blob: f3516da035d141947d04ddfbd61bd56f74623fd3 [file] [log] [blame]
/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#include <asm/k8.h>
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
struct memnode memnode;
s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
int numa_off __initdata;
static unsigned long __initdata nodemap_addr;
static unsigned long __initdata nodemap_size;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init populate_memnodemap(const struct bootnode *nodes,
int numnodes, int shift, int *nodeids)
{
unsigned long addr, end;
int i, res = -1;
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
for (i = 0; i < numnodes; i++) {
addr = nodes[i].start;
end = nodes[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= memnodemapsize)
return 0;
do {
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
return -1;
if (!nodeids)
memnodemap[addr >> shift] = i;
else
memnodemap[addr >> shift] = nodeids[i];
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
static int __init allocate_cachealigned_memnodemap(void)
{
unsigned long addr;
memnodemap = memnode.embedded_map;
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
return 0;
addr = 0x8000;
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
nodemap_size, L1_CACHE_BYTES);
if (nodemap_addr == -1UL) {
printk(KERN_ERR
"NUMA: Unable to allocate Memory to Node hash map\n");
nodemap_addr = nodemap_size = 0;
return -1;
}
memnodemap = phys_to_virt(nodemap_addr);
reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
nodemap_addr, nodemap_addr + nodemap_size);
return 0;
}
/*
* The LSB of all start and end addresses in the node map is the value of the
* maximum possible shift.
*/
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
int numnodes)
{
int i, nodes_used = 0;
unsigned long start, end;
unsigned long bitfield = 0, memtop = 0;
for (i = 0; i < numnodes; i++) {
start = nodes[i].start;
end = nodes[i].end;
if (start >= end)
continue;
bitfield |= start;
nodes_used++;
if (end > memtop)
memtop = end;
}
if (nodes_used <= 1)
i = 63;
else
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
memnodemapsize = (memtop >> i)+1;
return i;
}
int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
int *nodeids)
{
int shift;
shift = extract_lsb_from_nodes(nodes, numnodes);
if (allocate_cachealigned_memnodemap())
return -1;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
printk(KERN_INFO "Your memory is not aligned you need to "
"rebuild your kernel with a bigger NODEMAPSIZE "
"shift=%d\n", shift);
return -1;
}
return shift;
}
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
static void * __init early_node_mem(int nodeid, unsigned long start,
unsigned long end, unsigned long size,
unsigned long align)
{
unsigned long mem = find_e820_area(start, end, size, align);
void *ptr;
if (mem != -1L)
return __va(mem);
ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
if (ptr == NULL) {
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
return ptr;
}
/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start,
unsigned long end)
{
unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
unsigned long bootmap_start, nodedata_phys;
void *bootmap;
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
int nid;
start = roundup(start, ZONE_ALIGN);
printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
start, end);
start_pfn = start >> PAGE_SHIFT;
last_pfn = end >> PAGE_SHIFT;
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
SMP_CACHE_BYTES);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
nodedata_phys + pgdat_size - 1);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
/*
* Find a place for the bootmem map
* nodedata_phys could be on other nodes by alloc_bootmem,
* so need to sure bootmap_start not to be small, otherwise
* early_node_mem will get that with find_e820_area instead
* of alloc_bootmem, that could clash with reserved range
*/
bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
nid = phys_to_nid(nodedata_phys);
if (nid == nodeid)
bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
else
bootmap_start = roundup(start, PAGE_SIZE);
/*
* SMP_CACHE_BYTES could be enough, but init_bootmem_node like
* to use that to align to PAGE_SIZE
*/
bootmap = early_node_mem(nodeid, bootmap_start, end,
bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
if (bootmap == NULL) {
if (nodedata_phys < start || nodedata_phys >= end)
free_bootmem(nodedata_phys, pgdat_size);
node_data[nodeid] = NULL;
return;
}
bootmap_start = __pa(bootmap);
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap_start >> PAGE_SHIFT,
start_pfn, last_pfn);
printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
bootmap_start, bootmap_start + bootmap_size - 1,
bootmap_pages);
free_bootmem_with_active_regions(nodeid, end);
/*
* convert early reserve to bootmem reserve earlier
* otherwise early_node_mem could use early reserved mem
* on previous node
*/
early_res_to_bootmem(start, end);
/*
* in some case early_node_mem could use alloc_bootmem
* to get range on other node, don't reserve that again
*/
if (nid != nodeid)
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
else
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
pgdat_size, BOOTMEM_DEFAULT);
nid = phys_to_nid(bootmap_start);
if (nid != nodeid)
printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
else
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
#ifdef CONFIG_ACPI_NUMA
srat_reserve_add_area(nodeid);
#endif
node_set_online(nodeid);
}
/*
* There are unfortunately some poorly designed mainboards around that
* only connect memory to a single CPU. This breaks the 1:1 cpu->node
* mapping. To avoid this fill in the mapping for all possible CPUs,
* as the number of CPUs is not known yet. We round robin the existing
* nodes.
*/
void __init numa_init_array(void)
{
int rr, i;
rr = first_node(node_online_map);
for (i = 0; i < nr_cpu_ids; i++) {
if (early_cpu_to_node(i) != NUMA_NO_NODE)
continue;
numa_set_node(i, rr);
rr = next_node(rr, node_online_map);
if (rr == MAX_NUMNODES)
rr = first_node(node_online_map);
}
}
#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
static char *cmdline __initdata;
/*
* Setups up nid to range from addr to addr + size. If the end
* boundary is greater than max_addr, then max_addr is used instead.
* The return value is 0 if there is additional memory left for
* allocation past addr and -1 otherwise. addr is adjusted to be at
* the end of the node.
*/
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
u64 size, u64 max_addr)
{
int ret = 0;
nodes[nid].start = *addr;
*addr += size;
if (*addr >= max_addr) {
*addr = max_addr;
ret = -1;
}
nodes[nid].end = *addr;
node_set(nid, node_possible_map);
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
nodes[nid].start, nodes[nid].end,
(nodes[nid].end - nodes[nid].start) >> 20);
return ret;
}
/*
* Splits num_nodes nodes up equally starting at node_start. The return value
* is the number of nodes split up and addr is adjusted to be at the end of the
* last node allocated.
*/
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start,
int num_nodes)
{
unsigned int big;
u64 size;
int i;
if (num_nodes <= 0)
return -1;
if (num_nodes > MAX_NUMNODES)
num_nodes = MAX_NUMNODES;
size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
num_nodes;
/*
* Calculate the number of big nodes that can be allocated as a result
* of consolidating the leftovers.
*/
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
FAKE_NODE_MIN_SIZE;
/* Round down to nearest FAKE_NODE_MIN_SIZE. */
size &= FAKE_NODE_MIN_HASH_MASK;
if (!size) {
printk(KERN_ERR "Not enough memory for each node. "
"NUMA emulation disabled.\n");
return -1;
}
for (i = node_start; i < num_nodes + node_start; i++) {
u64 end = *addr + size;
if (i < big)
end += FAKE_NODE_MIN_SIZE;
/*
* The final node can have the remaining system RAM. Other
* nodes receive roughly the same amount of available pages.
*/
if (i == num_nodes + node_start - 1)
end = max_addr;
else
while (end - *addr - e820_hole_size(*addr, end) <
size) {
end += FAKE_NODE_MIN_SIZE;
if (end > max_addr) {
end = max_addr;
break;
}
}
if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
break;
}
return i - node_start + 1;
}
/*
* Splits the remaining system RAM into chunks of size. The remaining memory is
* always assigned to a final node and can be asymmetric. Returns the number of
* nodes split.
*/
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start, u64 size)
{
int i = node_start;
size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
while (!setup_node_range(i++, nodes, addr, size, max_addr))
;
return i - node_start;
}
/*
* Sets up the system RAM area from start_pfn to last_pfn according to the
* numa=fake command-line option.
*/
static struct bootnode nodes[MAX_NUMNODES] __initdata;
static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
{
u64 size, addr = start_pfn << PAGE_SHIFT;
u64 max_addr = last_pfn << PAGE_SHIFT;
int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
memset(&nodes, 0, sizeof(nodes));
/*
* If the numa=fake command-line is just a single number N, split the
* system RAM into N fake nodes.
*/
if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
long n = simple_strtol(cmdline, NULL, 0);
num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
if (num_nodes < 0)
return num_nodes;
goto out;
}
/* Parse the command line. */
for (coeff_flag = 0; ; cmdline++) {
if (*cmdline && isdigit(*cmdline)) {
num = num * 10 + *cmdline - '0';
continue;
}
if (*cmdline == '*') {
if (num > 0)
coeff = num;
coeff_flag = 1;
}
if (!*cmdline || *cmdline == ',') {
if (!coeff_flag)
coeff = 1;
/*
* Round down to the nearest FAKE_NODE_MIN_SIZE.
* Command-line coefficients are in megabytes.
*/
size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
if (size)
for (i = 0; i < coeff; i++, num_nodes++)
if (setup_node_range(num_nodes, nodes,
&addr, size, max_addr) < 0)
goto done;
if (!*cmdline)
break;
coeff_flag = 0;
coeff = -1;
}
num = 0;
}
done:
if (!num_nodes)
return -1;
/* Fill remainder of system RAM, if appropriate. */
if (addr < max_addr) {
if (coeff_flag && coeff < 0) {
/* Split remaining nodes into num-sized chunks */
num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
num_nodes, num);
goto out;
}
switch (*(cmdline - 1)) {
case '*':
/* Split remaining nodes into coeff chunks */
if (coeff <= 0)
break;
num_nodes += split_nodes_equally(nodes, &addr, max_addr,
num_nodes, coeff);
break;
case ',':
/* Do not allocate remaining system RAM */
break;
default:
/* Give one final node */
setup_node_range(num_nodes, nodes, &addr,
max_addr - addr, max_addr);
num_nodes++;
}
}
out:
memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
"disabled.\n");
return -1;
}
/*
* We need to vacate all active ranges that may have been registered by
* SRAT and set acpi_numa to -1 so that srat_disabled() always returns
* true. NUMA emulation has succeeded so we will not scan ACPI nodes.
*/
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
acpi_numa = -1;
#endif
for_each_node_mask(i, node_possible_map) {
e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
acpi_fake_nodes(nodes, num_nodes);
numa_init_array();
return 0;
}
#endif /* CONFIG_NUMA_EMU */
void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
{
int i;
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
#ifdef CONFIG_NUMA_EMU
if (cmdline && !numa_emulation(start_pfn, last_pfn))
return;
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
#endif
#ifdef CONFIG_ACPI_NUMA
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
last_pfn << PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
#endif
#ifdef CONFIG_K8_NUMA
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
last_pfn<<PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
#endif
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
start_pfn << PAGE_SHIFT,
last_pfn << PAGE_SHIFT);
/* setup dummy node covering all memory */
memnode_shift = 63;
memnodemap = memnode.embedded_map;
memnodemap[0] = 0;
node_set_online(0);
node_set(0, node_possible_map);
for (i = 0; i < nr_cpu_ids; i++)
numa_set_node(i, 0);
e820_register_active_regions(0, start_pfn, last_pfn);
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
}
unsigned long __init numa_free_all_bootmem(void)
{
unsigned long pages = 0;
int i;
for_each_online_node(i)
pages += free_all_bootmem_node(NODE_DATA(i));
return pages;
}
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = max_pfn;
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
static __init int numa_setup(char *opt)
{
if (!opt)
return -EINVAL;
if (!strncmp(opt, "off", 3))
numa_off = 1;
#ifdef CONFIG_NUMA_EMU
if (!strncmp(opt, "fake=", 5))
cmdline = opt + 5;
#endif
#ifdef CONFIG_ACPI_NUMA
if (!strncmp(opt, "noacpi", 6))
acpi_numa = -1;
if (!strncmp(opt, "hotadd=", 7))
hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
return 0;
}
early_param("numa", numa_setup);
#ifdef CONFIG_NUMA
/*
* Setup early cpu_to_node.
*
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
* and apicid_to_node[] tables have valid entries for a CPU.
* This means we skip cpu_to_node[] initialisation for NUMA
* emulation and faking node case (when running a kernel compiled
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
* is already initialized in a round robin manner at numa_init_array,
* prior to this call, and this initialization is good enough
* for the fake NUMA cases.
*
* Called before the per_cpu areas are setup.
*/
void __init init_cpu_to_node(void)
{
int cpu;
u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
BUG_ON(cpu_to_apicid == NULL);
for_each_possible_cpu(cpu) {
int node;
u16 apicid = cpu_to_apicid[cpu];
if (apicid == BAD_APICID)
continue;
node = apicid_to_node[apicid];
if (node == NUMA_NO_NODE)
continue;
if (!node_online(node))
continue;
numa_set_node(cpu, node);
}
}
#endif