |
| ha->fw_dump_order); |
| if (ha->fw_dump == NULL) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to allocated memory for firmware dump (%d/%d).\n", |
| ha->fw_dump_order, dump_size); |
| goto qla2300_fw_dump_failed; |
| } |
| fw = ha->fw_dump; |
| |
| rval = QLA_SUCCESS; |
| fw->hccr = RD_REG_WORD(®->hccr); |
| |
| /* Pause RISC. */ |
| WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); |
| if (IS_QLA2300(ha)) { |
| for (cnt = 30000; |
| (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| } else { |
| RD_REG_WORD(®->hccr); /* PCI Posting. */ |
| udelay(10); |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| dmp_reg = (uint16_t __iomem *)(reg + 0); |
| for (cnt = 0; cnt < sizeof(fw->pbiu_reg) / 2; cnt++) |
| fw->pbiu_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x10); |
| for (cnt = 0; cnt < sizeof(fw->risc_host_reg) / 2; cnt++) |
| fw->risc_host_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x40); |
| for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) |
| fw->mailbox_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x40); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->resp_dma_reg) / 2; cnt++) |
| fw->resp_dma_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x50); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->dma_reg) / 2; cnt++) |
| fw->dma_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x00); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xA0); |
| for (cnt = 0; cnt < sizeof(fw->risc_hdw_reg) / 2; cnt++) |
| fw->risc_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2000); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp0_reg) / 2; cnt++) |
| fw->risc_gp0_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2200); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp1_reg) / 2; cnt++) |
| fw->risc_gp1_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2400); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp2_reg) / 2; cnt++) |
| fw->risc_gp2_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2600); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp3_reg) / 2; cnt++) |
| fw->risc_gp3_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2800); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp4_reg) / 2; cnt++) |
| fw->risc_gp4_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2A00); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp5_reg) / 2; cnt++) |
| fw->risc_gp5_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2C00); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp6_reg) / 2; cnt++) |
| fw->risc_gp6_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2E00); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp7_reg) / 2; cnt++) |
| fw->risc_gp7_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x10); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->frame_buf_hdw_reg) / 2; cnt++) |
| fw->frame_buf_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x20); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->fpm_b0_reg) / 2; cnt++) |
| fw->fpm_b0_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x30); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->fpm_b1_reg) / 2; cnt++) |
| fw->fpm_b1_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| /* Reset RISC. */ |
| WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); |
| for (cnt = 0; cnt < 30000; cnt++) { |
| if ((RD_REG_WORD(®->ctrl_status) & |
| CSR_ISP_SOFT_RESET) == 0) |
| break; |
| |
| udelay(10); |
| } |
| } |
| |
| if (!IS_QLA2300(ha)) { |
| for (cnt = 30000; RD_MAILBOX_REG(ha, reg, 0) != 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* Get RISC SRAM. */ |
| risc_address = 0x800; |
| WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_WORD); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < sizeof(fw->risc_ram) / 2 && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_MAILBOX_REG(ha, reg, 1, (uint16_t)risc_address); |
| WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); |
| |
| for (timer = 6000000; timer; timer--) { |
| /* Check for pending interrupts. */ |
| stat = RD_REG_DWORD(®->u.isp2300.host_status); |
| if (stat & HSR_RISC_INT) { |
| stat &= 0xff; |
| |
| if (stat == 0x1 || stat == 0x2) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| /* Release mailbox registers. */ |
| WRT_REG_WORD(®->semaphore, 0); |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } else if (stat == 0x10 || stat == 0x11) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } |
| |
| /* clear this intr; it wasn't a mailbox intr */ |
| WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb0 & MBS_MASK; |
| fw->risc_ram[cnt] = mb2; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* Get stack SRAM. */ |
| risc_address = 0x10000; |
| WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_EXTENDED); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < sizeof(fw->stack_ram) / 2 && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_MAILBOX_REG(ha, reg, 1, LSW(risc_address)); |
| WRT_MAILBOX_REG(ha, reg, 8, MSW(risc_address)); |
| WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); |
| |
| for (timer = 6000000; timer; timer--) { |
| /* Check for pending interrupts. */ |
| stat = RD_REG_DWORD(®->u.isp2300.host_status); |
| if (stat & HSR_RISC_INT) { |
| stat &= 0xff; |
| |
| if (stat == 0x1 || stat == 0x2) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| /* Release mailbox registers. */ |
| WRT_REG_WORD(®->semaphore, 0); |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } else if (stat == 0x10 || stat == 0x11) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } |
| |
| /* clear this intr; it wasn't a mailbox intr */ |
| WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb0 & MBS_MASK; |
| fw->stack_ram[cnt] = mb2; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* Get data SRAM. */ |
| risc_address = 0x11000; |
| data_ram_cnt = ha->fw_memory_size - risc_address + 1; |
| WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_EXTENDED); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < data_ram_cnt && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_MAILBOX_REG(ha, reg, 1, LSW(risc_address)); |
| WRT_MAILBOX_REG(ha, reg, 8, MSW(risc_address)); |
| WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); |
| |
| for (timer = 6000000; timer; timer--) { |
| /* Check for pending interrupts. */ |
| stat = RD_REG_DWORD(®->u.isp2300.host_status); |
| if (stat & HSR_RISC_INT) { |
| stat &= 0xff; |
| |
| if (stat == 0x1 || stat == 0x2) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| /* Release mailbox registers. */ |
| WRT_REG_WORD(®->semaphore, 0); |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } else if (stat == 0x10 || stat == 0x11) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } |
| |
| /* clear this intr; it wasn't a mailbox intr */ |
| WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb0 & MBS_MASK; |
| fw->data_ram[cnt] = mb2; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| |
| if (rval != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Failed to dump firmware (%x)!!!\n", rval); |
| |
| free_pages((unsigned long)ha->fw_dump, ha->fw_dump_order); |
| ha->fw_dump = NULL; |
| } else { |
| qla_printk(KERN_INFO, ha, |
| "Firmware dump saved to temp buffer (%ld/%p).\n", |
| ha->host_no, ha->fw_dump); |
| } |
| |
| qla2300_fw_dump_failed: |
| if (!hardware_locked) |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| /** |
| * qla2300_ascii_fw_dump() - Converts a binary firmware dump to ASCII. |
| * @ha: HA context |
| */ |
| void |
| qla2300_ascii_fw_dump(scsi_qla_host_t *ha) |
| { |
| uint32_t cnt; |
| char *uiter; |
| char fw_info[30]; |
| struct qla2300_fw_dump *fw; |
| uint32_t data_ram_cnt; |
| |
| uiter = ha->fw_dump_buffer; |
| fw = ha->fw_dump; |
| |
| qla_uprintf(&uiter, "%s Firmware Version %s\n", ha->model_number, |
| ha->isp_ops.fw_version_str(ha, fw_info)); |
| |
| qla_uprintf(&uiter, "\n[==>BEG]\n"); |
| |
| qla_uprintf(&uiter, "HCCR Register:\n%04x\n\n", fw->hccr); |
| |
| qla_uprintf(&uiter, "PBIU Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->pbiu_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->pbiu_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nReqQ-RspQ-Risc2Host Status registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_host_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_host_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nMailbox Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->mailbox_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->mailbox_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nAuto Request Response DMA Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->resp_dma_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->resp_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nDMA Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->dma_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC Hardware Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_hdw_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP0 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp0_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP1 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp1_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP2 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp2_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp2_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP3 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp3_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp3_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP4 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp4_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp4_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP5 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp5_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp5_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP6 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp6_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp6_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP7 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp7_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp7_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFrame Buffer Hardware Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->frame_buf_hdw_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->frame_buf_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFPM B0 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->fpm_b0_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->fpm_b0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFPM B1 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->fpm_b1_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->fpm_b1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nCode RAM Dump:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_ram) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%04x: ", cnt + 0x0800); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_ram[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nStack RAM Dump:"); |
| for (cnt = 0; cnt < sizeof (fw->stack_ram) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%05x: ", cnt + 0x10000); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->stack_ram[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nData RAM Dump:"); |
| data_ram_cnt = ha->fw_memory_size - 0x11000 + 1; |
| for (cnt = 0; cnt < data_ram_cnt; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%05x: ", cnt + 0x11000); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->data_ram[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\n[<==END] ISP Debug Dump."); |
| } |
| |
| /** |
| * qla2100_fw_dump() - Dumps binary data from the 2100/2200 firmware. |
| * @ha: HA context |
| * @hardware_locked: Called with the hardware_lock |
| */ |
| void |
| qla2100_fw_dump(scsi_qla_host_t *ha, int hardware_locked) |
| { |
| int rval; |
| uint32_t cnt, timer; |
| uint16_t risc_address; |
| uint16_t mb0, mb2; |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| uint16_t __iomem *dmp_reg; |
| unsigned long flags; |
| struct qla2100_fw_dump *fw; |
| |
| risc_address = 0; |
| mb0 = mb2 = 0; |
| flags = 0; |
| |
| if (!hardware_locked) |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| |
| if (ha->fw_dump != NULL) { |
| qla_printk(KERN_WARNING, ha, |
| "Firmware has been previously dumped (%p) -- ignoring " |
| "request...\n", ha->fw_dump); |
| goto qla2100_fw_dump_failed; |
| } |
| |
| /* Allocate (large) dump buffer. */ |
| ha->fw_dump_order = get_order(sizeof(struct qla2100_fw_dump)); |
| ha->fw_dump = (struct qla2100_fw_dump *) __get_free_pages(GFP_ATOMIC, |
| ha->fw_dump_order); |
| if (ha->fw_dump == NULL) { |
| qla_printk(KERN_WARNING, ha, |
| "Unable to allocated memory for firmware dump (%d/%Zd).\n", |
| ha->fw_dump_order, sizeof(struct qla2100_fw_dump)); |
| goto qla2100_fw_dump_failed; |
| } |
| fw = ha->fw_dump; |
| |
| rval = QLA_SUCCESS; |
| fw->hccr = RD_REG_WORD(®->hccr); |
| |
| /* Pause RISC. */ |
| WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); |
| for (cnt = 30000; (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| if (rval == QLA_SUCCESS) { |
| dmp_reg = (uint16_t __iomem *)(reg + 0); |
| for (cnt = 0; cnt < sizeof(fw->pbiu_reg) / 2; cnt++) |
| fw->pbiu_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x10); |
| for (cnt = 0; cnt < ha->mbx_count; cnt++) { |
| if (cnt == 8) { |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xe0); |
| } |
| fw->mailbox_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| } |
| |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x20); |
| for (cnt = 0; cnt < sizeof(fw->dma_reg) / 2; cnt++) |
| fw->dma_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x00); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xA0); |
| for (cnt = 0; cnt < sizeof(fw->risc_hdw_reg) / 2; cnt++) |
| fw->risc_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2000); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp0_reg) / 2; cnt++) |
| fw->risc_gp0_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2100); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp1_reg) / 2; cnt++) |
| fw->risc_gp1_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2200); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp2_reg) / 2; cnt++) |
| fw->risc_gp2_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2300); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp3_reg) / 2; cnt++) |
| fw->risc_gp3_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2400); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp4_reg) / 2; cnt++) |
| fw->risc_gp4_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2500); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp5_reg) / 2; cnt++) |
| fw->risc_gp5_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2600); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp6_reg) / 2; cnt++) |
| fw->risc_gp6_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->pcr, 0x2700); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp7_reg) / 2; cnt++) |
| fw->risc_gp7_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x10); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->frame_buf_hdw_reg) / 2; cnt++) |
| fw->frame_buf_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x20); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->fpm_b0_reg) / 2; cnt++) |
| fw->fpm_b0_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| WRT_REG_WORD(®->ctrl_status, 0x30); |
| dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->fpm_b1_reg) / 2; cnt++) |
| fw->fpm_b1_reg[cnt] = RD_REG_WORD(dmp_reg++); |
| |
| /* Reset the ISP. */ |
| WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); |
| } |
| |
| for (cnt = 30000; RD_MAILBOX_REG(ha, reg, 0) != 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| |
| /* Pause RISC. */ |
| if (rval == QLA_SUCCESS && (IS_QLA2200(ha) || (IS_QLA2100(ha) && |
| (RD_REG_WORD(®->mctr) & (BIT_1 | BIT_0)) != 0))) { |
| |
| WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); |
| for (cnt = 30000; |
| (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| if (rval == QLA_SUCCESS) { |
| /* Set memory configuration and timing. */ |
| if (IS_QLA2100(ha)) |
| WRT_REG_WORD(®->mctr, 0xf1); |
| else |
| WRT_REG_WORD(®->mctr, 0xf2); |
| RD_REG_WORD(®->mctr); /* PCI Posting. */ |
| |
| /* Release RISC. */ |
| WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* Get RISC SRAM. */ |
| risc_address = 0x1000; |
| WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_WORD); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < sizeof(fw->risc_ram) / 2 && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_MAILBOX_REG(ha, reg, 1, risc_address); |
| WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); |
| |
| for (timer = 6000000; timer != 0; timer--) { |
| /* Check for pending interrupts. */ |
| if (RD_REG_WORD(®->istatus) & ISR_RISC_INT) { |
| if (RD_REG_WORD(®->semaphore) & BIT_0) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb0 = RD_MAILBOX_REG(ha, reg, 0); |
| mb2 = RD_MAILBOX_REG(ha, reg, 2); |
| |
| WRT_REG_WORD(®->semaphore, 0); |
| WRT_REG_WORD(®->hccr, |
| HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| break; |
| } |
| WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); |
| RD_REG_WORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb0 & MBS_MASK; |
| fw->risc_ram[cnt] = mb2; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| if (rval != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Failed to dump firmware (%x)!!!\n", rval); |
| |
| free_pages((unsigned long)ha->fw_dump, ha->fw_dump_order); |
| ha->fw_dump = NULL; |
| } else { |
| qla_printk(KERN_INFO, ha, |
| "Firmware dump saved to temp buffer (%ld/%p).\n", |
| ha->host_no, ha->fw_dump); |
| } |
| |
| qla2100_fw_dump_failed: |
| if (!hardware_locked) |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| /** |
| * qla2100_ascii_fw_dump() - Converts a binary firmware dump to ASCII. |
| * @ha: HA context |
| */ |
| void |
| qla2100_ascii_fw_dump(scsi_qla_host_t *ha) |
| { |
| uint32_t cnt; |
| char *uiter; |
| char fw_info[30]; |
| struct qla2100_fw_dump *fw; |
| |
| uiter = ha->fw_dump_buffer; |
| fw = ha->fw_dump; |
| |
| qla_uprintf(&uiter, "%s Firmware Version %s\n", ha->model_number, |
| ha->isp_ops.fw_version_str(ha, fw_info)); |
| |
| qla_uprintf(&uiter, "\n[==>BEG]\n"); |
| |
| qla_uprintf(&uiter, "HCCR Register:\n%04x\n\n", fw->hccr); |
| |
| qla_uprintf(&uiter, "PBIU Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->pbiu_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->pbiu_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nMailbox Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->mailbox_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->mailbox_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nDMA Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->dma_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC Hardware Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_hdw_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP0 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp0_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP1 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp1_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP2 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp2_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp2_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP3 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp3_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp3_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP4 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp4_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp4_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP5 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp5_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp5_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP6 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp6_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp6_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP7 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_gp7_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_gp7_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFrame Buffer Hardware Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->frame_buf_hdw_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->frame_buf_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFPM B0 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->fpm_b0_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->fpm_b0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFPM B1 Registers:"); |
| for (cnt = 0; cnt < sizeof (fw->fpm_b1_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n"); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->fpm_b1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC SRAM:"); |
| for (cnt = 0; cnt < sizeof (fw->risc_ram) / 2; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%04x: ", cnt + 0x1000); |
| } |
| qla_uprintf(&uiter, "%04x ", fw->risc_ram[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\n[<==END] ISP Debug Dump."); |
| |
| return; |
| } |
| |
| static int |
| qla_uprintf(char **uiter, char *fmt, ...) |
| { |
| int iter, len; |
| char buf[128]; |
| va_list args; |
| |
| va_start(args, fmt); |
| len = vsprintf(buf, fmt, args); |
| va_end(args); |
| |
| for (iter = 0; iter < len; iter++, *uiter += 1) |
| *uiter[0] = buf[iter]; |
| |
| return (len); |
| } |
| |
| |
| void |
| qla24xx_fw_dump(scsi_qla_host_t *ha, int hardware_locked) |
| { |
| int rval; |
| uint32_t cnt, timer; |
| uint32_t risc_address; |
| uint16_t mb[4], wd; |
| |
| uint32_t stat; |
| struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; |
| uint32_t __iomem *dmp_reg; |
| uint32_t *iter_reg; |
| uint16_t __iomem *mbx_reg; |
| unsigned long flags; |
| struct qla24xx_fw_dump *fw; |
| uint32_t ext_mem_cnt; |
| |
| risc_address = ext_mem_cnt = 0; |
| memset(mb, 0, sizeof(mb)); |
| flags = 0; |
| |
| if (!hardware_locked) |
| spin_lock_irqsave(&ha->hardware_lock, flags); |
| |
| if (!ha->fw_dump24) { |
| qla_printk(KERN_WARNING, ha, |
| "No buffer available for dump!!!\n"); |
| goto qla24xx_fw_dump_failed; |
| } |
| |
| if (ha->fw_dumped) { |
| qla_printk(KERN_WARNING, ha, |
| "Firmware has been previously dumped (%p) -- ignoring " |
| "request...\n", ha->fw_dump24); |
| goto qla24xx_fw_dump_failed; |
| } |
| fw = (struct qla24xx_fw_dump *) ha->fw_dump24; |
| |
| rval = QLA_SUCCESS; |
| fw->host_status = RD_REG_DWORD(®->host_status); |
| |
| /* Pause RISC. */ |
| if ((RD_REG_DWORD(®->hccr) & HCCRX_RISC_PAUSE) == 0) { |
| WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET | |
| HCCRX_CLR_HOST_INT); |
| RD_REG_DWORD(®->hccr); /* PCI Posting. */ |
| WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_PAUSE); |
| for (cnt = 30000; |
| (RD_REG_DWORD(®->hccr) & HCCRX_RISC_PAUSE) == 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* Host interface registers. */ |
| dmp_reg = (uint32_t __iomem *)(reg + 0); |
| for (cnt = 0; cnt < sizeof(fw->host_reg) / 4; cnt++) |
| fw->host_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| /* Disable interrupts. */ |
| WRT_REG_DWORD(®->ictrl, 0); |
| RD_REG_DWORD(®->ictrl); |
| |
| /* Shadow registers. */ |
| WRT_REG_DWORD(®->iobase_addr, 0x0F70); |
| RD_REG_DWORD(®->iobase_addr); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0000000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[0] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0100000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[1] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0200000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[2] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0300000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[3] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0400000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[4] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0500000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[5] = RD_REG_DWORD(dmp_reg); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); |
| WRT_REG_DWORD(dmp_reg, 0xB0600000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); |
| fw->shadow_reg[6] = RD_REG_DWORD(dmp_reg); |
| |
| /* Mailbox registers. */ |
| mbx_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); |
| for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) |
| fw->mailbox_reg[cnt] = RD_REG_WORD(mbx_reg++); |
| |
| /* Transfer sequence registers. */ |
| iter_reg = fw->xseq_gp_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0xBF00); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF10); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF20); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF30); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF40); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF50); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF60); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBF70); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBFE0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->xseq_0_reg) / 4; cnt++) |
| fw->xseq_0_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xBFF0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->xseq_1_reg) / 4; cnt++) |
| fw->xseq_1_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| /* Receive sequence registers. */ |
| iter_reg = fw->rseq_gp_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0xFF00); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF10); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF20); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF30); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF40); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF50); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF60); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFF70); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFFD0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->rseq_0_reg) / 4; cnt++) |
| fw->rseq_0_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFFE0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->rseq_1_reg) / 4; cnt++) |
| fw->rseq_1_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0xFFF0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->rseq_2_reg) / 4; cnt++) |
| fw->rseq_2_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| /* Command DMA registers. */ |
| WRT_REG_DWORD(®->iobase_addr, 0x7100); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->cmd_dma_reg) / 4; cnt++) |
| fw->cmd_dma_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| /* Queues. */ |
| iter_reg = fw->req0_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7200); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 8; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); |
| for (cnt = 0; cnt < 7; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->resp0_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7300); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 8; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); |
| for (cnt = 0; cnt < 7; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->req1_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7400); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 8; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); |
| for (cnt = 0; cnt < 7; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* Transmit DMA registers. */ |
| iter_reg = fw->xmt0_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7600); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7610); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->xmt1_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7620); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7630); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->xmt2_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7640); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7650); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->xmt3_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7660); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7670); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->xmt4_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7680); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7690); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x76A0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < sizeof(fw->xmt_data_dma_reg) / 4; cnt++) |
| fw->xmt_data_dma_reg[cnt] = RD_REG_DWORD(dmp_reg++); |
| |
| /* Receive DMA registers. */ |
| iter_reg = fw->rcvt0_data_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7700); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7710); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| iter_reg = fw->rcvt1_data_dma_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x7720); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x7730); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* RISC registers. */ |
| iter_reg = fw->risc_gp_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x0F00); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F10); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F20); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F30); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F40); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F50); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F60); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x0F70); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* Local memory controller registers. */ |
| iter_reg = fw->lmc_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x3000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3010); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3020); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3030); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3040); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3050); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x3060); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* Fibre Protocol Module registers. */ |
| iter_reg = fw->fpm_hdw_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x4000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4010); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4020); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4030); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4040); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4050); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4060); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4070); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4080); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x4090); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x40A0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x40B0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* Frame Buffer registers. */ |
| iter_reg = fw->fb_hdw_reg; |
| WRT_REG_DWORD(®->iobase_addr, 0x6000); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6010); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6020); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6030); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6040); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6100); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6130); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6150); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6170); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x6190); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| WRT_REG_DWORD(®->iobase_addr, 0x61B0); |
| dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); |
| for (cnt = 0; cnt < 16; cnt++) |
| *iter_reg++ = RD_REG_DWORD(dmp_reg++); |
| |
| /* Reset RISC. */ |
| WRT_REG_DWORD(®->ctrl_status, |
| CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); |
| for (cnt = 0; cnt < 30000; cnt++) { |
| if ((RD_REG_DWORD(®->ctrl_status) & |
| CSRX_DMA_ACTIVE) == 0) |
| break; |
| |
| udelay(10); |
| } |
| |
| WRT_REG_DWORD(®->ctrl_status, |
| CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); |
| pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); |
| |
| udelay(100); |
| /* Wait for firmware to complete NVRAM accesses. */ |
| mb[0] = (uint32_t) RD_REG_WORD(®->mailbox0); |
| for (cnt = 10000 ; cnt && mb[0]; cnt--) { |
| udelay(5); |
| mb[0] = (uint32_t) RD_REG_WORD(®->mailbox0); |
| barrier(); |
| } |
| |
| /* Wait for soft-reset to complete. */ |
| for (cnt = 0; cnt < 30000; cnt++) { |
| if ((RD_REG_DWORD(®->ctrl_status) & |
| CSRX_ISP_SOFT_RESET) == 0) |
| break; |
| |
| udelay(10); |
| } |
| WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_RESET); |
| RD_REG_DWORD(®->hccr); /* PCI Posting. */ |
| } |
| |
| for (cnt = 30000; RD_REG_WORD(®->mailbox0) != 0 && |
| rval == QLA_SUCCESS; cnt--) { |
| if (cnt) |
| udelay(100); |
| else |
| rval = QLA_FUNCTION_TIMEOUT; |
| } |
| |
| /* Memory. */ |
| if (rval == QLA_SUCCESS) { |
| /* Code RAM. */ |
| risc_address = 0x20000; |
| WRT_REG_WORD(®->mailbox0, MBC_READ_RAM_EXTENDED); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < sizeof(fw->code_ram) / 4 && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_REG_WORD(®->mailbox1, LSW(risc_address)); |
| WRT_REG_WORD(®->mailbox8, MSW(risc_address)); |
| RD_REG_WORD(®->mailbox8); |
| WRT_REG_DWORD(®->hccr, HCCRX_SET_HOST_INT); |
| |
| for (timer = 6000000; timer; timer--) { |
| /* Check for pending interrupts. */ |
| stat = RD_REG_DWORD(®->host_status); |
| if (stat & HSRX_RISC_INT) { |
| stat &= 0xff; |
| |
| if (stat == 0x1 || stat == 0x2 || |
| stat == 0x10 || stat == 0x11) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb[0] = RD_REG_WORD(®->mailbox0); |
| mb[2] = RD_REG_WORD(®->mailbox2); |
| mb[3] = RD_REG_WORD(®->mailbox3); |
| |
| WRT_REG_DWORD(®->hccr, |
| HCCRX_CLR_RISC_INT); |
| RD_REG_DWORD(®->hccr); |
| break; |
| } |
| |
| /* Clear this intr; it wasn't a mailbox intr */ |
| WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); |
| RD_REG_DWORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb[0] & MBS_MASK; |
| fw->code_ram[cnt] = (mb[3] << 16) | mb[2]; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| if (rval == QLA_SUCCESS) { |
| /* External Memory. */ |
| risc_address = 0x100000; |
| ext_mem_cnt = ha->fw_memory_size - 0x100000 + 1; |
| WRT_REG_WORD(®->mailbox0, MBC_READ_RAM_EXTENDED); |
| clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); |
| } |
| for (cnt = 0; cnt < ext_mem_cnt && rval == QLA_SUCCESS; |
| cnt++, risc_address++) { |
| WRT_REG_WORD(®->mailbox1, LSW(risc_address)); |
| WRT_REG_WORD(®->mailbox8, MSW(risc_address)); |
| RD_REG_WORD(®->mailbox8); |
| WRT_REG_DWORD(®->hccr, HCCRX_SET_HOST_INT); |
| |
| for (timer = 6000000; timer; timer--) { |
| /* Check for pending interrupts. */ |
| stat = RD_REG_DWORD(®->host_status); |
| if (stat & HSRX_RISC_INT) { |
| stat &= 0xff; |
| |
| if (stat == 0x1 || stat == 0x2 || |
| stat == 0x10 || stat == 0x11) { |
| set_bit(MBX_INTERRUPT, |
| &ha->mbx_cmd_flags); |
| |
| mb[0] = RD_REG_WORD(®->mailbox0); |
| mb[2] = RD_REG_WORD(®->mailbox2); |
| mb[3] = RD_REG_WORD(®->mailbox3); |
| |
| WRT_REG_DWORD(®->hccr, |
| HCCRX_CLR_RISC_INT); |
| RD_REG_DWORD(®->hccr); |
| break; |
| } |
| |
| /* Clear this intr; it wasn't a mailbox intr */ |
| WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); |
| RD_REG_DWORD(®->hccr); |
| } |
| udelay(5); |
| } |
| |
| if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { |
| rval = mb[0] & MBS_MASK; |
| fw->ext_mem[cnt] = (mb[3] << 16) | mb[2]; |
| } else { |
| rval = QLA_FUNCTION_FAILED; |
| } |
| } |
| |
| if (rval != QLA_SUCCESS) { |
| qla_printk(KERN_WARNING, ha, |
| "Failed to dump firmware (%x)!!!\n", rval); |
| ha->fw_dumped = 0; |
| |
| } else { |
| qla_printk(KERN_INFO, ha, |
| "Firmware dump saved to temp buffer (%ld/%p).\n", |
| ha->host_no, ha->fw_dump24); |
| ha->fw_dumped = 1; |
| } |
| |
| qla24xx_fw_dump_failed: |
| if (!hardware_locked) |
| spin_unlock_irqrestore(&ha->hardware_lock, flags); |
| } |
| |
| void |
| qla24xx_ascii_fw_dump(scsi_qla_host_t *ha) |
| { |
| uint32_t cnt; |
| char *uiter; |
| struct qla24xx_fw_dump *fw; |
| uint32_t ext_mem_cnt; |
| |
| uiter = ha->fw_dump_buffer; |
| fw = ha->fw_dump24; |
| |
| qla_uprintf(&uiter, "ISP FW Version %d.%02d.%02d Attributes %04x\n", |
| ha->fw_major_version, ha->fw_minor_version, |
| ha->fw_subminor_version, ha->fw_attributes); |
| |
| qla_uprintf(&uiter, "\nR2H Status Register\n%04x\n", fw->host_status); |
| |
| qla_uprintf(&uiter, "\nHost Interface Registers"); |
| for (cnt = 0; cnt < sizeof(fw->host_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->host_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nShadow Registers"); |
| for (cnt = 0; cnt < sizeof(fw->shadow_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->shadow_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nMailbox Registers"); |
| for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->mailbox_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXSEQ GP Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xseq_gp_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xseq_gp_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXSEQ-0 Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xseq_0_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xseq_0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXSEQ-1 Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xseq_1_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xseq_1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRSEQ GP Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rseq_gp_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rseq_gp_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRSEQ-0 Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rseq_0_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rseq_0_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRSEQ-1 Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rseq_1_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rseq_1_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRSEQ-2 Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rseq_2_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rseq_2_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nCommand DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->cmd_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->cmd_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRequest0 Queue DMA Channel Registers"); |
| for (cnt = 0; cnt < sizeof(fw->req0_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->req0_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nResponse0 Queue DMA Channel Registers"); |
| for (cnt = 0; cnt < sizeof(fw->resp0_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->resp0_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRequest1 Queue DMA Channel Registers"); |
| for (cnt = 0; cnt < sizeof(fw->req1_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->req1_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT0 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt0_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt0_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT1 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt1_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt1_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT2 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt2_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt2_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT3 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt3_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt3_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT4 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt4_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt4_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nXMT Data DMA Common Registers"); |
| for (cnt = 0; cnt < sizeof(fw->xmt_data_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->xmt_data_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRCV Thread 0 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rcvt0_data_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rcvt0_data_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRCV Thread 1 Data DMA Registers"); |
| for (cnt = 0; cnt < sizeof(fw->rcvt1_data_dma_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->rcvt1_data_dma_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nRISC GP Registers"); |
| for (cnt = 0; cnt < sizeof(fw->risc_gp_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->risc_gp_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nLMC Registers"); |
| for (cnt = 0; cnt < sizeof(fw->lmc_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->lmc_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFPM Hardware Registers"); |
| for (cnt = 0; cnt < sizeof(fw->fpm_hdw_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->fpm_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nFB Hardware Registers"); |
| for (cnt = 0; cnt < sizeof(fw->fb_hdw_reg) / 4; cnt++) { |
| if (cnt % 8 == 0) |
| qla_uprintf(&uiter, "\n"); |
| |
| qla_uprintf(&uiter, "%08x ", fw->fb_hdw_reg[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nCode RAM"); |
| for (cnt = 0; cnt < sizeof (fw->code_ram) / 4; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%08x: ", cnt + 0x20000); |
| } |
| qla_uprintf(&uiter, "%08x ", fw->code_ram[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n\nExternal Memory"); |
| ext_mem_cnt = ha->fw_memory_size - 0x100000 + 1; |
| for (cnt = 0; cnt < ext_mem_cnt; cnt++) { |
| if (cnt % 8 == 0) { |
| qla_uprintf(&uiter, "\n%08x: ", cnt + 0x100000); |
| } |
| qla_uprintf(&uiter, "%08x ", fw->ext_mem[cnt]); |
| } |
| |
| qla_uprintf(&uiter, "\n[<==END] ISP Debug Dump"); |
| } |
| |
| |
| /****************************************************************************/ |
| /* Driver Debug Functions. */ |
| /****************************************************************************/ |
| |
| void |
| qla2x00_dump_regs(scsi_qla_host_t *ha) |
| { |
| struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; |
| |
| printk("Mailbox registers:\n"); |
| printk("scsi(%ld): mbox 0 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 0)); |
| printk("scsi(%ld): mbox 1 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 1)); |
| printk("scsi(%ld): mbox 2 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 2)); |
| printk("scsi(%ld): mbox 3 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 3)); |
| printk("scsi(%ld): mbox 4 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 4)); |
| printk("scsi(%ld): mbox 5 0x%04x \n", |
| ha->host_no, RD_MAILBOX_REG(ha, reg, 5)); |
| } |
| |
| |
| void |
| qla2x00_dump_buffer(uint8_t * b, uint32_t size) |
| { |
| uint32_t cnt; |
| uint8_t c; |
| |
| printk(" 0 1 2 3 4 5 6 7 8 9 " |
| "Ah Bh Ch Dh Eh Fh\n"); |
| printk("----------------------------------------" |
| "----------------------\n"); |
| |
| for (cnt = 0; cnt < size;) { |
| c = *b++; |
| printk("%02x",(uint32_t) c); |
| cnt++; |
| if (!(cnt % 16)) |
| printk("\n"); |
| else |
| printk(" "); |
| } |
| if (cnt % 16) |
| printk("\n"); |
| } |
| |
| /************************************************************************** |
| * qla2x00_print_scsi_cmd |
| * Dumps out info about the scsi cmd and srb. |
| * Input |
| * cmd : struct scsi_cmnd |
| **************************************************************************/ |
| void |
| qla2x00_print_scsi_cmd(struct scsi_cmnd * cmd) |
| { |
| int i; |
| struct scsi_qla_host *ha; |
| srb_t *sp; |
| |
| ha = (struct scsi_qla_host *)cmd->device->host->hostdata; |
| |
| sp = (srb_t *) cmd->SCp.ptr; |
| printk("SCSI Command @=0x%p, Handle=0x%p\n", cmd, cmd->host_scribble); |
| printk(" chan=0x%02x, target=0x%02x, lun=0x%02x, cmd_len=0x%02x\n", |
| cmd->device->channel, cmd->device->id, cmd->device->lun, |
| cmd->cmd_len); |
| printk(" CDB: "); |
| for (i = 0; i < cmd->cmd_len; i++) { |
| printk("0x%02x ", cmd->cmnd[i]); |
| } |
| printk("\n seg_cnt=%d, allowed=%d, retries=%d\n", |
| cmd->use_sg, cmd->allowed, cmd->retries); |
| printk(" request buffer=0x%p, request buffer len=0x%x\n", |
| cmd->request_buffer, cmd->request_bufflen); |
| printk(" tag=%d, transfersize=0x%x\n", |
| cmd->tag, cmd->transfersize); |
| printk(" serial_number=%lx, SP=%p\n", cmd->serial_number, sp); |
| printk(" data direction=%d\n", cmd->sc_data_direction); |
| |
| if (!sp) |
| return; |
| |
| printk(" sp flags=0x%x\n", sp->flags); |
| } |
| |
| void |
| qla2x00_dump_pkt(void *pkt) |
| { |
| uint32_t i; |
| uint8_t *data = (uint8_t *) pkt; |
| |
| for (i = 0; i < 64; i++) { |
| if (!(i % 4)) |
| printk("\n%02x: ", i); |
| |
| printk("%02x ", data[i]); |
| } |
| printk("\n"); |
| } |
| |
| #if defined(QL_DEBUG_ROUTINES) |
| /* |
| * qla2x00_formatted_dump_buffer |
| * Prints string plus buffer. |
| * |
| * Input: |
| * string = Null terminated string (no newline at end). |
| * buffer = buffer address. |
| * wd_size = word size 8, 16, 32 or 64 bits |
| * count = number of words. |
| */ |
| void |
| qla2x00_formatted_dump_buffer(char *string, uint8_t * buffer, |
| uint8_t wd_size, uint32_t count) |
| { |
| uint32_t cnt; |
| uint16_t *buf16; |
| uint32_t *buf32; |
| |
| if (strcmp(string, "") != 0) |
| printk("%s\n",string); |
| |
| switch (wd_size) { |
| case 8: |
| printk(" 0 1 2 3 4 5 6 7 " |
| "8 9 Ah Bh Ch Dh Eh Fh\n"); |
| printk("-----------------------------------------" |
| "-------------------------------------\n"); |
| |
| for (cnt = 1; cnt <= count; cnt++, buffer++) { |
| printk("%02x",*buffer); |
| if (cnt % 16 == 0) |
| printk("\n"); |
| else |
| printk(" "); |
| } |
| if (cnt % 16 != 0) |
| printk("\n"); |
| break; |
| case 16: |
| printk(" 0 2 4 6 8 Ah " |
| " Ch Eh\n"); |
| printk("-----------------------------------------" |
| "-------------\n"); |
| |
| buf16 = (uint16_t *) buffer; |
| for (cnt = 1; cnt <= count; cnt++, buf16++) { |
| printk("%4x",*buf16); |
| |
| if (cnt % 8 == 0) |
| printk("\n"); |
| else if (*buf16 < 10) |
| printk(" "); |
| else |
| printk(" "); |
| } |
| if (cnt % 8 != 0) |
| printk("\n"); |
| break; |
| case 32: |
| printk(" 0 4 8 Ch\n"); |
| printk("------------------------------------------\n"); |
| |
| buf32 = (uint32_t *) buffer; |
| for (cnt = 1; cnt <= count; cnt++, buf32++) { |
| printk("%8x", *buf32); |
| |
| if (cnt % 4 == 0) |
| printk("\n"); |
| else if (*buf32 < 10) |
| printk(" "); |
| else |
| printk(" "); |
| } |
| if (cnt % 4 != 0) |
| printk("\n"); |
| break; |
| default: |
| break; |
| } |
| } |
| #endif |