blob: f9bb5c8f4ca46f5478e22797e4eebf9d1c794c5a [file] [log] [blame]
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/usb.h>
#include <linux/ratelimit.h>
#include <linux/usb/usbnet.h>
#include <linux/msm_rmnet.h>
#include "rmnet_usb.h"
#define RMNET_DATA_LEN 2000
#define RMNET_HEADROOM_W_MUX (sizeof(struct mux_hdr) + \
sizeof(struct QMI_QOS_HDR_S))
#define RMNET_HEADROOM sizeof(struct QMI_QOS_HDR_S)
#define RMNET_TAILROOM MAX_PAD_BYTES(4);
static unsigned int no_rmnet_devs = 1;
module_param(no_rmnet_devs, uint, S_IRUGO | S_IWUSR);
unsigned int no_rmnet_insts_per_dev = 4;
module_param(no_rmnet_insts_per_dev, uint, S_IRUGO | S_IWUSR);
/*
* To support mux on multiple devices, bit position represents device
* and value represnts if mux is enabled or disabled.
* e.g. bit 0: mdm over HSIC, bit1: mdm over hsusb
*/
static unsigned long mux_enabled;
module_param(mux_enabled, ulong, S_IRUGO | S_IWUSR);
static unsigned int no_fwd_rmnet_links;
module_param(no_fwd_rmnet_links, uint, S_IRUGO | S_IWUSR);
struct usbnet *unet_list[TOTAL_RMNET_DEV_COUNT];
/* net device name prefixes, indexed by driver_info->data */
static const char * const rmnet_names[] = {
"rmnet_usb%d",
"rmnet2_usb%d",
};
/* net device reverse link name prefixes, indexed by driver_info->data */
static const char * const rev_rmnet_names[] = {
"rev_rmnet_usb%d",
"rev_rmnet2_usb%d",
};
static int data_msg_dbg_mask;
enum {
DEBUG_MASK_LVL0 = 1U << 0,
DEBUG_MASK_LVL1 = 1U << 1,
DEBUG_MASK_LVL2 = 1U << 2,
};
#define DBG(m, x...) do { \
if (data_msg_dbg_mask & m) \
pr_info(x); \
} while (0)
/*echo dbg_mask > /sys/class/net/rmnet_usbx/dbg_mask*/
static ssize_t dbg_mask_store(struct device *d,
struct device_attribute *attr,
const char *buf, size_t n)
{
unsigned int dbg_mask;
struct net_device *dev = to_net_dev(d);
struct usbnet *unet = netdev_priv(dev);
if (!dev)
return -ENODEV;
sscanf(buf, "%u", &dbg_mask);
/*enable dbg msgs for data driver*/
data_msg_dbg_mask = dbg_mask;
/*set default msg level*/
unet->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK;
/*enable netif_xxx msgs*/
if (dbg_mask & DEBUG_MASK_LVL0)
unet->msg_enable |= NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
if (dbg_mask & DEBUG_MASK_LVL1)
unet->msg_enable |= NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
| NETIF_MSG_TX_QUEUED | NETIF_MSG_TX_DONE
| NETIF_MSG_RX_STATUS;
return n;
}
static ssize_t dbg_mask_show(struct device *d,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", data_msg_dbg_mask);
}
static DEVICE_ATTR(dbg_mask, 0644, dbg_mask_show, dbg_mask_store);
#define DBG0(x...) DBG(DEBUG_MASK_LVL0, x)
#define DBG1(x...) DBG(DEBUG_MASK_LVL1, x)
#define DBG2(x...) DBG(DEBUG_MASK_LVL2, x)
static int rmnet_data_start(void);
static bool rmnet_data_init;
static int rmnet_init(const char *val, const struct kernel_param *kp)
{
int ret = 0;
if (rmnet_data_init) {
pr_err("dynamic setting rmnet params currently unsupported\n");
return -EINVAL;
}
ret = param_set_bool(val, kp);
if (ret)
return ret;
rmnet_data_start();
return ret;
}
static struct kernel_param_ops rmnet_init_ops = {
.set = rmnet_init,
.get = param_get_bool,
};
module_param_cb(rmnet_data_init, &rmnet_init_ops, &rmnet_data_init,
S_IRUGO | S_IWUSR);
static void rmnet_usb_setup(struct net_device *, int mux_enabled);
static int rmnet_ioctl(struct net_device *, struct ifreq *, int);
static int rmnet_usb_suspend(struct usb_interface *iface, pm_message_t message)
{
struct usbnet *unet = usb_get_intfdata(iface);
struct rmnet_ctrl_dev *dev;
int i, n, rdev_cnt, unet_id;
int retval = 0;
rdev_cnt = unet->data[4] ? no_rmnet_insts_per_dev : 1;
for (n = 0; n < rdev_cnt; n++) {
unet_id = n + unet->driver_info->data * no_rmnet_insts_per_dev;
unet =
unet->data[4] ? unet_list[unet_id] : usb_get_intfdata(iface);
dev = (struct rmnet_ctrl_dev *)unet->data[1];
spin_lock_irq(&unet->txq.lock);
if (work_busy(&dev->get_encap_work) || unet->txq.qlen) {
spin_unlock_irq(&unet->txq.lock);
retval = -EBUSY;
goto abort_suspend;
}
set_bit(EVENT_DEV_ASLEEP, &unet->flags);
spin_unlock_irq(&unet->txq.lock);
usb_kill_anchored_urbs(&dev->rx_submitted);
if (work_busy(&dev->get_encap_work)) {
spin_lock_irq(&unet->txq.lock);
clear_bit(EVENT_DEV_ASLEEP, &unet->flags);
spin_unlock_irq(&unet->txq.lock);
retval = -EBUSY;
goto abort_suspend;
}
}
for (n = 0; n < rdev_cnt; n++) {
unet_id = n + unet->driver_info->data * no_rmnet_insts_per_dev;
unet =
unet->data[4] ? unet_list[unet_id] : usb_get_intfdata(iface);
dev = (struct rmnet_ctrl_dev *)unet->data[1];
netif_device_detach(unet->net);
usbnet_terminate_urbs(unet);
netif_device_attach(unet->net);
}
return 0;
abort_suspend:
for (i = 0; i < n; i++) {
unet_id = i + unet->driver_info->data * no_rmnet_insts_per_dev;
unet =
unet->data[4] ? unet_list[unet_id] : usb_get_intfdata(iface);
dev = (struct rmnet_ctrl_dev *)unet->data[1];
rmnet_usb_ctrl_start_rx(dev);
spin_lock_irq(&unet->txq.lock);
clear_bit(EVENT_DEV_ASLEEP, &unet->flags);
spin_unlock_irq(&unet->txq.lock);
}
return retval;
}
static int rmnet_usb_resume(struct usb_interface *iface)
{
struct usbnet *unet = usb_get_intfdata(iface);
struct rmnet_ctrl_dev *dev;
int n, rdev_cnt, unet_id;
rdev_cnt = unet->data[4] ? no_rmnet_insts_per_dev : 1;
for (n = 0; n < rdev_cnt; n++) {
unet_id = n + unet->driver_info->data * no_rmnet_insts_per_dev;
unet =
unet->data[4] ? unet_list[unet_id] : usb_get_intfdata(iface);
dev = (struct rmnet_ctrl_dev *)unet->data[1];
rmnet_usb_ctrl_start_rx(dev);
usb_set_intfdata(iface, unet);
unet->suspend_count = 1;
usbnet_resume(iface);
}
return 0;
}
static int rmnet_usb_bind(struct usbnet *usbnet, struct usb_interface *iface)
{
struct usb_host_endpoint *endpoint = NULL;
struct usb_host_endpoint *bulk_in = NULL;
struct usb_host_endpoint *bulk_out = NULL;
struct usb_host_endpoint *int_in = NULL;
struct driver_info *info = usbnet->driver_info;
int status = 0;
int i;
int numends;
bool mux;
mux = test_bit(info->data, &mux_enabled);
numends = iface->cur_altsetting->desc.bNumEndpoints;
for (i = 0; i < numends; i++) {
endpoint = iface->cur_altsetting->endpoint + i;
if (!endpoint) {
dev_err(&iface->dev, "%s: invalid endpoint %u\n",
__func__, i);
status = -EINVAL;
goto out;
}
if (usb_endpoint_is_bulk_in(&endpoint->desc))
bulk_in = endpoint;
else if (usb_endpoint_is_bulk_out(&endpoint->desc))
bulk_out = endpoint;
else if (usb_endpoint_is_int_in(&endpoint->desc))
int_in = endpoint;
}
if (!bulk_in || !bulk_out || !int_in) {
dev_err(&iface->dev, "%s: invalid endpoints\n", __func__);
status = -EINVAL;
goto out;
}
usbnet->in = usb_rcvbulkpipe(usbnet->udev,
bulk_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
usbnet->out = usb_sndbulkpipe(usbnet->udev,
bulk_out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
usbnet->status = int_in;
/*change name of net device to rmnet_usbx here*/
if (mux && (info->in > no_fwd_rmnet_links))
strlcpy(usbnet->net->name, rev_rmnet_names[info->data],
IFNAMSIZ);
else
strlcpy(usbnet->net->name, rmnet_names[info->data],
IFNAMSIZ);
if (mux)
usbnet->rx_urb_size = usbnet->hard_mtu + sizeof(struct mux_hdr)
+ MAX_PAD_BYTES(4);
out:
return status;
}
static int rmnet_usb_data_dmux(struct sk_buff *skb, struct urb *rx_urb)
{
struct mux_hdr *hdr;
size_t pad_len;
size_t total_len;
unsigned int mux_id;
hdr = (struct mux_hdr *)skb->data;
mux_id = hdr->mux_id;
if (!mux_id || mux_id > no_rmnet_insts_per_dev) {
pr_err_ratelimited("%s: Invalid data channel id %u.\n",
__func__, mux_id);
return -EINVAL;
}
pad_len = hdr->padding_info >> MUX_PAD_SHIFT;
if (pad_len > MAX_PAD_BYTES(4)) {
pr_err_ratelimited("%s: Invalid pad len %d\n",
__func__, pad_len);
return -EINVAL;
}
total_len = le16_to_cpu(hdr->pkt_len_w_padding);
if (!total_len || !(total_len - pad_len)) {
pr_err_ratelimited("%s: Invalid pkt length %d\n", __func__,
total_len);
return -EINVAL;
}
skb->data = (unsigned char *)(hdr + 1);
skb_reset_tail_pointer(skb);
rx_urb->actual_length = total_len - pad_len;
return mux_id - 1;
}
static void rmnet_usb_data_mux(struct sk_buff *skb, unsigned int id)
{
struct mux_hdr *hdr;
size_t len;
hdr = (struct mux_hdr *)skb_push(skb, sizeof(struct mux_hdr));
hdr->mux_id = id + 1;
len = skb->len - sizeof(struct mux_hdr);
/*add padding if len is not 4 byte aligned*/
skb_put(skb, ALIGN(len, 4) - len);
hdr->pkt_len_w_padding = cpu_to_le16(skb->len - sizeof(struct mux_hdr));
hdr->padding_info = (ALIGN(len, 4) - len) << MUX_PAD_SHIFT;
}
static struct sk_buff *rmnet_usb_tx_fixup(struct usbnet *dev,
struct sk_buff *skb, gfp_t flags)
{
struct QMI_QOS_HDR_S *qmih;
if (test_bit(RMNET_MODE_QOS, &dev->data[0])) {
qmih = (struct QMI_QOS_HDR_S *)
skb_push(skb, sizeof(struct QMI_QOS_HDR_S));
qmih->version = 1;
qmih->flags = 0;
qmih->flow_id = skb->mark;
}
if (dev->data[4])
rmnet_usb_data_mux(skb, dev->data[3]);
DBG1("[%s] Tx packet #%lu len=%d mark=0x%x\n",
dev->net->name, dev->net->stats.tx_packets, skb->len, skb->mark);
return skb;
}
static __be16 rmnet_ip_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
__be16 protocol = 0;
skb->dev = dev;
switch (skb->data[0] & 0xf0) {
case 0x40:
protocol = htons(ETH_P_IP);
break;
case 0x60:
protocol = htons(ETH_P_IPV6);
break;
default:
pr_err("[%s] rmnet_recv() L3 protocol decode error: 0x%02x",
dev->name, skb->data[0] & 0xf0);
}
return protocol;
}
static void rmnet_usb_rx_complete(struct urb *rx_urb)
{
struct sk_buff *skb = (struct sk_buff *) rx_urb->context;
struct skb_data *entry = (struct skb_data *) skb->cb;
struct usbnet *dev = entry->dev;
unsigned int unet_offset;
unsigned int unet_id;
int mux_id;
unet_offset = dev->driver_info->data * no_rmnet_insts_per_dev;
if (!rx_urb->status && dev->data[4]) {
mux_id = rmnet_usb_data_dmux(skb, rx_urb);
if (mux_id < 0) {
/*resubmit urb and free skb in rx_complete*/
rx_urb->status = -EINVAL;
} else {
/*map urb to actual network iface based on mux id*/
unet_id = unet_offset + mux_id;
skb->dev = unet_list[unet_id]->net;
entry->dev = unet_list[unet_id];
}
}
rx_complete(rx_urb);
}
static int rmnet_usb_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
if (test_bit(RMNET_MODE_LLP_IP, &dev->data[0]))
skb->protocol = rmnet_ip_type_trans(skb, dev->net);
else /*set zero for eth mode*/
skb->protocol = 0;
DBG1("[%s] Rx packet #%lu len=%d\n",
dev->net->name, dev->net->stats.rx_packets, skb->len);
return 1;
}
static int rmnet_usb_manage_power(struct usbnet *dev, int on)
{
dev->intf->needs_remote_wakeup = on;
return 0;
}
static int rmnet_change_mtu(struct net_device *dev, int new_mtu)
{
if (0 > new_mtu || RMNET_DATA_LEN < new_mtu)
return -EINVAL;
DBG0("[%s] MTU change: old=%d new=%d\n", dev->name, dev->mtu, new_mtu);
dev->mtu = new_mtu;
return 0;
}
static struct net_device_stats *rmnet_get_stats(struct net_device *dev)
{
return &dev->stats;
}
static const struct net_device_ops rmnet_usb_ops_ether = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_get_stats = rmnet_get_stats,
/*.ndo_set_multicast_list = rmnet_set_multicast_list,*/
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_do_ioctl = rmnet_ioctl,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static const struct net_device_ops rmnet_usb_ops_ip = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_get_stats = rmnet_get_stats,
/*.ndo_set_multicast_list = rmnet_set_multicast_list,*/
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_do_ioctl = rmnet_ioctl,
.ndo_change_mtu = rmnet_change_mtu,
.ndo_set_mac_address = 0,
.ndo_validate_addr = 0,
};
static int rmnet_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct usbnet *unet = netdev_priv(dev);
u32 old_opmode;
int prev_mtu = dev->mtu;
int rc = 0;
old_opmode = unet->data[0]; /*data[0] saves operation mode*/
/* Process IOCTL command */
switch (cmd) {
case RMNET_IOCTL_SET_LLP_ETHERNET: /*Set Ethernet protocol*/
/* Perform Ethernet config only if in IP mode currently*/
if (test_bit(RMNET_MODE_LLP_IP, &unet->data[0])) {
ether_setup(dev);
random_ether_addr(dev->dev_addr);
dev->mtu = prev_mtu;
dev->netdev_ops = &rmnet_usb_ops_ether;
clear_bit(RMNET_MODE_LLP_IP, &unet->data[0]);
set_bit(RMNET_MODE_LLP_ETH, &unet->data[0]);
DBG0("[%s] rmnet_ioctl(): set Ethernet protocol mode\n",
dev->name);
}
break;
case RMNET_IOCTL_SET_LLP_IP: /* Set RAWIP protocol*/
/* Perform IP config only if in Ethernet mode currently*/
if (test_bit(RMNET_MODE_LLP_ETH, &unet->data[0])) {
/* Undo config done in ether_setup() */
dev->header_ops = 0; /* No header */
dev->type = ARPHRD_RAWIP;
dev->hard_header_len = 0;
dev->mtu = prev_mtu;
dev->addr_len = 0;
dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST);
dev->netdev_ops = &rmnet_usb_ops_ip;
clear_bit(RMNET_MODE_LLP_ETH, &unet->data[0]);
set_bit(RMNET_MODE_LLP_IP, &unet->data[0]);
DBG0("[%s] rmnet_ioctl(): set IP protocol mode\n",
dev->name);
}
break;
case RMNET_IOCTL_GET_LLP: /* Get link protocol state */
ifr->ifr_ifru.ifru_data = (void *)(unet->data[0]
& (RMNET_MODE_LLP_ETH
| RMNET_MODE_LLP_IP));
break;
case RMNET_IOCTL_SET_QOS_ENABLE: /* Set QoS header enabled*/
set_bit(RMNET_MODE_QOS, &unet->data[0]);
DBG0("[%s] rmnet_ioctl(): set QMI QOS header enable\n",
dev->name);
break;
case RMNET_IOCTL_SET_QOS_DISABLE: /* Set QoS header disabled */
clear_bit(RMNET_MODE_QOS, &unet->data[0]);
DBG0("[%s] rmnet_ioctl(): set QMI QOS header disable\n",
dev->name);
break;
case RMNET_IOCTL_GET_QOS: /* Get QoS header state */
ifr->ifr_ifru.ifru_data = (void *)(unet->data[0]
& RMNET_MODE_QOS);
break;
case RMNET_IOCTL_GET_OPMODE: /* Get operation mode*/
ifr->ifr_ifru.ifru_data = (void *)unet->data[0];
break;
case RMNET_IOCTL_OPEN: /* Open transport port */
rc = usbnet_open(dev);
DBG0("[%s] rmnet_ioctl(): open transport port\n", dev->name);
break;
case RMNET_IOCTL_CLOSE: /* Close transport port*/
rc = usbnet_stop(dev);
DBG0("[%s] rmnet_ioctl(): close transport port\n", dev->name);
break;
default:
dev_err(&unet->intf->dev, "[%s] error: "
"rmnet_ioct called for unsupported cmd[%d]",
dev->name, cmd);
return -EINVAL;
}
DBG2("[%s] %s: cmd=0x%x opmode old=0x%08x new=0x%08lx\n",
dev->name, __func__, cmd, old_opmode, unet->data[0]);
return rc;
}
static void rmnet_usb_setup(struct net_device *dev, int mux_enabled)
{
/* Using Ethernet mode by default */
dev->netdev_ops = &rmnet_usb_ops_ether;
/* set this after calling ether_setup */
dev->mtu = RMNET_DATA_LEN;
if (mux_enabled) {
dev->needed_headroom = RMNET_HEADROOM_W_MUX;
/*max pad bytes for 4 byte alignment*/
dev->needed_tailroom = RMNET_TAILROOM;
} else {
dev->needed_headroom = RMNET_HEADROOM;
}
random_ether_addr(dev->dev_addr);
dev->watchdog_timeo = 1000; /* 10 seconds? */
}
static int rmnet_usb_data_status(struct seq_file *s, void *unused)
{
struct usbnet *unet = s->private;
seq_printf(s, "RMNET_MODE_LLP_IP: %d\n",
test_bit(RMNET_MODE_LLP_IP, &unet->data[0]));
seq_printf(s, "RMNET_MODE_LLP_ETH: %d\n",
test_bit(RMNET_MODE_LLP_ETH, &unet->data[0]));
seq_printf(s, "RMNET_MODE_QOS: %d\n",
test_bit(RMNET_MODE_QOS, &unet->data[0]));
seq_printf(s, "Net MTU: %u\n", unet->net->mtu);
seq_printf(s, "rx_urb_size: %u\n", unet->rx_urb_size);
seq_printf(s, "rx skb q len: %u\n", unet->rxq.qlen);
seq_printf(s, "rx skb done q len: %u\n", unet->done.qlen);
seq_printf(s, "rx errors: %lu\n", unet->net->stats.rx_errors);
seq_printf(s, "rx over errors: %lu\n",
unet->net->stats.rx_over_errors);
seq_printf(s, "rx length errors: %lu\n",
unet->net->stats.rx_length_errors);
seq_printf(s, "rx packets: %lu\n", unet->net->stats.rx_packets);
seq_printf(s, "rx bytes: %lu\n", unet->net->stats.rx_bytes);
seq_printf(s, "tx skb q len: %u\n", unet->txq.qlen);
seq_printf(s, "tx errors: %lu\n", unet->net->stats.tx_errors);
seq_printf(s, "tx packets: %lu\n", unet->net->stats.tx_packets);
seq_printf(s, "tx bytes: %lu\n", unet->net->stats.tx_bytes);
seq_printf(s, "EVENT_DEV_OPEN: %d\n",
test_bit(EVENT_DEV_OPEN, &unet->flags));
seq_printf(s, "EVENT_TX_HALT: %d\n",
test_bit(EVENT_TX_HALT, &unet->flags));
seq_printf(s, "EVENT_RX_HALT: %d\n",
test_bit(EVENT_RX_HALT, &unet->flags));
seq_printf(s, "EVENT_RX_MEMORY: %d\n",
test_bit(EVENT_RX_MEMORY, &unet->flags));
seq_printf(s, "EVENT_DEV_ASLEEP: %d\n",
test_bit(EVENT_DEV_ASLEEP, &unet->flags));
return 0;
}
static int rmnet_usb_data_status_open(struct inode *inode, struct file *file)
{
return single_open(file, rmnet_usb_data_status, inode->i_private);
}
const struct file_operations rmnet_usb_data_fops = {
.open = rmnet_usb_data_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int rmnet_usb_data_debugfs_init(struct usbnet *unet)
{
struct dentry *rmnet_usb_data_dbg_root;
struct dentry *rmnet_usb_data_dentry;
rmnet_usb_data_dbg_root = debugfs_create_dir(unet->net->name, NULL);
if (!rmnet_usb_data_dbg_root || IS_ERR(rmnet_usb_data_dbg_root))
return -ENODEV;
rmnet_usb_data_dentry = debugfs_create_file("status",
S_IRUGO | S_IWUSR,
rmnet_usb_data_dbg_root, unet,
&rmnet_usb_data_fops);
if (!rmnet_usb_data_dentry) {
debugfs_remove_recursive(rmnet_usb_data_dbg_root);
return -ENODEV;
}
unet->data[2] = (unsigned long)rmnet_usb_data_dbg_root;
return 0;
}
static void rmnet_usb_data_debugfs_cleanup(struct usbnet *unet)
{
struct dentry *root = (struct dentry *)unet->data[2];
if (root) {
debugfs_remove_recursive(root);
unet->data[2] = 0;
}
}
static int rmnet_usb_probe(struct usb_interface *iface,
const struct usb_device_id *prod)
{
struct usbnet *unet;
struct driver_info *info = (struct driver_info *)prod->driver_info;
struct usb_device *udev;
int status = 0;
unsigned int i, unet_id, rdev_cnt, n = 0;
bool mux;
struct rmnet_ctrl_dev *dev;
udev = interface_to_usbdev(iface);
if (iface->num_altsetting != 1) {
dev_err(&iface->dev, "%s invalid num_altsetting %u\n",
__func__, iface->num_altsetting);
status = -EINVAL;
goto out;
}
mux = test_bit(info->data, &mux_enabled);
rdev_cnt = mux ? no_rmnet_insts_per_dev : 1;
info->in = 0;
for (n = 0; n < rdev_cnt; n++) {
/* Use this filed to increment device count this will be
* used by bind to determin the forward link and reverse
* link network interface names.
*/
info->in++;
status = usbnet_probe(iface, prod);
if (status < 0) {
dev_err(&iface->dev, "usbnet_probe failed %d\n",
status);
goto out;
}
unet_id = n + info->data * no_rmnet_insts_per_dev;
unet_list[unet_id] = unet = usb_get_intfdata(iface);
/*store mux id for later access*/
unet->data[3] = n;
/*save mux info for control and usbnet devices*/
unet->data[1] = unet->data[4] = mux;
/*set rmnet operation mode to eth by default*/
set_bit(RMNET_MODE_LLP_ETH, &unet->data[0]);
/*update net device*/
rmnet_usb_setup(unet->net, mux);
/*create /sys/class/net/rmnet_usbx/dbg_mask*/
status = device_create_file(&unet->net->dev,
&dev_attr_dbg_mask);
if (status) {
usbnet_disconnect(iface);
goto out;
}
status = rmnet_usb_ctrl_probe(iface, unet->status, info->data,
&unet->data[1]);
if (status) {
device_remove_file(&unet->net->dev, &dev_attr_dbg_mask);
usbnet_disconnect(iface);
goto out;
}
status = rmnet_usb_data_debugfs_init(unet);
if (status)
dev_dbg(&iface->dev,
"mode debugfs file is not available\n");
}
usb_enable_autosuspend(udev);
if (udev->parent && !udev->parent->parent) {
/* allow modem and roothub to wake up suspended system */
device_set_wakeup_enable(&udev->dev, 1);
device_set_wakeup_enable(&udev->parent->dev, 1);
}
return 0;
out:
for (i = 0; i < n; i++) {
/* This cleanup happens only for MUX case */
unet_id = i + info->data * no_rmnet_insts_per_dev;
unet = unet_list[unet_id];
dev = (struct rmnet_ctrl_dev *)unet->data[1];
rmnet_usb_data_debugfs_cleanup(unet);
rmnet_usb_ctrl_disconnect(dev);
device_remove_file(&unet->net->dev, &dev_attr_dbg_mask);
usb_set_intfdata(iface, unet_list[unet_id]);
usbnet_disconnect(iface);
unet_list[unet_id] = NULL;
}
return status;
}
static void rmnet_usb_disconnect(struct usb_interface *intf)
{
struct usbnet *unet = usb_get_intfdata(intf);
struct rmnet_ctrl_dev *dev;
unsigned int n, rdev_cnt, unet_id;
rdev_cnt = unet->data[4] ? no_rmnet_insts_per_dev : 1;
device_set_wakeup_enable(&unet->udev->dev, 0);
for (n = 0; n < rdev_cnt; n++) {
unet_id = n + unet->driver_info->data * no_rmnet_insts_per_dev;
unet =
unet->data[4] ? unet_list[unet_id] : usb_get_intfdata(intf);
device_remove_file(&unet->net->dev, &dev_attr_dbg_mask);
dev = (struct rmnet_ctrl_dev *)unet->data[1];
rmnet_usb_ctrl_disconnect(dev);
unet->data[0] = 0;
unet->data[1] = 0;
rmnet_usb_data_debugfs_cleanup(unet);
usb_set_intfdata(intf, unet);
usbnet_disconnect(intf);
unet_list[unet_id] = NULL;
}
}
static struct driver_info rmnet_info = {
.description = "RmNET net device",
.flags = FLAG_SEND_ZLP,
.bind = rmnet_usb_bind,
.tx_fixup = rmnet_usb_tx_fixup,
.rx_fixup = rmnet_usb_rx_fixup,
.rx_complete = rmnet_usb_rx_complete,
.manage_power = rmnet_usb_manage_power,
.data = 0,
};
static struct driver_info rmnet_usb_info = {
.description = "RmNET net device",
.flags = FLAG_SEND_ZLP,
.bind = rmnet_usb_bind,
.tx_fixup = rmnet_usb_tx_fixup,
.rx_fixup = rmnet_usb_rx_fixup,
.rx_complete = rmnet_usb_rx_complete,
.manage_power = rmnet_usb_manage_power,
.data = 1,
};
static const struct usb_device_id vidpids[] = {
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9034, 4),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9034, 5),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9034, 6),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9034, 7),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9048, 5),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9048, 6),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9048, 7),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9048, 8),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x904c, 6),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x904c, 7),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x904c, 8),
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9075, 6), /*mux over hsic mdm*/
.driver_info = (unsigned long)&rmnet_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9079, 5),
.driver_info = (unsigned long)&rmnet_usb_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9079, 6),
.driver_info = (unsigned long)&rmnet_usb_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9079, 7),
.driver_info = (unsigned long)&rmnet_usb_info,
},
{ USB_DEVICE_INTERFACE_NUMBER(0x05c6, 0x9079, 8),
.driver_info = (unsigned long)&rmnet_usb_info,
},
{ }, /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, vidpids);
static struct usb_driver rmnet_usb = {
.name = "rmnet_usb",
.id_table = vidpids,
.probe = rmnet_usb_probe,
.disconnect = rmnet_usb_disconnect,
.suspend = rmnet_usb_suspend,
.resume = rmnet_usb_resume,
.supports_autosuspend = true,
};
static int rmnet_data_start(void)
{
int retval;
if (no_rmnet_devs > MAX_RMNET_DEVS) {
pr_err("ERROR:%s: param no_rmnet_devs(%d) > than maximum(%d)",
__func__, no_rmnet_devs, MAX_RMNET_DEVS);
return -EINVAL;
}
/* initialize ctrl devices */
retval = rmnet_usb_ctrl_init(no_rmnet_devs, no_rmnet_insts_per_dev);
if (retval) {
err("rmnet_usb_cmux_init failed: %d", retval);
return retval;
}
retval = usb_register(&rmnet_usb);
if (retval) {
err("usb_register failed: %d", retval);
return retval;
}
return retval;
}
static void __exit rmnet_usb_exit(void)
{
usb_deregister(&rmnet_usb);
rmnet_usb_ctrl_exit(no_rmnet_devs, no_rmnet_insts_per_dev);
}
module_exit(rmnet_usb_exit);
MODULE_DESCRIPTION("msm rmnet usb device");
MODULE_LICENSE("GPL v2");