| /* |
| * linux/arch/x86_64/mm/init.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> |
| * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> |
| */ |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/pagemap.h> |
| #include <linux/bootmem.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pci.h> |
| #include <linux/pfn.h> |
| #include <linux/poison.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/module.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/processor.h> |
| #include <asm/bios_ebda.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/dma.h> |
| #include <asm/fixmap.h> |
| #include <asm/e820.h> |
| #include <asm/apic.h> |
| #include <asm/tlb.h> |
| #include <asm/mmu_context.h> |
| #include <asm/proto.h> |
| #include <asm/smp.h> |
| #include <asm/sections.h> |
| #include <asm/kdebug.h> |
| #include <asm/numa.h> |
| #include <asm/cacheflush.h> |
| #include <asm/init.h> |
| |
| /* |
| * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries. |
| * The direct mapping extends to max_pfn_mapped, so that we can directly access |
| * apertures, ACPI and other tables without having to play with fixmaps. |
| */ |
| unsigned long max_low_pfn_mapped; |
| unsigned long max_pfn_mapped; |
| |
| static unsigned long dma_reserve __initdata; |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| static int __init parse_direct_gbpages_off(char *arg) |
| { |
| direct_gbpages = 0; |
| return 0; |
| } |
| early_param("nogbpages", parse_direct_gbpages_off); |
| |
| static int __init parse_direct_gbpages_on(char *arg) |
| { |
| direct_gbpages = 1; |
| return 0; |
| } |
| early_param("gbpages", parse_direct_gbpages_on); |
| |
| /* |
| * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the |
| * physical space so we can cache the place of the first one and move |
| * around without checking the pgd every time. |
| */ |
| |
| pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; |
| EXPORT_SYMBOL_GPL(__supported_pte_mask); |
| |
| static int do_not_nx __cpuinitdata; |
| |
| /* |
| * noexec=on|off |
| * Control non-executable mappings for 64-bit processes. |
| * |
| * on Enable (default) |
| * off Disable |
| */ |
| static int __init nonx_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (!strncmp(str, "on", 2)) { |
| __supported_pte_mask |= _PAGE_NX; |
| do_not_nx = 0; |
| } else if (!strncmp(str, "off", 3)) { |
| do_not_nx = 1; |
| __supported_pte_mask &= ~_PAGE_NX; |
| } |
| return 0; |
| } |
| early_param("noexec", nonx_setup); |
| |
| void __cpuinit check_efer(void) |
| { |
| unsigned long efer; |
| |
| rdmsrl(MSR_EFER, efer); |
| if (!(efer & EFER_NX) || do_not_nx) |
| __supported_pte_mask &= ~_PAGE_NX; |
| } |
| |
| int force_personality32; |
| |
| /* |
| * noexec32=on|off |
| * Control non executable heap for 32bit processes. |
| * To control the stack too use noexec=off |
| * |
| * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) |
| * off PROT_READ implies PROT_EXEC |
| */ |
| static int __init nonx32_setup(char *str) |
| { |
| if (!strcmp(str, "on")) |
| force_personality32 &= ~READ_IMPLIES_EXEC; |
| else if (!strcmp(str, "off")) |
| force_personality32 |= READ_IMPLIES_EXEC; |
| return 1; |
| } |
| __setup("noexec32=", nonx32_setup); |
| |
| /* |
| * NOTE: This function is marked __ref because it calls __init function |
| * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. |
| */ |
| static __ref void *spp_getpage(void) |
| { |
| void *ptr; |
| |
| if (after_bootmem) |
| ptr = (void *) get_zeroed_page(GFP_ATOMIC); |
| else |
| ptr = alloc_bootmem_pages(PAGE_SIZE); |
| |
| if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { |
| panic("set_pte_phys: cannot allocate page data %s\n", |
| after_bootmem ? "after bootmem" : ""); |
| } |
| |
| pr_debug("spp_getpage %p\n", ptr); |
| |
| return ptr; |
| } |
| |
| void |
| set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pud = pud_page + pud_index(vaddr); |
| if (pud_none(*pud)) { |
| pmd = (pmd_t *) spp_getpage(); |
| pud_populate(&init_mm, pud, pmd); |
| if (pmd != pmd_offset(pud, 0)) { |
| printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", |
| pmd, pmd_offset(pud, 0)); |
| return; |
| } |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| pte = (pte_t *) spp_getpage(); |
| pmd_populate_kernel(&init_mm, pmd, pte); |
| if (pte != pte_offset_kernel(pmd, 0)) { |
| printk(KERN_ERR "PAGETABLE BUG #02!\n"); |
| return; |
| } |
| } |
| |
| pte = pte_offset_kernel(pmd, vaddr); |
| set_pte(pte, new_pte); |
| |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| void |
| set_pte_vaddr(unsigned long vaddr, pte_t pteval) |
| { |
| pgd_t *pgd; |
| pud_t *pud_page; |
| |
| pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); |
| |
| pgd = pgd_offset_k(vaddr); |
| if (pgd_none(*pgd)) { |
| printk(KERN_ERR |
| "PGD FIXMAP MISSING, it should be setup in head.S!\n"); |
| return; |
| } |
| pud_page = (pud_t*)pgd_page_vaddr(*pgd); |
| set_pte_vaddr_pud(pud_page, vaddr, pteval); |
| } |
| |
| /* |
| * Create large page table mappings for a range of physical addresses. |
| */ |
| static void __init __init_extra_mapping(unsigned long phys, unsigned long size, |
| pgprot_t prot) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); |
| for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { |
| pgd = pgd_offset_k((unsigned long)__va(phys)); |
| if (pgd_none(*pgd)) { |
| pud = (pud_t *) spp_getpage(); |
| set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | |
| _PAGE_USER)); |
| } |
| pud = pud_offset(pgd, (unsigned long)__va(phys)); |
| if (pud_none(*pud)) { |
| pmd = (pmd_t *) spp_getpage(); |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | |
| _PAGE_USER)); |
| } |
| pmd = pmd_offset(pud, phys); |
| BUG_ON(!pmd_none(*pmd)); |
| set_pmd(pmd, __pmd(phys | pgprot_val(prot))); |
| } |
| } |
| |
| void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) |
| { |
| __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); |
| } |
| |
| void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) |
| { |
| __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); |
| } |
| |
| /* |
| * The head.S code sets up the kernel high mapping: |
| * |
| * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) |
| * |
| * phys_addr holds the negative offset to the kernel, which is added |
| * to the compile time generated pmds. This results in invalid pmds up |
| * to the point where we hit the physaddr 0 mapping. |
| * |
| * We limit the mappings to the region from _text to _end. _end is |
| * rounded up to the 2MB boundary. This catches the invalid pmds as |
| * well, as they are located before _text: |
| */ |
| void __init cleanup_highmap(void) |
| { |
| unsigned long vaddr = __START_KERNEL_map; |
| unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1; |
| pmd_t *pmd = level2_kernel_pgt; |
| pmd_t *last_pmd = pmd + PTRS_PER_PMD; |
| |
| for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) { |
| if (pmd_none(*pmd)) |
| continue; |
| if (vaddr < (unsigned long) _text || vaddr > end) |
| set_pmd(pmd, __pmd(0)); |
| } |
| } |
| |
| static __ref void *alloc_low_page(unsigned long *phys) |
| { |
| unsigned long pfn = e820_table_end++; |
| void *adr; |
| |
| if (after_bootmem) { |
| adr = (void *)get_zeroed_page(GFP_ATOMIC); |
| *phys = __pa(adr); |
| |
| return adr; |
| } |
| |
| if (pfn >= e820_table_top) |
| panic("alloc_low_page: ran out of memory"); |
| |
| adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE); |
| memset(adr, 0, PAGE_SIZE); |
| *phys = pfn * PAGE_SIZE; |
| return adr; |
| } |
| |
| static __ref void unmap_low_page(void *adr) |
| { |
| if (after_bootmem) |
| return; |
| |
| early_iounmap(adr, PAGE_SIZE); |
| } |
| |
| static unsigned long __meminit |
| phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, |
| pgprot_t prot) |
| { |
| unsigned pages = 0; |
| unsigned long last_map_addr = end; |
| int i; |
| |
| pte_t *pte = pte_page + pte_index(addr); |
| |
| for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) { |
| |
| if (addr >= end) { |
| if (!after_bootmem) { |
| for(; i < PTRS_PER_PTE; i++, pte++) |
| set_pte(pte, __pte(0)); |
| } |
| break; |
| } |
| |
| /* |
| * We will re-use the existing mapping. |
| * Xen for example has some special requirements, like mapping |
| * pagetable pages as RO. So assume someone who pre-setup |
| * these mappings are more intelligent. |
| */ |
| if (pte_val(*pte)) { |
| pages++; |
| continue; |
| } |
| |
| if (0) |
| printk(" pte=%p addr=%lx pte=%016lx\n", |
| pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); |
| pages++; |
| set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); |
| last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; |
| } |
| |
| update_page_count(PG_LEVEL_4K, pages); |
| |
| return last_map_addr; |
| } |
| |
| static unsigned long __meminit |
| phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end, |
| pgprot_t prot) |
| { |
| pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd); |
| |
| return phys_pte_init(pte, address, end, prot); |
| } |
| |
| static unsigned long __meminit |
| phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, |
| unsigned long page_size_mask, pgprot_t prot) |
| { |
| unsigned long pages = 0; |
| unsigned long last_map_addr = end; |
| |
| int i = pmd_index(address); |
| |
| for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { |
| unsigned long pte_phys; |
| pmd_t *pmd = pmd_page + pmd_index(address); |
| pte_t *pte; |
| pgprot_t new_prot = prot; |
| |
| if (address >= end) { |
| if (!after_bootmem) { |
| for (; i < PTRS_PER_PMD; i++, pmd++) |
| set_pmd(pmd, __pmd(0)); |
| } |
| break; |
| } |
| |
| if (pmd_val(*pmd)) { |
| if (!pmd_large(*pmd)) { |
| spin_lock(&init_mm.page_table_lock); |
| last_map_addr = phys_pte_update(pmd, address, |
| end, prot); |
| spin_unlock(&init_mm.page_table_lock); |
| continue; |
| } |
| /* |
| * If we are ok with PG_LEVEL_2M mapping, then we will |
| * use the existing mapping, |
| * |
| * Otherwise, we will split the large page mapping but |
| * use the same existing protection bits except for |
| * large page, so that we don't violate Intel's TLB |
| * Application note (317080) which says, while changing |
| * the page sizes, new and old translations should |
| * not differ with respect to page frame and |
| * attributes. |
| */ |
| if (page_size_mask & (1 << PG_LEVEL_2M)) { |
| pages++; |
| continue; |
| } |
| new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); |
| } |
| |
| if (page_size_mask & (1<<PG_LEVEL_2M)) { |
| pages++; |
| spin_lock(&init_mm.page_table_lock); |
| set_pte((pte_t *)pmd, |
| pfn_pte(address >> PAGE_SHIFT, |
| __pgprot(pgprot_val(prot) | _PAGE_PSE))); |
| spin_unlock(&init_mm.page_table_lock); |
| last_map_addr = (address & PMD_MASK) + PMD_SIZE; |
| continue; |
| } |
| |
| pte = alloc_low_page(&pte_phys); |
| last_map_addr = phys_pte_init(pte, address, end, new_prot); |
| unmap_low_page(pte); |
| |
| spin_lock(&init_mm.page_table_lock); |
| pmd_populate_kernel(&init_mm, pmd, __va(pte_phys)); |
| spin_unlock(&init_mm.page_table_lock); |
| } |
| update_page_count(PG_LEVEL_2M, pages); |
| return last_map_addr; |
| } |
| |
| static unsigned long __meminit |
| phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end, |
| unsigned long page_size_mask, pgprot_t prot) |
| { |
| pmd_t *pmd = pmd_offset(pud, 0); |
| unsigned long last_map_addr; |
| |
| last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot); |
| __flush_tlb_all(); |
| return last_map_addr; |
| } |
| |
| static unsigned long __meminit |
| phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, |
| unsigned long page_size_mask) |
| { |
| unsigned long pages = 0; |
| unsigned long last_map_addr = end; |
| int i = pud_index(addr); |
| |
| for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) { |
| unsigned long pmd_phys; |
| pud_t *pud = pud_page + pud_index(addr); |
| pmd_t *pmd; |
| pgprot_t prot = PAGE_KERNEL; |
| |
| if (addr >= end) |
| break; |
| |
| if (!after_bootmem && |
| !e820_any_mapped(addr, addr+PUD_SIZE, 0)) { |
| set_pud(pud, __pud(0)); |
| continue; |
| } |
| |
| if (pud_val(*pud)) { |
| if (!pud_large(*pud)) { |
| last_map_addr = phys_pmd_update(pud, addr, end, |
| page_size_mask, prot); |
| continue; |
| } |
| /* |
| * If we are ok with PG_LEVEL_1G mapping, then we will |
| * use the existing mapping. |
| * |
| * Otherwise, we will split the gbpage mapping but use |
| * the same existing protection bits except for large |
| * page, so that we don't violate Intel's TLB |
| * Application note (317080) which says, while changing |
| * the page sizes, new and old translations should |
| * not differ with respect to page frame and |
| * attributes. |
| */ |
| if (page_size_mask & (1 << PG_LEVEL_1G)) { |
| pages++; |
| continue; |
| } |
| prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); |
| } |
| |
| if (page_size_mask & (1<<PG_LEVEL_1G)) { |
| pages++; |
| spin_lock(&init_mm.page_table_lock); |
| set_pte((pte_t *)pud, |
| pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); |
| spin_unlock(&init_mm.page_table_lock); |
| last_map_addr = (addr & PUD_MASK) + PUD_SIZE; |
| continue; |
| } |
| |
| pmd = alloc_low_page(&pmd_phys); |
| last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, |
| prot); |
| unmap_low_page(pmd); |
| |
| spin_lock(&init_mm.page_table_lock); |
| pud_populate(&init_mm, pud, __va(pmd_phys)); |
| spin_unlock(&init_mm.page_table_lock); |
| } |
| __flush_tlb_all(); |
| |
| update_page_count(PG_LEVEL_1G, pages); |
| |
| return last_map_addr; |
| } |
| |
| static unsigned long __meminit |
| phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end, |
| unsigned long page_size_mask) |
| { |
| pud_t *pud; |
| |
| pud = (pud_t *)pgd_page_vaddr(*pgd); |
| |
| return phys_pud_init(pud, addr, end, page_size_mask); |
| } |
| |
| unsigned long __init |
| kernel_physical_mapping_init(unsigned long start, |
| unsigned long end, |
| unsigned long page_size_mask) |
| { |
| |
| unsigned long next, last_map_addr = end; |
| |
| start = (unsigned long)__va(start); |
| end = (unsigned long)__va(end); |
| |
| for (; start < end; start = next) { |
| pgd_t *pgd = pgd_offset_k(start); |
| unsigned long pud_phys; |
| pud_t *pud; |
| |
| next = (start + PGDIR_SIZE) & PGDIR_MASK; |
| if (next > end) |
| next = end; |
| |
| if (pgd_val(*pgd)) { |
| last_map_addr = phys_pud_update(pgd, __pa(start), |
| __pa(end), page_size_mask); |
| continue; |
| } |
| |
| pud = alloc_low_page(&pud_phys); |
| last_map_addr = phys_pud_init(pud, __pa(start), __pa(next), |
| page_size_mask); |
| unmap_low_page(pud); |
| |
| spin_lock(&init_mm.page_table_lock); |
| pgd_populate(&init_mm, pgd, __va(pud_phys)); |
| spin_unlock(&init_mm.page_table_lock); |
| } |
| __flush_tlb_all(); |
| |
| return last_map_addr; |
| } |
| |
| #ifndef CONFIG_NUMA |
| void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| unsigned long bootmap_size, bootmap; |
| |
| bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; |
| bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size, |
| PAGE_SIZE); |
| if (bootmap == -1L) |
| panic("Cannot find bootmem map of size %ld\n", bootmap_size); |
| /* don't touch min_low_pfn */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT, |
| 0, end_pfn); |
| e820_register_active_regions(0, start_pfn, end_pfn); |
| free_bootmem_with_active_regions(0, end_pfn); |
| early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT); |
| reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT); |
| } |
| |
| void __init paging_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| max_zone_pfns[ZONE_NORMAL] = max_pfn; |
| |
| memory_present(0, 0, max_pfn); |
| sparse_init(); |
| free_area_init_nodes(max_zone_pfns); |
| } |
| #endif |
| |
| /* |
| * Memory hotplug specific functions |
| */ |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Memory is added always to NORMAL zone. This means you will never get |
| * additional DMA/DMA32 memory. |
| */ |
| int arch_add_memory(int nid, u64 start, u64 size) |
| { |
| struct pglist_data *pgdat = NODE_DATA(nid); |
| struct zone *zone = pgdat->node_zones + ZONE_NORMAL; |
| unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| int ret; |
| |
| last_mapped_pfn = init_memory_mapping(start, start + size); |
| if (last_mapped_pfn > max_pfn_mapped) |
| max_pfn_mapped = last_mapped_pfn; |
| |
| ret = __add_pages(nid, zone, start_pfn, nr_pages); |
| WARN_ON_ONCE(ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(arch_add_memory); |
| |
| #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) |
| int memory_add_physaddr_to_nid(u64 start) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| #endif |
| |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, |
| kcore_modules, kcore_vsyscall; |
| |
| void __init mem_init(void) |
| { |
| long codesize, reservedpages, datasize, initsize; |
| unsigned long absent_pages; |
| |
| pci_iommu_alloc(); |
| |
| /* clear_bss() already clear the empty_zero_page */ |
| |
| reservedpages = 0; |
| |
| /* this will put all low memory onto the freelists */ |
| #ifdef CONFIG_NUMA |
| totalram_pages = numa_free_all_bootmem(); |
| #else |
| totalram_pages = free_all_bootmem(); |
| #endif |
| |
| absent_pages = absent_pages_in_range(0, max_pfn); |
| reservedpages = max_pfn - totalram_pages - absent_pages; |
| after_bootmem = 1; |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_text; |
| datasize = (unsigned long) &_edata - (unsigned long) &_etext; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| /* Register memory areas for /proc/kcore */ |
| kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); |
| kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, |
| VMALLOC_END-VMALLOC_START); |
| kclist_add(&kcore_kernel, &_stext, _end - _stext); |
| kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); |
| kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, |
| VSYSCALL_END - VSYSCALL_START); |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " |
| "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| max_pfn << (PAGE_SHIFT-10), |
| codesize >> 10, |
| absent_pages << (PAGE_SHIFT-10), |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| initsize >> 10); |
| } |
| |
| #ifdef CONFIG_DEBUG_RODATA |
| const int rodata_test_data = 0xC3; |
| EXPORT_SYMBOL_GPL(rodata_test_data); |
| |
| void mark_rodata_ro(void) |
| { |
| unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata); |
| unsigned long rodata_start = |
| ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| /* Dynamic tracing modifies the kernel text section */ |
| start = rodata_start; |
| #endif |
| |
| printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", |
| (end - start) >> 10); |
| set_memory_ro(start, (end - start) >> PAGE_SHIFT); |
| |
| /* |
| * The rodata section (but not the kernel text!) should also be |
| * not-executable. |
| */ |
| set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); |
| |
| rodata_test(); |
| |
| #ifdef CONFIG_CPA_DEBUG |
| printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); |
| set_memory_rw(start, (end-start) >> PAGE_SHIFT); |
| |
| printk(KERN_INFO "Testing CPA: again\n"); |
| set_memory_ro(start, (end-start) >> PAGE_SHIFT); |
| #endif |
| } |
| |
| #endif |
| |
| int __init reserve_bootmem_generic(unsigned long phys, unsigned long len, |
| int flags) |
| { |
| #ifdef CONFIG_NUMA |
| int nid, next_nid; |
| int ret; |
| #endif |
| unsigned long pfn = phys >> PAGE_SHIFT; |
| |
| if (pfn >= max_pfn) { |
| /* |
| * This can happen with kdump kernels when accessing |
| * firmware tables: |
| */ |
| if (pfn < max_pfn_mapped) |
| return -EFAULT; |
| |
| printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n", |
| phys, len); |
| return -EFAULT; |
| } |
| |
| /* Should check here against the e820 map to avoid double free */ |
| #ifdef CONFIG_NUMA |
| nid = phys_to_nid(phys); |
| next_nid = phys_to_nid(phys + len - 1); |
| if (nid == next_nid) |
| ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags); |
| else |
| ret = reserve_bootmem(phys, len, flags); |
| |
| if (ret != 0) |
| return ret; |
| |
| #else |
| reserve_bootmem(phys, len, BOOTMEM_DEFAULT); |
| #endif |
| |
| if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { |
| dma_reserve += len / PAGE_SIZE; |
| set_dma_reserve(dma_reserve); |
| } |
| |
| return 0; |
| } |
| |
| int kern_addr_valid(unsigned long addr) |
| { |
| unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (above != 0 && above != -1UL) |
| return 0; |
| |
| pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) |
| return 0; |
| |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) |
| return 0; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return 0; |
| |
| if (pmd_large(*pmd)) |
| return pfn_valid(pmd_pfn(*pmd)); |
| |
| pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) |
| return 0; |
| |
| return pfn_valid(pte_pfn(*pte)); |
| } |
| |
| /* |
| * A pseudo VMA to allow ptrace access for the vsyscall page. This only |
| * covers the 64bit vsyscall page now. 32bit has a real VMA now and does |
| * not need special handling anymore: |
| */ |
| static struct vm_area_struct gate_vma = { |
| .vm_start = VSYSCALL_START, |
| .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), |
| .vm_page_prot = PAGE_READONLY_EXEC, |
| .vm_flags = VM_READ | VM_EXEC |
| }; |
| |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk) |
| { |
| #ifdef CONFIG_IA32_EMULATION |
| if (test_tsk_thread_flag(tsk, TIF_IA32)) |
| return NULL; |
| #endif |
| return &gate_vma; |
| } |
| |
| int in_gate_area(struct task_struct *task, unsigned long addr) |
| { |
| struct vm_area_struct *vma = get_gate_vma(task); |
| |
| if (!vma) |
| return 0; |
| |
| return (addr >= vma->vm_start) && (addr < vma->vm_end); |
| } |
| |
| /* |
| * Use this when you have no reliable task/vma, typically from interrupt |
| * context. It is less reliable than using the task's vma and may give |
| * false positives: |
| */ |
| int in_gate_area_no_task(unsigned long addr) |
| { |
| return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); |
| } |
| |
| const char *arch_vma_name(struct vm_area_struct *vma) |
| { |
| if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) |
| return "[vdso]"; |
| if (vma == &gate_vma) |
| return "[vsyscall]"; |
| return NULL; |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* |
| * Initialise the sparsemem vmemmap using huge-pages at the PMD level. |
| */ |
| static long __meminitdata addr_start, addr_end; |
| static void __meminitdata *p_start, *p_end; |
| static int __meminitdata node_start; |
| |
| int __meminit |
| vmemmap_populate(struct page *start_page, unsigned long size, int node) |
| { |
| unsigned long addr = (unsigned long)start_page; |
| unsigned long end = (unsigned long)(start_page + size); |
| unsigned long next; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| for (; addr < end; addr = next) { |
| void *p = NULL; |
| |
| pgd = vmemmap_pgd_populate(addr, node); |
| if (!pgd) |
| return -ENOMEM; |
| |
| pud = vmemmap_pud_populate(pgd, addr, node); |
| if (!pud) |
| return -ENOMEM; |
| |
| if (!cpu_has_pse) { |
| next = (addr + PAGE_SIZE) & PAGE_MASK; |
| pmd = vmemmap_pmd_populate(pud, addr, node); |
| |
| if (!pmd) |
| return -ENOMEM; |
| |
| p = vmemmap_pte_populate(pmd, addr, node); |
| |
| if (!p) |
| return -ENOMEM; |
| |
| addr_end = addr + PAGE_SIZE; |
| p_end = p + PAGE_SIZE; |
| } else { |
| next = pmd_addr_end(addr, end); |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| pte_t entry; |
| |
| p = vmemmap_alloc_block(PMD_SIZE, node); |
| if (!p) |
| return -ENOMEM; |
| |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, |
| PAGE_KERNEL_LARGE); |
| set_pmd(pmd, __pmd(pte_val(entry))); |
| |
| /* check to see if we have contiguous blocks */ |
| if (p_end != p || node_start != node) { |
| if (p_start) |
| printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", |
| addr_start, addr_end-1, p_start, p_end-1, node_start); |
| addr_start = addr; |
| node_start = node; |
| p_start = p; |
| } |
| |
| addr_end = addr + PMD_SIZE; |
| p_end = p + PMD_SIZE; |
| } else |
| vmemmap_verify((pte_t *)pmd, node, addr, next); |
| } |
| |
| } |
| return 0; |
| } |
| |
| void __meminit vmemmap_populate_print_last(void) |
| { |
| if (p_start) { |
| printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", |
| addr_start, addr_end-1, p_start, p_end-1, node_start); |
| p_start = NULL; |
| p_end = NULL; |
| node_start = 0; |
| } |
| } |
| #endif |