| /* Copyright (c) 2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/mutex.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/gpio.h> |
| #include <linux/hwmon.h> |
| #include <linux/delay.h> |
| #include <linux/epm_adc.h> |
| #include <linux/uaccess.h> |
| #include <linux/spi/spi.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/miscdevice.h> |
| #include <linux/platform_device.h> |
| |
| #define EPM_ADC_DRIVER_NAME "epm_adc" |
| #define EPM_ADC_MAX_FNAME 20 |
| #define EPM_ADC_CONVERSION_DELAY 100 /* milliseconds */ |
| /* Command Bits */ |
| #define EPM_ADC_ADS_SPI_BITS_PER_WORD 8 |
| #define EPM_ADC_ADS_DATA_READ_CMD (0x1 << 5) |
| #define EPM_ADC_ADS_REG_READ_CMD (0x2 << 5) |
| #define EPM_ADC_ADS_REG_WRITE_CMD (0x3 << 5) |
| #define EPM_ADC_ADS_PULSE_CONVERT_CMD (0x4 << 5) |
| #define EPM_ADC_ADS_MULTIPLE_REG_ACCESS (0x1 << 4) |
| /* Register map */ |
| #define EPM_ADC_ADS_CONFIG0_REG_ADDR 0x0 |
| #define EPM_ADC_ADS_CONFIG1_REG_ADDR 0x1 |
| #define EPM_ADC_ADS_MUXSG0_REG_ADDR 0x4 |
| #define EPM_ADC_ADS_MUXSG1_REG_ADDR 0x5 |
| /* Register map default data */ |
| #define EPM_ADC_ADS_REG0_DEFAULT 0x2 |
| #define EPM_ADC_ADS_REG1_DEFAULT 0x52 |
| #define EPM_ADC_ADS_CHANNEL_DATA_CHID 0x1f |
| /* Channel ID */ |
| #define EPM_ADC_ADS_CHANNEL_OFFSET 0x18 |
| #define EPM_ADC_ADS_CHANNEL_VCC 0x1a |
| #define EPM_ADC_ADS_CHANNEL_TEMP 0x1b |
| #define EPM_ADC_ADS_CHANNEL_GAIN 0x1c |
| #define EPM_ADC_ADS_CHANNEL_REF 0x1d |
| /* Scaling data co-efficients */ |
| #define EPM_ADC_SCALE_MILLI 1000 |
| #define EPM_ADC_SCALE_CODE_VOLTS 3072 |
| #define EPM_ADC_SCALE_CODE_GAIN 30720 |
| #define EPM_ADC_TEMP_SENSOR_COEFF 394 |
| #define EPM_ADC_TEMP_TO_DEGC_COEFF 168000 |
| #define EPM_ADC_CHANNEL_AIN_OFFSET 8 |
| #define EPM_ADC_MAX_NEGATIVE_SCALE_CODE 0x8000 |
| #define EPM_ADC_NEG_LSB_CODE 0xffff |
| #define EPM_ADC_VREF_CODE 0x7800 |
| #define EPM_ADC_MILLI_VOLTS_SOURCE 4750 |
| #define EPM_ADC_SCALE_FACTOR 64 |
| #define GPIO_EPM_GLOBAL_ENABLE 86 |
| #define EPM_ADC_CONVERSION_TIME_MIN 50000 |
| #define EPM_ADC_CONVERSION_TIME_MAX 51000 |
| |
| struct epm_adc_drv { |
| struct platform_device *pdev; |
| struct device *hwmon; |
| struct sensor_device_attribute *sens_attr; |
| char **fnames; |
| struct spi_device *epm_spi_client; |
| struct mutex conv_lock; |
| uint32_t bus_id; |
| struct miscdevice misc; |
| }; |
| |
| static struct epm_adc_drv *epm_adc_drv; |
| static struct i2c_board_info *epm_i2c_info; |
| static bool epm_adc_first_request; |
| static int epm_gpio_expander_base_addr; |
| static bool epm_adc_expander_register; |
| |
| #define GPIO_EPM_EXPANDER_IO0 epm_gpio_expander_base_addr |
| #define GPIO_PWR_MON_ENABLE (GPIO_EPM_EXPANDER_IO0 + 1) |
| #define GPIO_ADC1_PWDN_N (GPIO_PWR_MON_ENABLE + 1) |
| #define GPIO_PWR_MON_RESET_N (GPIO_ADC1_PWDN_N + 1) |
| #define GPIO_EPM_SPI_ADC1_CS_N (GPIO_PWR_MON_RESET_N + 1) |
| #define GPIO_PWR_MON_START (GPIO_EPM_SPI_ADC1_CS_N + 1) |
| #define GPIO_ADC1_DRDY_N (GPIO_PWR_MON_START + 1) |
| #define GPIO_ADC2_PWDN_N (GPIO_ADC1_DRDY_N + 1) |
| #define GPIO_EPM_SPI_ADC2_CS_N (GPIO_ADC2_PWDN_N + 1) |
| #define GPIO_ADC2_DRDY_N (GPIO_EPM_SPI_ADC2_CS_N + 1) |
| |
| static int epm_adc_i2c_expander_register(void) |
| { |
| int rc = 0; |
| static struct i2c_adapter *i2c_adap; |
| static struct i2c_client *epm_i2c_client; |
| |
| rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN"); |
| if (!rc) { |
| gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1); |
| } else { |
| pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", __func__); |
| return rc; |
| } |
| |
| usleep_range(EPM_ADC_CONVERSION_TIME_MIN, |
| EPM_ADC_CONVERSION_TIME_MAX); |
| |
| i2c_adap = i2c_get_adapter(epm_adc_drv->bus_id); |
| if (i2c_adap == NULL) { |
| pr_err("%s: i2c_get_adapter() failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| usleep_range(EPM_ADC_CONVERSION_TIME_MIN, |
| EPM_ADC_CONVERSION_TIME_MAX); |
| |
| epm_i2c_client = i2c_new_device(i2c_adap, epm_i2c_info); |
| if (IS_ERR(epm_i2c_client)) { |
| pr_err("Error with i2c epm device register\n"); |
| return -ENODEV; |
| } |
| |
| epm_adc_first_request = false; |
| |
| return 0; |
| } |
| |
| static int epm_adc_gpio_configure_expander_enable(void) |
| { |
| int rc = 0; |
| |
| if (epm_adc_first_request) { |
| rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN"); |
| if (!rc) { |
| gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1); |
| } else { |
| pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| epm_adc_first_request = true; |
| } |
| |
| usleep_range(EPM_ADC_CONVERSION_TIME_MIN, |
| EPM_ADC_CONVERSION_TIME_MAX); |
| |
| rc = gpio_request(GPIO_PWR_MON_ENABLE, "GPIO_PWR_MON_ENABLE"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_PWR_MON_ENABLE, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_PWR_MON_ENABLE failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_PWR_MON_ENABLE failed\n", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_ADC1_PWDN_N, "GPIO_ADC1_PWDN_N"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_ADC1_PWDN_N, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_ADC1_PWDN_N failed\n", __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_ADC1_PWDN_N failed\n", __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_ADC2_PWDN_N, "GPIO_ADC2_PWDN_N"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_ADC2_PWDN_N, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_ADC2_PWDN_N failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_ADC2_PWDN_N failed\n", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_EPM_SPI_ADC1_CS_N, "GPIO_EPM_SPI_ADC1_CS_N"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); |
| if (rc) { |
| pr_err("%s:Set GPIO_EPM_SPI_ADC1_CS_N failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_EPM_SPI_ADC1_CS_N failed\n", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_EPM_SPI_ADC2_CS_N, |
| "GPIO_EPM_SPI_ADC2_CS_N"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_EPM_SPI_ADC2_CS_N " |
| "failed\n", __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_EPM_SPI_ADC2_CS_N " |
| "failed\n", __func__); |
| return rc; |
| } |
| |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); |
| if (rc) { |
| pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); |
| return rc; |
| } |
| |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_PWR_MON_START, "GPIO_PWR_MON_START"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_PWR_MON_START, 0); |
| if (rc) { |
| pr_err("%s: Reset GPIO_PWR_MON_START failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_PWR_MON_START failed\n", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_request(GPIO_PWR_MON_RESET_N, "GPIO_PWR_MON_RESET_N"); |
| if (!rc) { |
| rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 0); |
| if (rc) { |
| pr_err("%s: Reset GPIO_PWR_MON_RESET_N failed\n", |
| __func__); |
| return rc; |
| } |
| } else { |
| pr_err("%s: gpio_request GPIO_PWR_MON_RESET_N failed\n", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 1); |
| if (rc) { |
| pr_err("%s: Set GPIO_PWR_MON_RESET_N failed\n", __func__); |
| return rc; |
| } |
| |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); |
| if (rc) { |
| pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); |
| return rc; |
| } |
| return rc; |
| } |
| |
| static int epm_adc_gpio_configure_expander_disable(void) |
| { |
| int rc = 0; |
| gpio_free(GPIO_PWR_MON_ENABLE); |
| gpio_free(GPIO_ADC1_PWDN_N); |
| gpio_free(GPIO_ADC2_PWDN_N); |
| gpio_free(GPIO_EPM_SPI_ADC1_CS_N); |
| gpio_free(GPIO_EPM_SPI_ADC2_CS_N); |
| gpio_free(GPIO_PWR_MON_START); |
| gpio_free(GPIO_PWR_MON_RESET_N); |
| rc = gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 0); |
| if (rc) |
| pr_debug("%s: Disable EPM_GLOBAL_EN Failed\n", __func__); |
| gpio_free(GPIO_EPM_GLOBAL_ENABLE); |
| return rc; |
| } |
| |
| static int epm_adc_spi_chip_select(int32_t id) |
| { |
| int rc = 0; |
| if (id == 0) { |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1); |
| if (rc) { |
| pr_err("%s:Disable SPI_ADC2_CS failed", |
| __func__); |
| return rc; |
| } |
| |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); |
| if (rc) { |
| pr_err("%s:Enable SPI_ADC1_CS failed", __func__); |
| return rc; |
| } |
| } else if (id == 1) { |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); |
| if (rc) { |
| pr_err("%s:Disable SPI_ADC1_CS failed", __func__); |
| return rc; |
| } |
| rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 0); |
| if (rc) { |
| pr_err("%s:Enable SPI_ADC2_CS failed", __func__); |
| return rc; |
| } |
| } else { |
| rc = -EFAULT; |
| } |
| return rc; |
| } |
| |
| static int epm_adc_ads_spi_write(struct epm_adc_drv *epm_adc, |
| uint8_t addr, uint8_t val) |
| { |
| struct spi_message m; |
| struct spi_transfer t; |
| char tx_buf[2]; |
| int rc = 0; |
| |
| spi_setup(epm_adc->epm_spi_client); |
| |
| memset(&t, 0, sizeof t); |
| memset(tx_buf, 0, sizeof tx_buf); |
| t.tx_buf = tx_buf; |
| spi_message_init(&m); |
| spi_message_add_tail(&t, &m); |
| |
| tx_buf[0] = EPM_ADC_ADS_REG_WRITE_CMD | addr; |
| tx_buf[1] = val; |
| |
| t.len = sizeof(tx_buf); |
| t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; |
| |
| rc = spi_sync(epm_adc->epm_spi_client, &m); |
| |
| return rc; |
| } |
| |
| static int epm_adc_init_ads(struct epm_adc_drv *epm_adc) |
| { |
| int rc = 0; |
| |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG0_REG_ADDR, |
| EPM_ADC_ADS_REG0_DEFAULT); |
| if (rc) |
| return rc; |
| |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG1_REG_ADDR, |
| EPM_ADC_ADS_REG1_DEFAULT); |
| if (rc) |
| return rc; |
| return rc; |
| } |
| |
| static int epm_adc_ads_pulse_convert(struct epm_adc_drv *epm_adc) |
| { |
| struct spi_message m; |
| struct spi_transfer t; |
| char tx_buf[1]; |
| int rc = 0; |
| |
| spi_setup(epm_adc->epm_spi_client); |
| |
| memset(&t, 0, sizeof t); |
| memset(tx_buf, 0, sizeof tx_buf); |
| t.tx_buf = tx_buf; |
| spi_message_init(&m); |
| spi_message_add_tail(&t, &m); |
| |
| tx_buf[0] = EPM_ADC_ADS_PULSE_CONVERT_CMD; |
| t.len = sizeof(tx_buf); |
| t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; |
| |
| rc = spi_sync(epm_adc->epm_spi_client, &m); |
| |
| return rc; |
| } |
| |
| static int epm_adc_ads_read_data(struct epm_adc_drv *epm_adc, char *adc_data) |
| { |
| struct spi_message m; |
| struct spi_transfer t; |
| char tx_buf[4], rx_buf[4]; |
| int rc = 0; |
| |
| spi_setup(epm_adc->epm_spi_client); |
| |
| memset(&t, 0, sizeof t); |
| memset(tx_buf, 0, sizeof tx_buf); |
| memset(rx_buf, 0, sizeof tx_buf); |
| t.tx_buf = tx_buf; |
| t.rx_buf = rx_buf; |
| spi_message_init(&m); |
| spi_message_add_tail(&t, &m); |
| |
| tx_buf[0] = EPM_ADC_ADS_DATA_READ_CMD | |
| EPM_ADC_ADS_MULTIPLE_REG_ACCESS; |
| |
| t.len = sizeof(tx_buf); |
| t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; |
| |
| rc = spi_sync(epm_adc->epm_spi_client, &m); |
| if (rc) |
| return rc; |
| |
| rc = spi_sync(epm_adc->epm_spi_client, &m); |
| if (rc) |
| return rc; |
| |
| rc = spi_sync(epm_adc->epm_spi_client, &m); |
| if (rc) |
| return rc; |
| |
| adc_data[0] = rx_buf[1]; |
| adc_data[1] = rx_buf[2]; |
| adc_data[2] = rx_buf[3]; |
| |
| return rc; |
| } |
| |
| static int epm_adc_hw_init(struct epm_adc_drv *epm_adc) |
| { |
| int rc = 0; |
| |
| mutex_lock(&epm_adc->conv_lock); |
| rc = epm_adc_gpio_configure_expander_enable(); |
| if (rc != 0) { |
| pr_err("epm gpio configure expander failed, rc = %d\n", rc); |
| goto epm_adc_hw_init_err; |
| } |
| rc = epm_adc_init_ads(epm_adc); |
| if (rc) { |
| pr_err("epm_adc_init_ads failed, rc=%d\n", rc); |
| goto epm_adc_hw_init_err; |
| } |
| |
| epm_adc_hw_init_err: |
| mutex_unlock(&epm_adc->conv_lock); |
| return rc; |
| } |
| |
| static int epm_adc_hw_deinit(struct epm_adc_drv *epm_adc) |
| { |
| int rc = 0; |
| |
| mutex_lock(&epm_adc->conv_lock); |
| rc = epm_adc_gpio_configure_expander_disable(); |
| if (rc != 0) { |
| pr_err("epm gpio configure expander disable failed," |
| " rc = %d\n", rc); |
| goto epm_adc_hw_deinit_err; |
| } |
| |
| epm_adc_hw_deinit_err: |
| mutex_unlock(&epm_adc->conv_lock); |
| return rc; |
| } |
| |
| static int epm_adc_ads_scale_result(struct epm_adc_drv *epm_adc, |
| uint8_t *adc_raw_data, struct epm_chan_request *conv) |
| { |
| uint32_t channel_num; |
| int16_t sign_bit; |
| struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; |
| uint32_t chan_idx = (conv->device_idx * pdata->chan_per_adc) + |
| conv->channel_idx; |
| int32_t *adc_scaled_data = &conv->physical; |
| |
| /* Get the channel number */ |
| channel_num = (adc_raw_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID); |
| sign_bit = 1; |
| /* This is the 16-bit raw data */ |
| *adc_scaled_data = ((adc_raw_data[1] << 8) | adc_raw_data[2]); |
| /* Obtain the internal system reading */ |
| if (channel_num == EPM_ADC_ADS_CHANNEL_VCC) { |
| *adc_scaled_data *= EPM_ADC_SCALE_MILLI; |
| *adc_scaled_data /= EPM_ADC_SCALE_CODE_VOLTS; |
| } else if (channel_num == EPM_ADC_ADS_CHANNEL_GAIN) { |
| *adc_scaled_data /= EPM_ADC_SCALE_CODE_GAIN; |
| } else if (channel_num == EPM_ADC_ADS_CHANNEL_REF) { |
| *adc_scaled_data *= EPM_ADC_SCALE_MILLI; |
| *adc_scaled_data /= EPM_ADC_SCALE_CODE_VOLTS; |
| } else if (channel_num == EPM_ADC_ADS_CHANNEL_TEMP) { |
| /* Convert Code to micro-volts */ |
| /* Use this formula to get the temperature reading */ |
| *adc_scaled_data -= EPM_ADC_TEMP_TO_DEGC_COEFF; |
| *adc_scaled_data /= EPM_ADC_TEMP_SENSOR_COEFF; |
| } else if (channel_num == EPM_ADC_ADS_CHANNEL_OFFSET) { |
| /* The offset should be zero */ |
| pr_debug("%s: ADC Channel Offset\n", __func__); |
| return -EFAULT; |
| } else { |
| channel_num -= EPM_ADC_CHANNEL_AIN_OFFSET; |
| /* |
| * Conversion for the adc channels. |
| * mvVRef is in milli-volts and resistorValue is in micro-ohms. |
| * Hence, I = V/R gives us current in kilo-amps. |
| */ |
| if (*adc_scaled_data & EPM_ADC_MAX_NEGATIVE_SCALE_CODE) { |
| sign_bit = -1; |
| *adc_scaled_data = (~*adc_scaled_data |
| & EPM_ADC_NEG_LSB_CODE); |
| } |
| if (*adc_scaled_data != 0) { |
| *adc_scaled_data *= EPM_ADC_SCALE_FACTOR; |
| /* Device is calibrated for 1LSB = VREF/7800h.*/ |
| *adc_scaled_data *= EPM_ADC_MILLI_VOLTS_SOURCE; |
| *adc_scaled_data /= EPM_ADC_VREF_CODE; |
| /* Data will now be in micro-volts.*/ |
| *adc_scaled_data *= EPM_ADC_SCALE_MILLI; |
| /* Divide by amplifier gain value.*/ |
| *adc_scaled_data /= pdata->channel[chan_idx].gain; |
| /* Data will now be in nano-volts.*/ |
| *adc_scaled_data /= EPM_ADC_SCALE_FACTOR; |
| *adc_scaled_data *= EPM_ADC_SCALE_MILLI; |
| /* Data is now in micro-amps.*/ |
| *adc_scaled_data /= |
| pdata->channel[chan_idx].resistorValue; |
| /* Set the sign bit for lekage current. */ |
| *adc_scaled_data *= sign_bit; |
| } |
| } |
| return 0; |
| } |
| |
| static int epm_adc_blocking_conversion(struct epm_adc_drv *epm_adc, |
| struct epm_chan_request *conv) |
| { |
| struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; |
| int32_t channel_num = 0, mux_chan_idx = 0; |
| char adc_data[3]; |
| int rc = 0; |
| |
| mutex_lock(&epm_adc->conv_lock); |
| |
| rc = epm_adc_spi_chip_select(conv->device_idx); |
| if (rc) { |
| pr_err("epm_adc_chip_select failed, rc=%d\n", rc); |
| goto conv_err; |
| } |
| |
| if (conv->channel_idx < pdata->chan_per_mux) { |
| /* Reset MUXSG1_REGISTER */ |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR, |
| 0x0); |
| if (rc) |
| goto conv_err; |
| |
| mux_chan_idx = 1 << conv->channel_idx; |
| /* Select Channel index in MUXSG0_REGISTER */ |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR, |
| mux_chan_idx); |
| if (rc) |
| goto conv_err; |
| } else { |
| /* Reset MUXSG0_REGISTER */ |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR, |
| 0x0); |
| if (rc) |
| goto conv_err; |
| |
| mux_chan_idx = 1 << (conv->channel_idx - pdata->chan_per_mux); |
| /* Select Channel index in MUXSG1_REGISTER */ |
| rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR, |
| mux_chan_idx); |
| if (rc) |
| goto conv_err; |
| } |
| |
| rc = epm_adc_ads_pulse_convert(epm_adc); |
| if (rc) { |
| pr_err("epm_adc_ads_pulse_convert failed, rc=%d\n", rc); |
| goto conv_err; |
| } |
| |
| rc = epm_adc_ads_read_data(epm_adc, adc_data); |
| if (rc) { |
| pr_err("epm_adc_ads_read_data failed, rc=%d\n", rc); |
| goto conv_err; |
| } |
| |
| channel_num = (adc_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID); |
| pr_debug("ADC data Read: adc_data =%d, %d, %d\n", |
| adc_data[0], adc_data[1], adc_data[2]); |
| |
| epm_adc_ads_scale_result(epm_adc, (uint8_t *)adc_data, conv); |
| |
| pr_debug("channel_num(0x) = %x, scaled_data = %d\n", |
| (channel_num - EPM_ADC_ADS_SPI_BITS_PER_WORD), |
| conv->physical); |
| conv_err: |
| mutex_unlock(&epm_adc->conv_lock); |
| return rc; |
| } |
| |
| static long epm_adc_ioctl(struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct epm_adc_drv *epm_adc = epm_adc_drv; |
| |
| switch (cmd) { |
| case EPM_ADC_REQUEST: |
| { |
| struct epm_chan_request conv; |
| int rc; |
| |
| if (copy_from_user(&conv, (void __user *)arg, |
| sizeof(struct epm_chan_request))) |
| return -EFAULT; |
| |
| rc = epm_adc_blocking_conversion(epm_adc, &conv); |
| if (rc) { |
| pr_err("Failed EPM conversion:%d\n", rc); |
| return rc; |
| } |
| |
| if (copy_to_user((void __user *)arg, &conv, |
| sizeof(struct epm_chan_request))) |
| return -EFAULT; |
| break; |
| } |
| case EPM_ADC_INIT: |
| { |
| uint32_t result; |
| if (!epm_adc_expander_register) { |
| result = epm_adc_i2c_expander_register(); |
| if (result) { |
| pr_err("Failed i2c register:%d\n", |
| result); |
| return result; |
| } |
| epm_adc_expander_register = true; |
| } |
| |
| result = epm_adc_hw_init(epm_adc_drv); |
| |
| if (copy_to_user((void __user *)arg, &result, |
| sizeof(uint32_t))) |
| return -EFAULT; |
| break; |
| } |
| case EPM_ADC_DEINIT: |
| { |
| uint32_t result; |
| result = epm_adc_hw_deinit(epm_adc_drv); |
| |
| if (copy_to_user((void __user *)arg, &result, |
| sizeof(uint32_t))) |
| return -EFAULT; |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| const struct file_operations epm_adc_fops = { |
| .unlocked_ioctl = epm_adc_ioctl, |
| }; |
| |
| static ssize_t epm_adc_show_in(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| struct epm_adc_drv *epm_adc = dev_get_drvdata(dev); |
| struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; |
| struct epm_chan_request conv; |
| int rc = 0; |
| |
| conv.device_idx = attr->index / pdata->chan_per_adc; |
| conv.channel_idx = attr->index % pdata->chan_per_adc; |
| conv.physical = 0; |
| pr_debug("%s: device_idx=%d channel_idx=%d", __func__, conv.device_idx, |
| conv.channel_idx); |
| if (!epm_adc_expander_register) { |
| rc = epm_adc_i2c_expander_register(); |
| if (rc) { |
| pr_err("I2C expander register failed:%d\n", rc); |
| return rc; |
| } |
| epm_adc_expander_register = true; |
| } |
| |
| rc = epm_adc_hw_init(epm_adc); |
| if (rc) { |
| pr_err("%s: epm_adc_hw_init() failed, rc = %d", |
| __func__, rc); |
| return 0; |
| } |
| |
| rc = epm_adc_blocking_conversion(epm_adc, &conv); |
| if (rc) { |
| pr_err("%s: epm_adc_blocking_conversion() failed, rc = %d\n", |
| __func__, rc); |
| return 0; |
| } |
| rc = epm_adc_hw_deinit(epm_adc); |
| if (rc) { |
| pr_err("%s: epm_adc_hw_deinit() failed, rc = %d", |
| __func__, rc); |
| return 0; |
| } |
| |
| return snprintf(buf, 16, "Result: %d\n", conv.physical); |
| } |
| |
| static struct sensor_device_attribute epm_adc_in_attr = |
| SENSOR_ATTR(NULL, S_IRUGO, epm_adc_show_in, NULL, 0); |
| |
| static int __devinit epm_adc_init_hwmon(struct platform_device *pdev, |
| struct epm_adc_drv *epm_adc) |
| { |
| struct epm_adc_platform_data *pdata = pdev->dev.platform_data; |
| int num_chans = pdata->num_channels, dev_idx = 0, chan_idx = 0; |
| int i = 0, rc = 0; |
| const char prefix[] = "ads", postfix[] = "_chan"; |
| char tmpbuf[3]; |
| |
| epm_adc->fnames = devm_kzalloc(&pdev->dev, |
| num_chans * EPM_ADC_MAX_FNAME + |
| num_chans * sizeof(char *), GFP_KERNEL); |
| if (!epm_adc->fnames) { |
| dev_err(&pdev->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| epm_adc->sens_attr = devm_kzalloc(&pdev->dev, num_chans * |
| sizeof(struct sensor_device_attribute), GFP_KERNEL); |
| if (!epm_adc->sens_attr) { |
| dev_err(&pdev->dev, "Unable to allocate memory\n"); |
| rc = -ENOMEM; |
| } |
| |
| for (i = 0; i < num_chans; i++, chan_idx++) { |
| epm_adc->fnames[i] = (char *)epm_adc->fnames + |
| (i * EPM_ADC_MAX_FNAME) + (num_chans * |
| sizeof(char *)); |
| if (chan_idx == pdata->chan_per_adc) { |
| chan_idx = 0; |
| dev_idx++; |
| } |
| strlcpy(epm_adc->fnames[i], prefix, EPM_ADC_MAX_FNAME); |
| snprintf(tmpbuf, sizeof(tmpbuf), "%d", dev_idx); |
| strlcat(epm_adc->fnames[i], tmpbuf, EPM_ADC_MAX_FNAME); |
| strlcat(epm_adc->fnames[i], postfix, EPM_ADC_MAX_FNAME); |
| snprintf(tmpbuf, sizeof(tmpbuf), "%d", chan_idx); |
| strlcat(epm_adc->fnames[i], tmpbuf, EPM_ADC_MAX_FNAME); |
| epm_adc_in_attr.index = i; |
| epm_adc_in_attr.dev_attr.attr.name = epm_adc->fnames[i]; |
| memcpy(&epm_adc->sens_attr[i], &epm_adc_in_attr, |
| sizeof(epm_adc_in_attr)); |
| rc = device_create_file(&pdev->dev, |
| &epm_adc->sens_attr[i].dev_attr); |
| if (rc) { |
| dev_err(&pdev->dev, "device_create_file failed\n"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int __devinit epm_adc_spi_probe(struct spi_device *spi) |
| |
| { |
| if (!epm_adc_drv) |
| return -ENODEV; |
| epm_adc_drv->epm_spi_client = spi; |
| epm_adc_drv->epm_spi_client->bits_per_word = |
| EPM_ADC_ADS_SPI_BITS_PER_WORD; |
| |
| return 0; |
| } |
| |
| static int __devexit epm_adc_spi_remove(struct spi_device *spi) |
| { |
| epm_adc_drv->epm_spi_client = NULL; |
| return 0; |
| } |
| |
| static struct spi_driver epm_spi_driver = { |
| .probe = epm_adc_spi_probe, |
| .remove = __devexit_p(epm_adc_spi_remove), |
| .driver = { |
| .name = EPM_ADC_DRIVER_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __devinit epm_adc_probe(struct platform_device *pdev) |
| { |
| struct epm_adc_drv *epm_adc; |
| struct epm_adc_platform_data *pdata = pdev->dev.platform_data; |
| int rc = 0; |
| |
| if (!pdata) { |
| dev_err(&pdev->dev, "no platform data?\n"); |
| return -EINVAL; |
| } |
| |
| epm_adc = kzalloc(sizeof(struct epm_adc_drv), GFP_KERNEL); |
| if (!epm_adc) { |
| dev_err(&pdev->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| platform_set_drvdata(pdev, epm_adc); |
| epm_adc_drv = epm_adc; |
| epm_adc->pdev = pdev; |
| |
| epm_adc->misc.name = EPM_ADC_DRIVER_NAME; |
| epm_adc->misc.minor = MISC_DYNAMIC_MINOR; |
| epm_adc->misc.fops = &epm_adc_fops; |
| |
| if (misc_register(&epm_adc->misc)) { |
| dev_err(&pdev->dev, "Unable to register misc device!\n"); |
| return -EFAULT; |
| } |
| |
| rc = epm_adc_init_hwmon(pdev, epm_adc); |
| if (rc) { |
| dev_err(&pdev->dev, "msm_adc_dev_init failed\n"); |
| misc_deregister(&epm_adc->misc); |
| return rc; |
| } |
| |
| epm_adc->hwmon = hwmon_device_register(&pdev->dev); |
| if (IS_ERR(epm_adc->hwmon)) { |
| dev_err(&pdev->dev, "hwmon_device_register failed\n"); |
| misc_deregister(&epm_adc->misc); |
| rc = PTR_ERR(epm_adc->hwmon); |
| return rc; |
| } |
| |
| mutex_init(&epm_adc->conv_lock); |
| epm_i2c_info = &pdata->epm_i2c_board_info; |
| epm_adc->bus_id = pdata->bus_id; |
| epm_gpio_expander_base_addr = pdata->gpio_expander_base_addr; |
| epm_adc_expander_register = false; |
| return rc; |
| } |
| |
| static int __devexit epm_adc_remove(struct platform_device *pdev) |
| { |
| struct epm_adc_drv *epm_adc = platform_get_drvdata(pdev); |
| struct epm_adc_platform_data *pdata = pdev->dev.platform_data; |
| int num_chans = pdata->num_channels; |
| int i = 0; |
| |
| if (epm_adc->sens_attr) |
| for (i = 0; i < num_chans; i++) |
| device_remove_file(&pdev->dev, |
| &epm_adc->sens_attr[i].dev_attr); |
| hwmon_device_unregister(epm_adc->hwmon); |
| misc_deregister(&epm_adc->misc); |
| epm_adc = NULL; |
| |
| return 0; |
| } |
| |
| static struct platform_driver epm_adc_driver = { |
| .probe = epm_adc_probe, |
| .remove = __devexit_p(epm_adc_remove), |
| .driver = { |
| .name = EPM_ADC_DRIVER_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __init epm_adc_init(void) |
| { |
| int ret = 0; |
| |
| ret = platform_driver_register(&epm_adc_driver); |
| if (ret) { |
| pr_err("%s: driver register failed, rc=%d\n", __func__, ret); |
| return ret; |
| } |
| |
| ret = spi_register_driver(&epm_spi_driver); |
| if (ret) |
| pr_err("%s: spi register failed: rc=%d\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| static void __exit epm_adc_exit(void) |
| { |
| spi_unregister_driver(&epm_spi_driver); |
| platform_driver_unregister(&epm_adc_driver); |
| } |
| |
| module_init(epm_adc_init); |
| module_exit(epm_adc_exit); |
| |
| MODULE_DESCRIPTION("EPM ADC Driver"); |
| MODULE_ALIAS("platform:epm_adc"); |
| MODULE_LICENSE("GPL v2"); |