| /* |
| * async.c: Asynchronous function calls for boot performance |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * Author: Arjan van de Ven <arjan@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| |
| /* |
| |
| Goals and Theory of Operation |
| |
| The primary goal of this feature is to reduce the kernel boot time, |
| by doing various independent hardware delays and discovery operations |
| decoupled and not strictly serialized. |
| |
| More specifically, the asynchronous function call concept allows |
| certain operations (primarily during system boot) to happen |
| asynchronously, out of order, while these operations still |
| have their externally visible parts happen sequentially and in-order. |
| (not unlike how out-of-order CPUs retire their instructions in order) |
| |
| Key to the asynchronous function call implementation is the concept of |
| a "sequence cookie" (which, although it has an abstracted type, can be |
| thought of as a monotonically incrementing number). |
| |
| The async core will assign each scheduled event such a sequence cookie and |
| pass this to the called functions. |
| |
| The asynchronously called function should before doing a globally visible |
| operation, such as registering device numbers, call the |
| async_synchronize_cookie() function and pass in its own cookie. The |
| async_synchronize_cookie() function will make sure that all asynchronous |
| operations that were scheduled prior to the operation corresponding with the |
| cookie have completed. |
| |
| Subsystem/driver initialization code that scheduled asynchronous probe |
| functions, but which shares global resources with other drivers/subsystems |
| that do not use the asynchronous call feature, need to do a full |
| synchronization with the async_synchronize_full() function, before returning |
| from their init function. This is to maintain strict ordering between the |
| asynchronous and synchronous parts of the kernel. |
| |
| */ |
| |
| #include <linux/async.h> |
| #include <linux/atomic.h> |
| #include <linux/ktime.h> |
| #include <linux/export.h> |
| #include <linux/wait.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| |
| static async_cookie_t next_cookie = 1; |
| |
| #define MAX_WORK 32768 |
| |
| static LIST_HEAD(async_pending); |
| static LIST_HEAD(async_running); |
| static DEFINE_SPINLOCK(async_lock); |
| |
| struct async_entry { |
| struct list_head list; |
| struct work_struct work; |
| async_cookie_t cookie; |
| async_func_ptr *func; |
| void *data; |
| struct list_head *running; |
| }; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(async_done); |
| |
| static atomic_t entry_count; |
| |
| |
| /* |
| * MUST be called with the lock held! |
| */ |
| static async_cookie_t __lowest_in_progress(struct list_head *running) |
| { |
| struct async_entry *entry; |
| |
| if (!list_empty(running)) { |
| entry = list_first_entry(running, |
| struct async_entry, list); |
| return entry->cookie; |
| } |
| |
| list_for_each_entry(entry, &async_pending, list) |
| if (entry->running == running) |
| return entry->cookie; |
| |
| return next_cookie; /* "infinity" value */ |
| } |
| |
| static async_cookie_t lowest_in_progress(struct list_head *running) |
| { |
| unsigned long flags; |
| async_cookie_t ret; |
| |
| spin_lock_irqsave(&async_lock, flags); |
| ret = __lowest_in_progress(running); |
| spin_unlock_irqrestore(&async_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * pick the first pending entry and run it |
| */ |
| static void async_run_entry_fn(struct work_struct *work) |
| { |
| struct async_entry *entry = |
| container_of(work, struct async_entry, work); |
| unsigned long flags; |
| ktime_t uninitialized_var(calltime), delta, rettime; |
| |
| /* 1) move self to the running queue */ |
| spin_lock_irqsave(&async_lock, flags); |
| list_move_tail(&entry->list, entry->running); |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* 2) run (and print duration) */ |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| printk(KERN_DEBUG "calling %lli_%pF @ %i\n", |
| (long long)entry->cookie, |
| entry->func, task_pid_nr(current)); |
| calltime = ktime_get(); |
| } |
| entry->func(entry->data, entry->cookie); |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| printk(KERN_DEBUG "initcall %lli_%pF returned 0 after %lld usecs\n", |
| (long long)entry->cookie, |
| entry->func, |
| (long long)ktime_to_ns(delta) >> 10); |
| } |
| |
| /* 3) remove self from the running queue */ |
| spin_lock_irqsave(&async_lock, flags); |
| list_del(&entry->list); |
| |
| /* 4) free the entry */ |
| kfree(entry); |
| atomic_dec(&entry_count); |
| |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* 5) wake up any waiters */ |
| wake_up(&async_done); |
| } |
| |
| static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) |
| { |
| struct async_entry *entry; |
| unsigned long flags; |
| async_cookie_t newcookie; |
| |
| /* allow irq-off callers */ |
| entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); |
| |
| /* |
| * If we're out of memory or if there's too much work |
| * pending already, we execute synchronously. |
| */ |
| if (!entry || atomic_read(&entry_count) > MAX_WORK) { |
| kfree(entry); |
| spin_lock_irqsave(&async_lock, flags); |
| newcookie = next_cookie++; |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* low on memory.. run synchronously */ |
| ptr(data, newcookie); |
| return newcookie; |
| } |
| INIT_WORK(&entry->work, async_run_entry_fn); |
| entry->func = ptr; |
| entry->data = data; |
| entry->running = running; |
| |
| spin_lock_irqsave(&async_lock, flags); |
| newcookie = entry->cookie = next_cookie++; |
| list_add_tail(&entry->list, &async_pending); |
| atomic_inc(&entry_count); |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* schedule for execution */ |
| queue_work(system_unbound_wq, &entry->work); |
| |
| return newcookie; |
| } |
| |
| /** |
| * async_schedule - schedule a function for asynchronous execution |
| * @ptr: function to execute asynchronously |
| * @data: data pointer to pass to the function |
| * |
| * Returns an async_cookie_t that may be used for checkpointing later. |
| * Note: This function may be called from atomic or non-atomic contexts. |
| */ |
| async_cookie_t async_schedule(async_func_ptr *ptr, void *data) |
| { |
| return __async_schedule(ptr, data, &async_running); |
| } |
| EXPORT_SYMBOL_GPL(async_schedule); |
| |
| /** |
| * async_schedule_domain - schedule a function for asynchronous execution within a certain domain |
| * @ptr: function to execute asynchronously |
| * @data: data pointer to pass to the function |
| * @running: running list for the domain |
| * |
| * Returns an async_cookie_t that may be used for checkpointing later. |
| * @running may be used in the async_synchronize_*_domain() functions |
| * to wait within a certain synchronization domain rather than globally. |
| * A synchronization domain is specified via the running queue @running to use. |
| * Note: This function may be called from atomic or non-atomic contexts. |
| */ |
| async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data, |
| struct list_head *running) |
| { |
| return __async_schedule(ptr, data, running); |
| } |
| EXPORT_SYMBOL_GPL(async_schedule_domain); |
| |
| /** |
| * async_synchronize_full - synchronize all asynchronous function calls |
| * |
| * This function waits until all asynchronous function calls have been done. |
| */ |
| void async_synchronize_full(void) |
| { |
| do { |
| async_synchronize_cookie(next_cookie); |
| } while (!list_empty(&async_running) || !list_empty(&async_pending)); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_full); |
| |
| /** |
| * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain |
| * @list: running list to synchronize on |
| * |
| * This function waits until all asynchronous function calls for the |
| * synchronization domain specified by the running list @list have been done. |
| */ |
| void async_synchronize_full_domain(struct list_head *list) |
| { |
| async_synchronize_cookie_domain(next_cookie, list); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_full_domain); |
| |
| /** |
| * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing |
| * @cookie: async_cookie_t to use as checkpoint |
| * @running: running list to synchronize on |
| * |
| * This function waits until all asynchronous function calls for the |
| * synchronization domain specified by the running list @list submitted |
| * prior to @cookie have been done. |
| */ |
| void async_synchronize_cookie_domain(async_cookie_t cookie, |
| struct list_head *running) |
| { |
| ktime_t uninitialized_var(starttime), delta, endtime; |
| |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| printk(KERN_DEBUG "async_waiting @ %i\n", task_pid_nr(current)); |
| starttime = ktime_get(); |
| } |
| |
| wait_event(async_done, lowest_in_progress(running) >= cookie); |
| |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| endtime = ktime_get(); |
| delta = ktime_sub(endtime, starttime); |
| |
| printk(KERN_DEBUG "async_continuing @ %i after %lli usec\n", |
| task_pid_nr(current), |
| (long long)ktime_to_ns(delta) >> 10); |
| } |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain); |
| |
| /** |
| * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing |
| * @cookie: async_cookie_t to use as checkpoint |
| * |
| * This function waits until all asynchronous function calls prior to @cookie |
| * have been done. |
| */ |
| void async_synchronize_cookie(async_cookie_t cookie) |
| { |
| async_synchronize_cookie_domain(cookie, &async_running); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_cookie); |