| /* |
| * Copyright (C) 2004-2006 Atmel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef __ASM_AVR32_PGTABLE_H |
| #define __ASM_AVR32_PGTABLE_H |
| |
| #include <asm/addrspace.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * Use two-level page tables just as the i386 (without PAE) |
| */ |
| #include <asm/pgtable-2level.h> |
| |
| /* |
| * The following code might need some cleanup when the values are |
| * final... |
| */ |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| #define PTE_PHYS_MASK 0x1ffff000 |
| |
| #ifndef __ASSEMBLY__ |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| extern void paging_init(void); |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used for |
| * zero-mapped memory areas etc. |
| */ |
| extern struct page *empty_zero_page; |
| #define ZERO_PAGE(vaddr) (empty_zero_page) |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 8 MiB value just means that there will be a 8 MiB "hole" |
| * after the uncached physical memory (P2 segment) until the vmalloc |
| * area starts. That means that any out-of-bounds memory accesses will |
| * hopefully be caught; we don't know if the end of the P1/P2 segments |
| * are actually used for anything, but it is anyway safer to let the |
| * MMU catch these kinds of errors than to rely on the memory bus. |
| * |
| * A "hole" of the same size is added to the end of the P3 segment as |
| * well. It might seem wasteful to use 16 MiB of virtual address space |
| * on this, but we do have 512 MiB of it... |
| * |
| * The vmalloc() routines leave a hole of 4 KiB between each vmalloced |
| * area for the same reason. |
| */ |
| #define VMALLOC_OFFSET (8 * 1024 * 1024) |
| #define VMALLOC_START (P3SEG + VMALLOC_OFFSET) |
| #define VMALLOC_END (P4SEG - VMALLOC_OFFSET) |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * Page flags. Some of these flags are not directly supported by |
| * hardware, so we have to emulate them. |
| */ |
| #define _TLBEHI_BIT_VALID 9 |
| #define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID) |
| |
| #define _PAGE_BIT_WT 0 /* W-bit : write-through */ |
| #define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */ |
| #define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */ |
| #define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */ |
| #define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */ |
| #define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */ |
| #define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */ |
| #define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */ |
| #define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */ |
| #define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */ |
| |
| /* If we drop support for 1K pages, we get two extra bits */ |
| #define _PAGE_BIT_PRESENT 10 |
| #define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */ |
| |
| /* The following flags are only valid when !PRESENT */ |
| #define _PAGE_BIT_FILE 0 /* software: pagecache or swap? */ |
| |
| #define _PAGE_WT (1 << _PAGE_BIT_WT) |
| #define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY) |
| #define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE) |
| #define _PAGE_RW (1 << _PAGE_BIT_RW) |
| #define _PAGE_USER (1 << _PAGE_BIT_USER) |
| #define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER) |
| #define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL) |
| #define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE) |
| |
| /* Software flags */ |
| #define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED) |
| #define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT) |
| #define _PAGE_FILE (1 << _PAGE_BIT_FILE) |
| |
| /* |
| * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is |
| * usually called _PAGE_PROTNONE on other architectures. |
| * |
| * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If |
| * so, we can encode all possible page sizes (although we can't really |
| * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED |
| * bits) |
| * |
| */ |
| #define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1)) |
| #define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0) |
| #define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0) |
| #define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0) |
| #define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0) |
| |
| /* |
| * Mask which drop software flags. We currently can't handle more than |
| * 512 MiB of physical memory, so we can use bits 29-31 for other |
| * stuff. With a fixed 4K page size, we can use bits 10-11 as well as |
| * bits 2-3 (SZ) |
| */ |
| #define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff |
| |
| #define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT) |
| |
| /* TODO: Check for saneness */ |
| /* User-mode page table flags (to be set in a pgd or pmd entry) */ |
| #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \ |
| | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) |
| /* Kernel-mode page table flags */ |
| #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \ |
| | _PAGE_ACCESSED | _PAGE_DIRTY) |
| /* Flags that may be modified by software */ |
| #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \ |
| | _PAGE_FLAGS_CACHE_MASK) |
| |
| #define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER) |
| #define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY) |
| |
| #define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \ |
| | _PAGE_ACCESSED) |
| |
| #define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE) |
| #define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER) |
| #define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER) |
| #define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER) |
| #define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL) |
| #define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL) |
| |
| #define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY)) |
| #define _PAGE_S(x) _PAGE_NORMAL(x) |
| |
| #define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The hardware supports flags for write- and execute access. Read is |
| * always allowed if the page is loaded into the TLB, so the "-w-", |
| * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx", |
| * respectively. |
| * |
| * The "---" case is handled by software; the page will simply not be |
| * loaded into the TLB if the page type is _PAGE_TYPE_NONE. |
| */ |
| |
| #define __P000 __pgprot(PAGE_NONE) |
| #define __P001 _PAGE_P(PAGE_READ) |
| #define __P010 _PAGE_P(PAGE_WRITE) |
| #define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ) |
| #define __P100 _PAGE_P(PAGE_EXEC) |
| #define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ) |
| #define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE) |
| #define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ) |
| |
| #define __S000 __pgprot(PAGE_NONE) |
| #define __S001 _PAGE_S(PAGE_READ) |
| #define __S010 _PAGE_S(PAGE_WRITE) |
| #define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ) |
| #define __S100 _PAGE_S(PAGE_EXEC) |
| #define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ) |
| #define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE) |
| #define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ) |
| |
| #define pte_none(x) (!pte_val(x)) |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| |
| #define pte_clear(mm,addr,xp) \ |
| do { \ |
| set_pte_at(mm, addr, xp, __pte(0)); \ |
| } while (0) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_write(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_RW; |
| } |
| static inline int pte_dirty(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_DIRTY; |
| } |
| static inline int pte_young(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_ACCESSED; |
| } |
| |
| /* |
| * The following only work if pte_present() is not true. |
| */ |
| static inline int pte_file(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_FILE; |
| } |
| |
| /* Mutator functions for PTE bits */ |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); |
| return pte; |
| } |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); |
| return pte; |
| } |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); |
| return pte; |
| } |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); |
| return pte; |
| } |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); |
| return pte; |
| } |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); |
| return pte; |
| } |
| |
| #define pmd_none(x) (!pmd_val(x)) |
| #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) |
| #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) \ |
| != _KERNPG_TABLE) |
| |
| /* |
| * Permanent address of a page. We don't support highmem, so this is |
| * trivial. |
| */ |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) |
| #define pte_page(x) phys_to_page(pte_val(x) & PTE_PHYS_MASK) |
| |
| /* |
| * Mark the prot value as uncacheable and unbufferable |
| */ |
| #define pgprot_noncached(prot) \ |
| __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE)) |
| |
| /* |
| * Mark the prot value as uncacheable but bufferable |
| */ |
| #define pgprot_writecombine(prot) \ |
| __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) |
| */ |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) |
| | pgprot_val(newprot))); |
| return pte; |
| } |
| |
| #define page_pte(page) page_pte_prot(page, __pgprot(0)) |
| |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| |
| #define pmd_page(pmd) (phys_to_page(pmd_val(pmd))) |
| |
| /* to find an entry in a page-table-directory. */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) |
| #define pgd_offset_current(address) \ |
| ((pgd_t *)__mfsr(SYSREG_PTBR) + pgd_index(address)) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) \ |
| ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset(dir, address) \ |
| ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) |
| #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) |
| #define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| struct vm_area_struct; |
| extern void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t pte); |
| |
| /* |
| * Encode and decode a swap entry |
| * |
| * Constraints: |
| * _PAGE_FILE at bit 0 |
| * _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE) |
| * _PAGE_PRESENT at bit 10 |
| * |
| * We encode the type into bits 4-9 and offset into bits 11-31. This |
| * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per |
| * device, and 64 possible types. |
| * |
| * NOTE: We should set ZEROs at the position of _PAGE_PRESENT |
| * and _PAGE_PROTNONE bits |
| */ |
| #define __swp_type(x) (((x).val >> 4) & 0x3f) |
| #define __swp_offset(x) ((x).val >> 11) |
| #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| /* |
| * Encode and decode a nonlinear file mapping entry. We have to |
| * preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't |
| * necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?) |
| */ |
| #define PTE_FILE_MAX_BITS 30 |
| #define pte_to_pgoff(pte) (((pte_val(pte) >> 1) & 0x1ff) \ |
| | ((pte_val(pte) >> 11) << 9)) |
| #define pgoff_to_pte(off) ((pte_t) { ((((off) & 0x1ff) << 1) \ |
| | (((off) >> 9) << 11) \ |
| | _PAGE_FILE) }) |
| |
| typedef pte_t *pte_addr_t; |
| |
| #define kern_addr_valid(addr) (1) |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| /* No page table caches to initialize (?) */ |
| #define pgtable_cache_init() do { } while(0) |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ASM_AVR32_PGTABLE_H */ |