blob: 03403a51f7eae0f95cb26a3517c2b4d22536a149 [file] [log] [blame]
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/workqueue.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <net/ip6_checksum.h>
#include "cq_enet_desc.h"
#include "vnic_dev.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "enic_res.h"
#include "enic.h"
#define ENIC_NOTIFY_TIMER_PERIOD (2 * HZ)
/* Supported devices */
static struct pci_device_id enic_id_table[] = {
{ PCI_VDEVICE(CISCO, 0x0043) },
{ 0, } /* end of table */
};
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Scott Feldman <scofeldm@cisco.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, enic_id_table);
struct enic_stat {
char name[ETH_GSTRING_LEN];
unsigned int offset;
};
#define ENIC_TX_STAT(stat) \
{ .name = #stat, .offset = offsetof(struct vnic_tx_stats, stat) / 8 }
#define ENIC_RX_STAT(stat) \
{ .name = #stat, .offset = offsetof(struct vnic_rx_stats, stat) / 8 }
static const struct enic_stat enic_tx_stats[] = {
ENIC_TX_STAT(tx_frames_ok),
ENIC_TX_STAT(tx_unicast_frames_ok),
ENIC_TX_STAT(tx_multicast_frames_ok),
ENIC_TX_STAT(tx_broadcast_frames_ok),
ENIC_TX_STAT(tx_bytes_ok),
ENIC_TX_STAT(tx_unicast_bytes_ok),
ENIC_TX_STAT(tx_multicast_bytes_ok),
ENIC_TX_STAT(tx_broadcast_bytes_ok),
ENIC_TX_STAT(tx_drops),
ENIC_TX_STAT(tx_errors),
ENIC_TX_STAT(tx_tso),
};
static const struct enic_stat enic_rx_stats[] = {
ENIC_RX_STAT(rx_frames_ok),
ENIC_RX_STAT(rx_frames_total),
ENIC_RX_STAT(rx_unicast_frames_ok),
ENIC_RX_STAT(rx_multicast_frames_ok),
ENIC_RX_STAT(rx_broadcast_frames_ok),
ENIC_RX_STAT(rx_bytes_ok),
ENIC_RX_STAT(rx_unicast_bytes_ok),
ENIC_RX_STAT(rx_multicast_bytes_ok),
ENIC_RX_STAT(rx_broadcast_bytes_ok),
ENIC_RX_STAT(rx_drop),
ENIC_RX_STAT(rx_no_bufs),
ENIC_RX_STAT(rx_errors),
ENIC_RX_STAT(rx_rss),
ENIC_RX_STAT(rx_crc_errors),
ENIC_RX_STAT(rx_frames_64),
ENIC_RX_STAT(rx_frames_127),
ENIC_RX_STAT(rx_frames_255),
ENIC_RX_STAT(rx_frames_511),
ENIC_RX_STAT(rx_frames_1023),
ENIC_RX_STAT(rx_frames_1518),
ENIC_RX_STAT(rx_frames_to_max),
};
static const unsigned int enic_n_tx_stats = ARRAY_SIZE(enic_tx_stats);
static const unsigned int enic_n_rx_stats = ARRAY_SIZE(enic_rx_stats);
static int enic_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct enic *enic = netdev_priv(netdev);
ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
if (netif_carrier_ok(netdev)) {
ecmd->speed = vnic_dev_port_speed(enic->vdev);
ecmd->duplex = DUPLEX_FULL;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_DISABLE;
return 0;
}
static void enic_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_devcmd_fw_info *fw_info;
spin_lock(&enic->devcmd_lock);
vnic_dev_fw_info(enic->vdev, &fw_info);
spin_unlock(&enic->devcmd_lock);
strncpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
strncpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
strncpy(drvinfo->fw_version, fw_info->fw_version,
sizeof(drvinfo->fw_version));
strncpy(drvinfo->bus_info, pci_name(enic->pdev),
sizeof(drvinfo->bus_info));
}
static void enic_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
unsigned int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < enic_n_tx_stats; i++) {
memcpy(data, enic_tx_stats[i].name, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
for (i = 0; i < enic_n_rx_stats; i++) {
memcpy(data, enic_rx_stats[i].name, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int enic_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return enic_n_tx_stats + enic_n_rx_stats;
default:
return -EOPNOTSUPP;
}
}
static void enic_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_stats *vstats;
unsigned int i;
spin_lock(&enic->devcmd_lock);
vnic_dev_stats_dump(enic->vdev, &vstats);
spin_unlock(&enic->devcmd_lock);
for (i = 0; i < enic_n_tx_stats; i++)
*(data++) = ((u64 *)&vstats->tx)[enic_tx_stats[i].offset];
for (i = 0; i < enic_n_rx_stats; i++)
*(data++) = ((u64 *)&vstats->rx)[enic_rx_stats[i].offset];
}
static u32 enic_get_rx_csum(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
return enic->csum_rx_enabled;
}
static int enic_set_rx_csum(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
if (data && !ENIC_SETTING(enic, RXCSUM))
return -EINVAL;
enic->csum_rx_enabled = !!data;
return 0;
}
static int enic_set_tx_csum(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
if (data && !ENIC_SETTING(enic, TXCSUM))
return -EINVAL;
if (data)
netdev->features |= NETIF_F_HW_CSUM;
else
netdev->features &= ~NETIF_F_HW_CSUM;
return 0;
}
static int enic_set_tso(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
if (data && !ENIC_SETTING(enic, TSO))
return -EINVAL;
if (data)
netdev->features |=
NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN;
else
netdev->features &=
~(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN);
return 0;
}
static u32 enic_get_msglevel(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
return enic->msg_enable;
}
static void enic_set_msglevel(struct net_device *netdev, u32 value)
{
struct enic *enic = netdev_priv(netdev);
enic->msg_enable = value;
}
static struct ethtool_ops enic_ethtool_ops = {
.get_settings = enic_get_settings,
.get_drvinfo = enic_get_drvinfo,
.get_msglevel = enic_get_msglevel,
.set_msglevel = enic_set_msglevel,
.get_link = ethtool_op_get_link,
.get_strings = enic_get_strings,
.get_sset_count = enic_get_sset_count,
.get_ethtool_stats = enic_get_ethtool_stats,
.get_rx_csum = enic_get_rx_csum,
.set_rx_csum = enic_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = enic_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tso = ethtool_op_get_tso,
.set_tso = enic_set_tso,
.get_flags = ethtool_op_get_flags,
.set_flags = ethtool_op_set_flags,
};
static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf)
{
struct enic *enic = vnic_dev_priv(wq->vdev);
if (buf->sop)
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
else
pci_unmap_page(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
if (buf->os_buf)
dev_kfree_skb_any(buf->os_buf);
}
static void enic_wq_free_buf(struct vnic_wq *wq,
struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque)
{
enic_free_wq_buf(wq, buf);
}
static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
spin_lock(&enic->wq_lock[q_number]);
vnic_wq_service(&enic->wq[q_number], cq_desc,
completed_index, enic_wq_free_buf,
opaque);
if (netif_queue_stopped(enic->netdev) &&
vnic_wq_desc_avail(&enic->wq[q_number]) >= MAX_SKB_FRAGS + 1)
netif_wake_queue(enic->netdev);
spin_unlock(&enic->wq_lock[q_number]);
return 0;
}
static void enic_log_q_error(struct enic *enic)
{
unsigned int i;
u32 error_status;
for (i = 0; i < enic->wq_count; i++) {
error_status = vnic_wq_error_status(&enic->wq[i]);
if (error_status)
printk(KERN_ERR PFX "%s: WQ[%d] error_status %d\n",
enic->netdev->name, i, error_status);
}
for (i = 0; i < enic->rq_count; i++) {
error_status = vnic_rq_error_status(&enic->rq[i]);
if (error_status)
printk(KERN_ERR PFX "%s: RQ[%d] error_status %d\n",
enic->netdev->name, i, error_status);
}
}
static void enic_link_check(struct enic *enic)
{
int link_status = vnic_dev_link_status(enic->vdev);
int carrier_ok = netif_carrier_ok(enic->netdev);
if (link_status && !carrier_ok) {
printk(KERN_INFO PFX "%s: Link UP\n", enic->netdev->name);
netif_carrier_on(enic->netdev);
} else if (!link_status && carrier_ok) {
printk(KERN_INFO PFX "%s: Link DOWN\n", enic->netdev->name);
netif_carrier_off(enic->netdev);
}
}
static void enic_mtu_check(struct enic *enic)
{
u32 mtu = vnic_dev_mtu(enic->vdev);
if (mtu != enic->port_mtu) {
if (mtu < enic->netdev->mtu)
printk(KERN_WARNING PFX
"%s: interface MTU (%d) set higher "
"than switch port MTU (%d)\n",
enic->netdev->name, enic->netdev->mtu, mtu);
enic->port_mtu = mtu;
}
}
static void enic_msglvl_check(struct enic *enic)
{
u32 msg_enable = vnic_dev_msg_lvl(enic->vdev);
if (msg_enable != enic->msg_enable) {
printk(KERN_INFO PFX "%s: msg lvl changed from 0x%x to 0x%x\n",
enic->netdev->name, enic->msg_enable, msg_enable);
enic->msg_enable = msg_enable;
}
}
static void enic_notify_check(struct enic *enic)
{
enic_msglvl_check(enic);
enic_mtu_check(enic);
enic_link_check(enic);
}
#define ENIC_TEST_INTR(pba, i) (pba & (1 << i))
static irqreturn_t enic_isr_legacy(int irq, void *data)
{
struct net_device *netdev = data;
struct enic *enic = netdev_priv(netdev);
u32 pba;
vnic_intr_mask(&enic->intr[ENIC_INTX_WQ_RQ]);
pba = vnic_intr_legacy_pba(enic->legacy_pba);
if (!pba) {
vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]);
return IRQ_NONE; /* not our interrupt */
}
if (ENIC_TEST_INTR(pba, ENIC_INTX_NOTIFY)) {
vnic_intr_return_all_credits(&enic->intr[ENIC_INTX_NOTIFY]);
enic_notify_check(enic);
}
if (ENIC_TEST_INTR(pba, ENIC_INTX_ERR)) {
vnic_intr_return_all_credits(&enic->intr[ENIC_INTX_ERR]);
enic_log_q_error(enic);
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
if (ENIC_TEST_INTR(pba, ENIC_INTX_WQ_RQ)) {
if (napi_schedule_prep(&enic->napi))
__napi_schedule(&enic->napi);
} else {
vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]);
}
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msi(int irq, void *data)
{
struct enic *enic = data;
/* With MSI, there is no sharing of interrupts, so this is
* our interrupt and there is no need to ack it. The device
* is not providing per-vector masking, so the OS will not
* write to PCI config space to mask/unmask the interrupt.
* We're using mask_on_assertion for MSI, so the device
* automatically masks the interrupt when the interrupt is
* generated. Later, when exiting polling, the interrupt
* will be unmasked (see enic_poll).
*
* Also, the device uses the same PCIe Traffic Class (TC)
* for Memory Write data and MSI, so there are no ordering
* issues; the MSI will always arrive at the Root Complex
* _after_ corresponding Memory Writes (i.e. descriptor
* writes).
*/
napi_schedule(&enic->napi);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_rq(int irq, void *data)
{
struct enic *enic = data;
/* schedule NAPI polling for RQ cleanup */
napi_schedule(&enic->napi);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_wq(int irq, void *data)
{
struct enic *enic = data;
unsigned int wq_work_to_do = -1; /* no limit */
unsigned int wq_work_done;
wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
wq_work_to_do, enic_wq_service, NULL);
vnic_intr_return_credits(&enic->intr[ENIC_MSIX_WQ],
wq_work_done,
1 /* unmask intr */,
1 /* reset intr timer */);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_err(int irq, void *data)
{
struct enic *enic = data;
vnic_intr_return_all_credits(&enic->intr[ENIC_MSIX_ERR]);
enic_log_q_error(enic);
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_notify(int irq, void *data)
{
struct enic *enic = data;
vnic_intr_return_all_credits(&enic->intr[ENIC_MSIX_NOTIFY]);
enic_notify_check(enic);
return IRQ_HANDLED;
}
static inline void enic_queue_wq_skb_cont(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
unsigned int len_left)
{
skb_frag_t *frag;
/* Queue additional data fragments */
for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
len_left -= frag->size;
enic_queue_wq_desc_cont(wq, skb,
pci_map_page(enic->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE),
frag->size,
(len_left == 0)); /* EOP? */
}
}
static inline void enic_queue_wq_skb_vlan(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
int eop = (len_left == 0);
/* Queue the main skb fragment */
enic_queue_wq_desc(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb_csum_l4(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
unsigned int hdr_len = skb_transport_offset(skb);
unsigned int csum_offset = hdr_len + skb->csum_offset;
int eop = (len_left == 0);
/* Queue the main skb fragment */
enic_queue_wq_desc_csum_l4(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
csum_offset,
hdr_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb_tso(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb, unsigned int mss,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
unsigned int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int eop = (len_left == 0);
/* Preload TCP csum field with IP pseudo hdr calculated
* with IP length set to zero. HW will later add in length
* to each TCP segment resulting from the TSO.
*/
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
}
/* Queue the main skb fragment */
enic_queue_wq_desc_tso(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
mss, hdr_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb)
{
unsigned int mss = skb_shinfo(skb)->gso_size;
unsigned int vlan_tag = 0;
int vlan_tag_insert = 0;
if (enic->vlan_group && vlan_tx_tag_present(skb)) {
/* VLAN tag from trunking driver */
vlan_tag_insert = 1;
vlan_tag = vlan_tx_tag_get(skb);
}
if (mss)
enic_queue_wq_skb_tso(enic, wq, skb, mss,
vlan_tag_insert, vlan_tag);
else if (skb->ip_summed == CHECKSUM_PARTIAL)
enic_queue_wq_skb_csum_l4(enic, wq, skb,
vlan_tag_insert, vlan_tag);
else
enic_queue_wq_skb_vlan(enic, wq, skb,
vlan_tag_insert, vlan_tag);
}
/* netif_tx_lock held, process context with BHs disabled, or BH */
static int enic_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_wq *wq = &enic->wq[0];
unsigned long flags;
if (skb->len <= 0) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs,
* which is very likely. In the off chance it's going to take
* more than * ENIC_NON_TSO_MAX_DESC, linearize the skb.
*/
if (skb_shinfo(skb)->gso_size == 0 &&
skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC &&
skb_linearize(skb)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
spin_lock_irqsave(&enic->wq_lock[0], flags);
if (vnic_wq_desc_avail(wq) < skb_shinfo(skb)->nr_frags + 1) {
netif_stop_queue(netdev);
/* This is a hard error, log it */
printk(KERN_ERR PFX "%s: BUG! Tx ring full when "
"queue awake!\n", netdev->name);
spin_unlock_irqrestore(&enic->wq_lock[0], flags);
return NETDEV_TX_BUSY;
}
enic_queue_wq_skb(enic, wq, skb);
if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + 1)
netif_stop_queue(netdev);
netdev->trans_start = jiffies;
spin_unlock_irqrestore(&enic->wq_lock[0], flags);
return NETDEV_TX_OK;
}
/* dev_base_lock rwlock held, nominally process context */
static struct net_device_stats *enic_get_stats(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct net_device_stats *net_stats = &netdev->stats;
struct vnic_stats *stats;
spin_lock(&enic->devcmd_lock);
vnic_dev_stats_dump(enic->vdev, &stats);
spin_unlock(&enic->devcmd_lock);
net_stats->tx_packets = stats->tx.tx_frames_ok;
net_stats->tx_bytes = stats->tx.tx_bytes_ok;
net_stats->tx_errors = stats->tx.tx_errors;
net_stats->tx_dropped = stats->tx.tx_drops;
net_stats->rx_packets = stats->rx.rx_frames_ok;
net_stats->rx_bytes = stats->rx.rx_bytes_ok;
net_stats->rx_errors = stats->rx.rx_errors;
net_stats->multicast = stats->rx.rx_multicast_frames_ok;
net_stats->rx_crc_errors = enic->rq_bad_fcs;
net_stats->rx_dropped = stats->rx.rx_no_bufs;
return net_stats;
}
static void enic_reset_mcaddrs(struct enic *enic)
{
enic->mc_count = 0;
}
static int enic_set_mac_addr(struct net_device *netdev, char *addr)
{
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr, netdev->addr_len);
return 0;
}
/* netif_tx_lock held, BHs disabled */
static void enic_set_multicast_list(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct dev_mc_list *list = netdev->mc_list;
int directed = 1;
int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0;
int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0;
int promisc = (netdev->flags & IFF_PROMISC) ? 1 : 0;
int allmulti = (netdev->flags & IFF_ALLMULTI) ||
(netdev->mc_count > ENIC_MULTICAST_PERFECT_FILTERS);
u8 mc_addr[ENIC_MULTICAST_PERFECT_FILTERS][ETH_ALEN];
unsigned int mc_count = netdev->mc_count;
unsigned int i, j;
if (mc_count > ENIC_MULTICAST_PERFECT_FILTERS)
mc_count = ENIC_MULTICAST_PERFECT_FILTERS;
spin_lock(&enic->devcmd_lock);
vnic_dev_packet_filter(enic->vdev, directed,
multicast, broadcast, promisc, allmulti);
/* Is there an easier way? Trying to minimize to
* calls to add/del multicast addrs. We keep the
* addrs from the last call in enic->mc_addr and
* look for changes to add/del.
*/
for (i = 0; list && i < mc_count; i++) {
memcpy(mc_addr[i], list->dmi_addr, ETH_ALEN);
list = list->next;
}
for (i = 0; i < enic->mc_count; i++) {
for (j = 0; j < mc_count; j++)
if (compare_ether_addr(enic->mc_addr[i],
mc_addr[j]) == 0)
break;
if (j == mc_count)
enic_del_multicast_addr(enic, enic->mc_addr[i]);
}
for (i = 0; i < mc_count; i++) {
for (j = 0; j < enic->mc_count; j++)
if (compare_ether_addr(mc_addr[i],
enic->mc_addr[j]) == 0)
break;
if (j == enic->mc_count)
enic_add_multicast_addr(enic, mc_addr[i]);
}
/* Save the list to compare against next time
*/
for (i = 0; i < mc_count; i++)
memcpy(enic->mc_addr[i], mc_addr[i], ETH_ALEN);
enic->mc_count = mc_count;
spin_unlock(&enic->devcmd_lock);
}
/* rtnl lock is held */
static void enic_vlan_rx_register(struct net_device *netdev,
struct vlan_group *vlan_group)
{
struct enic *enic = netdev_priv(netdev);
enic->vlan_group = vlan_group;
}
/* rtnl lock is held */
static void enic_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
struct enic *enic = netdev_priv(netdev);
spin_lock(&enic->devcmd_lock);
enic_add_vlan(enic, vid);
spin_unlock(&enic->devcmd_lock);
}
/* rtnl lock is held */
static void enic_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct enic *enic = netdev_priv(netdev);
spin_lock(&enic->devcmd_lock);
enic_del_vlan(enic, vid);
spin_unlock(&enic->devcmd_lock);
}
/* netif_tx_lock held, BHs disabled */
static void enic_tx_timeout(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
schedule_work(&enic->reset);
}
static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
if (!buf->os_buf)
return;
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(buf->os_buf);
}
static inline struct sk_buff *enic_rq_alloc_skb(unsigned int size)
{
struct sk_buff *skb;
skb = dev_alloc_skb(size + NET_IP_ALIGN);
if (skb)
skb_reserve(skb, NET_IP_ALIGN);
return skb;
}
static int enic_rq_alloc_buf(struct vnic_rq *rq)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb;
unsigned int len = enic->netdev->mtu + ETH_HLEN;
unsigned int os_buf_index = 0;
dma_addr_t dma_addr;
skb = enic_rq_alloc_skb(len);
if (!skb)
return -ENOMEM;
dma_addr = pci_map_single(enic->pdev, skb->data,
len, PCI_DMA_FROMDEVICE);
enic_queue_rq_desc(rq, skb, os_buf_index,
dma_addr, len);
return 0;
}
static int enic_get_skb_header(struct sk_buff *skb, void **iphdr,
void **tcph, u64 *hdr_flags, void *priv)
{
struct cq_enet_rq_desc *cq_desc = priv;
unsigned int ip_len;
struct iphdr *iph;
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 q_number, completed_index, bytes_written, vlan, checksum;
u32 rss_hash;
cq_enet_rq_desc_dec(cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop, &rss_type,
&csum_not_calc, &rss_hash, &bytes_written,
&packet_error, &vlan_stripped, &vlan, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
&fcs_ok);
if (!(ipv4 && tcp && !ipv4_fragment))
return -1;
skb_reset_network_header(skb);
iph = ip_hdr(skb);
ip_len = ip_hdrlen(skb);
skb_set_transport_header(skb, ip_len);
/* check if ip header and tcp header are complete */
if (ntohs(iph->tot_len) < ip_len + tcp_hdrlen(skb))
return -1;
*hdr_flags = LRO_IPV4 | LRO_TCP;
*tcph = tcp_hdr(skb);
*iphdr = iph;
return 0;
}
static void enic_rq_indicate_buf(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct net_device *netdev = enic->netdev;
struct sk_buff *skb;
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 q_number, completed_index, bytes_written, vlan, checksum;
u32 rss_hash;
if (skipped)
return;
skb = buf->os_buf;
prefetch(skb->data - NET_IP_ALIGN);
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop, &rss_type,
&csum_not_calc, &rss_hash, &bytes_written,
&packet_error, &vlan_stripped, &vlan, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
&fcs_ok);
if (packet_error) {
if (bytes_written > 0 && !fcs_ok)
enic->rq_bad_fcs++;
dev_kfree_skb_any(skb);
return;
}
if (eop && bytes_written > 0) {
/* Good receive
*/
skb_put(skb, bytes_written);
skb->protocol = eth_type_trans(skb, netdev);
if (enic->csum_rx_enabled && !csum_not_calc) {
skb->csum = htons(checksum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->dev = netdev;
if (enic->vlan_group && vlan_stripped) {
if ((netdev->features & NETIF_F_LRO) && ipv4)
lro_vlan_hwaccel_receive_skb(&enic->lro_mgr,
skb, enic->vlan_group,
vlan, cq_desc);
else
vlan_hwaccel_receive_skb(skb,
enic->vlan_group, vlan);
} else {
if ((netdev->features & NETIF_F_LRO) && ipv4)
lro_receive_skb(&enic->lro_mgr, skb, cq_desc);
else
netif_receive_skb(skb);
}
} else {
/* Buffer overflow
*/
dev_kfree_skb_any(skb);
}
}
static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
vnic_rq_service(&enic->rq[q_number], cq_desc,
completed_index, VNIC_RQ_RETURN_DESC,
enic_rq_indicate_buf, opaque);
return 0;
}
static void enic_rq_drop_buf(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb = buf->os_buf;
if (skipped)
return;
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
static int enic_rq_service_drop(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
vnic_rq_service(&enic->rq[q_number], cq_desc,
completed_index, VNIC_RQ_RETURN_DESC,
enic_rq_drop_buf, opaque);
return 0;
}
static int enic_poll(struct napi_struct *napi, int budget)
{
struct enic *enic = container_of(napi, struct enic, napi);
struct net_device *netdev = enic->netdev;
unsigned int rq_work_to_do = budget;
unsigned int wq_work_to_do = -1; /* no limit */
unsigned int work_done, rq_work_done, wq_work_done;
/* Service RQ (first) and WQ
*/
rq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
rq_work_to_do, enic_rq_service, NULL);
wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
wq_work_to_do, enic_wq_service, NULL);
/* Accumulate intr event credits for this polling
* cycle. An intr event is the completion of a
* a WQ or RQ packet.
*/
work_done = rq_work_done + wq_work_done;
if (work_done > 0)
vnic_intr_return_credits(&enic->intr[ENIC_INTX_WQ_RQ],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
if (rq_work_done > 0) {
/* Replenish RQ
*/
vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);
} else {
/* If no work done, flush all LROs and exit polling
*/
if (netdev->features & NETIF_F_LRO)
lro_flush_all(&enic->lro_mgr);
napi_complete(napi);
vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]);
}
return rq_work_done;
}
static int enic_poll_msix(struct napi_struct *napi, int budget)
{
struct enic *enic = container_of(napi, struct enic, napi);
struct net_device *netdev = enic->netdev;
unsigned int work_to_do = budget;
unsigned int work_done;
/* Service RQ
*/
work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
work_to_do, enic_rq_service, NULL);
if (work_done > 0) {
/* Replenish RQ
*/
vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);
/* Return intr event credits for this polling
* cycle. An intr event is the completion of a
* RQ packet.
*/
vnic_intr_return_credits(&enic->intr[ENIC_MSIX_RQ],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
} else {
/* If no work done, flush all LROs and exit polling
*/
if (netdev->features & NETIF_F_LRO)
lro_flush_all(&enic->lro_mgr);
napi_complete(napi);
vnic_intr_unmask(&enic->intr[ENIC_MSIX_RQ]);
}
return work_done;
}
static void enic_notify_timer(unsigned long data)
{
struct enic *enic = (struct enic *)data;
enic_notify_check(enic);
mod_timer(&enic->notify_timer,
round_jiffies(jiffies + ENIC_NOTIFY_TIMER_PERIOD));
}
static void enic_free_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
free_irq(enic->pdev->irq, netdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
free_irq(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
if (enic->msix[i].requested)
free_irq(enic->msix_entry[i].vector,
enic->msix[i].devid);
break;
default:
break;
}
}
static int enic_request_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i;
int err = 0;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = request_irq(enic->pdev->irq, enic_isr_legacy,
IRQF_SHARED, netdev->name, netdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
err = request_irq(enic->pdev->irq, enic_isr_msi,
0, netdev->name, enic);
break;
case VNIC_DEV_INTR_MODE_MSIX:
sprintf(enic->msix[ENIC_MSIX_RQ].devname,
"%.11s-rx-0", netdev->name);
enic->msix[ENIC_MSIX_RQ].isr = enic_isr_msix_rq;
enic->msix[ENIC_MSIX_RQ].devid = enic;
sprintf(enic->msix[ENIC_MSIX_WQ].devname,
"%.11s-tx-0", netdev->name);
enic->msix[ENIC_MSIX_WQ].isr = enic_isr_msix_wq;
enic->msix[ENIC_MSIX_WQ].devid = enic;
sprintf(enic->msix[ENIC_MSIX_ERR].devname,
"%.11s-err", netdev->name);
enic->msix[ENIC_MSIX_ERR].isr = enic_isr_msix_err;
enic->msix[ENIC_MSIX_ERR].devid = enic;
sprintf(enic->msix[ENIC_MSIX_NOTIFY].devname,
"%.11s-notify", netdev->name);
enic->msix[ENIC_MSIX_NOTIFY].isr = enic_isr_msix_notify;
enic->msix[ENIC_MSIX_NOTIFY].devid = enic;
for (i = 0; i < ARRAY_SIZE(enic->msix); i++) {
err = request_irq(enic->msix_entry[i].vector,
enic->msix[i].isr, 0,
enic->msix[i].devname,
enic->msix[i].devid);
if (err) {
enic_free_intr(enic);
break;
}
enic->msix[i].requested = 1;
}
break;
default:
break;
}
return err;
}
static int enic_notify_set(struct enic *enic)
{
int err;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = vnic_dev_notify_set(enic->vdev, ENIC_INTX_NOTIFY);
break;
case VNIC_DEV_INTR_MODE_MSIX:
err = vnic_dev_notify_set(enic->vdev, ENIC_MSIX_NOTIFY);
break;
default:
err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */);
break;
}
return err;
}
static void enic_notify_timer_start(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSI:
mod_timer(&enic->notify_timer, jiffies);
break;
default:
/* Using intr for notification for INTx/MSI-X */
break;
};
}
/* rtnl lock is held, process context */
static int enic_open(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err;
err = enic_request_intr(enic);
if (err) {
printk(KERN_ERR PFX "%s: Unable to request irq.\n",
netdev->name);
return err;
}
err = enic_notify_set(enic);
if (err) {
printk(KERN_ERR PFX
"%s: Failed to alloc notify buffer, aborting.\n",
netdev->name);
goto err_out_free_intr;
}
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf);
if (err) {
printk(KERN_ERR PFX
"%s: Unable to alloc receive buffers.\n",
netdev->name);
goto err_out_notify_unset;
}
}
for (i = 0; i < enic->wq_count; i++)
vnic_wq_enable(&enic->wq[i]);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_enable(&enic->rq[i]);
enic_add_station_addr(enic);
enic_set_multicast_list(netdev);
netif_wake_queue(netdev);
napi_enable(&enic->napi);
vnic_dev_enable(enic->vdev);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_unmask(&enic->intr[i]);
enic_notify_timer_start(enic);
return 0;
err_out_notify_unset:
vnic_dev_notify_unset(enic->vdev);
err_out_free_intr:
enic_free_intr(enic);
return err;
}
/* rtnl lock is held, process context */
static int enic_stop(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err;
del_timer_sync(&enic->notify_timer);
vnic_dev_disable(enic->vdev);
napi_disable(&enic->napi);
netif_stop_queue(netdev);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_mask(&enic->intr[i]);
for (i = 0; i < enic->wq_count; i++) {
err = vnic_wq_disable(&enic->wq[i]);
if (err)
return err;
}
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_disable(&enic->rq[i]);
if (err)
return err;
}
vnic_dev_notify_unset(enic->vdev);
enic_free_intr(enic);
(void)vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
-1, enic_rq_service_drop, NULL);
(void)vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
-1, enic_wq_service, NULL);
for (i = 0; i < enic->wq_count; i++)
vnic_wq_clean(&enic->wq[i], enic_free_wq_buf);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
for (i = 0; i < enic->cq_count; i++)
vnic_cq_clean(&enic->cq[i]);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_clean(&enic->intr[i]);
return 0;
}
static int enic_change_mtu(struct net_device *netdev, int new_mtu)
{
struct enic *enic = netdev_priv(netdev);
int running = netif_running(netdev);
if (new_mtu < ENIC_MIN_MTU || new_mtu > ENIC_MAX_MTU)
return -EINVAL;
if (running)
enic_stop(netdev);
netdev->mtu = new_mtu;
if (netdev->mtu > enic->port_mtu)
printk(KERN_WARNING PFX
"%s: interface MTU (%d) set higher "
"than port MTU (%d)\n",
netdev->name, netdev->mtu, enic->port_mtu);
if (running)
enic_open(netdev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void enic_poll_controller(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_dev *vdev = enic->vdev;
switch (vnic_dev_get_intr_mode(vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
enic_isr_msix_rq(enic->pdev->irq, enic);
enic_isr_msix_wq(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_MSI:
enic_isr_msi(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_INTX:
enic_isr_legacy(enic->pdev->irq, netdev);
break;
default:
break;
}
}
#endif
static int enic_dev_wait(struct vnic_dev *vdev,
int (*start)(struct vnic_dev *, int),
int (*finished)(struct vnic_dev *, int *),
int arg)
{
unsigned long time;
int done;
int err;
BUG_ON(in_interrupt());
err = start(vdev, arg);
if (err)
return err;
/* Wait for func to complete...2 seconds max
*/
time = jiffies + (HZ * 2);
do {
err = finished(vdev, &done);
if (err)
return err;
if (done)
return 0;
schedule_timeout_uninterruptible(HZ / 10);
} while (time_after(time, jiffies));
return -ETIMEDOUT;
}
static int enic_dev_open(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_open,
vnic_dev_open_done, 0);
if (err)
printk(KERN_ERR PFX
"vNIC device open failed, err %d.\n", err);
return err;
}
static int enic_dev_soft_reset(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset,
vnic_dev_soft_reset_done, 0);
if (err)
printk(KERN_ERR PFX
"vNIC soft reset failed, err %d.\n", err);
return err;
}
static int enic_set_niccfg(struct enic *enic)
{
const u8 rss_default_cpu = 0;
const u8 rss_hash_type = 0;
const u8 rss_hash_bits = 0;
const u8 rss_base_cpu = 0;
const u8 rss_enable = 0;
const u8 tso_ipid_split_en = 0;
const u8 ig_vlan_strip_en = 1;
/* Enable VLAN tag stripping. RSS not enabled (yet).
*/
return enic_set_nic_cfg(enic,
rss_default_cpu, rss_hash_type,
rss_hash_bits, rss_base_cpu,
rss_enable, tso_ipid_split_en,
ig_vlan_strip_en);
}
static void enic_reset(struct work_struct *work)
{
struct enic *enic = container_of(work, struct enic, reset);
if (!netif_running(enic->netdev))
return;
rtnl_lock();
spin_lock(&enic->devcmd_lock);
vnic_dev_hang_notify(enic->vdev);
spin_unlock(&enic->devcmd_lock);
enic_stop(enic->netdev);
enic_dev_soft_reset(enic);
vnic_dev_init(enic->vdev, 0);
enic_reset_mcaddrs(enic);
enic_init_vnic_resources(enic);
enic_set_niccfg(enic);
enic_open(enic->netdev);
rtnl_unlock();
}
static int enic_set_intr_mode(struct enic *enic)
{
unsigned int n = ARRAY_SIZE(enic->rq);
unsigned int m = ARRAY_SIZE(enic->wq);
unsigned int i;
/* Set interrupt mode (INTx, MSI, MSI-X) depending
* system capabilities.
*
* Try MSI-X first
*
* We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs
* (the second to last INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2);
for (i = 0; i < n + m + 2; i++)
enic->msix_entry[i].entry = i;
if (enic->config.intr_mode < 1 &&
enic->rq_count >= n &&
enic->wq_count >= m &&
enic->cq_count >= n + m &&
enic->intr_count >= n + m + 2 &&
!pci_enable_msix(enic->pdev, enic->msix_entry, n + m + 2)) {
enic->rq_count = n;
enic->wq_count = m;
enic->cq_count = n + m;
enic->intr_count = n + m + 2;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSIX);
return 0;
}
/* Next try MSI
*
* We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR
*/
if (enic->config.intr_mode < 2 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 1 &&
!pci_enable_msi(enic->pdev)) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 1;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI);
return 0;
}
/* Next try INTx
*
* We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs
* (the first INTR is used for WQ/RQ)
* (the second INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
if (enic->config.intr_mode < 3 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 3) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 3;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX);
return 0;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
return -EINVAL;
}
static void enic_clear_intr_mode(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
pci_disable_msix(enic->pdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
pci_disable_msi(enic->pdev);
break;
default:
break;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
}
static void enic_iounmap(struct enic *enic)
{
if (enic->bar0.vaddr)
iounmap(enic->bar0.vaddr);
}
static const struct net_device_ops enic_netdev_ops = {
.ndo_open = enic_open,
.ndo_stop = enic_stop,
.ndo_start_xmit = enic_hard_start_xmit,
.ndo_get_stats = enic_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_multicast_list = enic_set_multicast_list,
.ndo_change_mtu = enic_change_mtu,
.ndo_vlan_rx_register = enic_vlan_rx_register,
.ndo_vlan_rx_add_vid = enic_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = enic_vlan_rx_kill_vid,
.ndo_tx_timeout = enic_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = enic_poll_controller,
#endif
};
static int __devinit enic_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct enic *enic;
int using_dac = 0;
unsigned int i;
int err;
/* Allocate net device structure and initialize. Private
* instance data is initialized to zero.
*/
netdev = alloc_etherdev(sizeof(struct enic));
if (!netdev) {
printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
return -ENOMEM;
}
pci_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
enic = netdev_priv(netdev);
enic->netdev = netdev;
enic->pdev = pdev;
/* Setup PCI resources
*/
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX
"Cannot enable PCI device, aborting.\n");
goto err_out_free_netdev;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
printk(KERN_ERR PFX
"Cannot request PCI regions, aborting.\n");
goto err_out_disable_device;
}
pci_set_master(pdev);
/* Query PCI controller on system for DMA addressing
* limitation for the device. Try 40-bit first, and
* fail to 32-bit.
*/
err = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
if (err) {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"No usable DMA configuration, aborting.\n");
goto err_out_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"Unable to obtain 32-bit DMA "
"for consistent allocations, aborting.\n");
goto err_out_release_regions;
}
} else {
err = pci_set_consistent_dma_mask(pdev, DMA_40BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"Unable to obtain 40-bit DMA "
"for consistent allocations, aborting.\n");
goto err_out_release_regions;
}
using_dac = 1;
}
/* Map vNIC resources from BAR0
*/
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
printk(KERN_ERR PFX
"BAR0 not memory-map'able, aborting.\n");
err = -ENODEV;
goto err_out_release_regions;
}
enic->bar0.vaddr = pci_iomap(pdev, 0, enic->bar0.len);
enic->bar0.bus_addr = pci_resource_start(pdev, 0);
enic->bar0.len = pci_resource_len(pdev, 0);
if (!enic->bar0.vaddr) {
printk(KERN_ERR PFX
"Cannot memory-map BAR0 res hdr, aborting.\n");
err = -ENODEV;
goto err_out_release_regions;
}
/* Register vNIC device
*/
enic->vdev = vnic_dev_register(NULL, enic, pdev, &enic->bar0);
if (!enic->vdev) {
printk(KERN_ERR PFX
"vNIC registration failed, aborting.\n");
err = -ENODEV;
goto err_out_iounmap;
}
/* Issue device open to get device in known state
*/
err = enic_dev_open(enic);
if (err) {
printk(KERN_ERR PFX
"vNIC dev open failed, aborting.\n");
goto err_out_vnic_unregister;
}
/* Issue device init to initialize the vnic-to-switch link.
* We'll start with carrier off and wait for link UP
* notification later to turn on carrier. We don't need
* to wait here for the vnic-to-switch link initialization
* to complete; link UP notification is the indication that
* the process is complete.
*/
netif_carrier_off(netdev);
err = vnic_dev_init(enic->vdev, 0);
if (err) {
printk(KERN_ERR PFX
"vNIC dev init failed, aborting.\n");
goto err_out_dev_close;
}
/* Get vNIC configuration
*/
err = enic_get_vnic_config(enic);
if (err) {
printk(KERN_ERR PFX
"Get vNIC configuration failed, aborting.\n");
goto err_out_dev_close;
}
/* Get available resource counts
*/
enic_get_res_counts(enic);
/* Set interrupt mode based on resource counts and system
* capabilities
*/
err = enic_set_intr_mode(enic);
if (err) {
printk(KERN_ERR PFX
"Failed to set intr mode, aborting.\n");
goto err_out_dev_close;
}
/* Allocate and configure vNIC resources
*/
err = enic_alloc_vnic_resources(enic);
if (err) {
printk(KERN_ERR PFX
"Failed to alloc vNIC resources, aborting.\n");
goto err_out_free_vnic_resources;
}
enic_init_vnic_resources(enic);
err = enic_set_niccfg(enic);
if (err) {
printk(KERN_ERR PFX
"Failed to config nic, aborting.\n");
goto err_out_free_vnic_resources;
}
/* Setup notification timer, HW reset task, and locks
*/
init_timer(&enic->notify_timer);
enic->notify_timer.function = enic_notify_timer;
enic->notify_timer.data = (unsigned long)enic;
INIT_WORK(&enic->reset, enic_reset);
for (i = 0; i < enic->wq_count; i++)
spin_lock_init(&enic->wq_lock[i]);
spin_lock_init(&enic->devcmd_lock);
/* Register net device
*/
enic->port_mtu = enic->config.mtu;
(void)enic_change_mtu(netdev, enic->port_mtu);
err = enic_set_mac_addr(netdev, enic->mac_addr);
if (err) {
printk(KERN_ERR PFX
"Invalid MAC address, aborting.\n");
goto err_out_free_vnic_resources;
}
netdev->netdev_ops = &enic_netdev_ops;
netdev->watchdog_timeo = 2 * HZ;
netdev->ethtool_ops = &enic_ethtool_ops;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
default:
netif_napi_add(netdev, &enic->napi, enic_poll, 64);
break;
case VNIC_DEV_INTR_MODE_MSIX:
netif_napi_add(netdev, &enic->napi, enic_poll_msix, 64);
break;
}
netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
if (ENIC_SETTING(enic, TXCSUM))
netdev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
if (ENIC_SETTING(enic, TSO))
netdev->features |= NETIF_F_TSO |
NETIF_F_TSO6 | NETIF_F_TSO_ECN;
if (ENIC_SETTING(enic, LRO))
netdev->features |= NETIF_F_LRO;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
enic->csum_rx_enabled = ENIC_SETTING(enic, RXCSUM);
enic->lro_mgr.max_aggr = ENIC_LRO_MAX_AGGR;
enic->lro_mgr.max_desc = ENIC_LRO_MAX_DESC;
enic->lro_mgr.lro_arr = enic->lro_desc;
enic->lro_mgr.get_skb_header = enic_get_skb_header;
enic->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
enic->lro_mgr.dev = netdev;
enic->lro_mgr.ip_summed = CHECKSUM_COMPLETE;
enic->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
err = register_netdev(netdev);
if (err) {
printk(KERN_ERR PFX
"Cannot register net device, aborting.\n");
goto err_out_free_vnic_resources;
}
return 0;
err_out_free_vnic_resources:
enic_free_vnic_resources(enic);
err_out_dev_close:
vnic_dev_close(enic->vdev);
err_out_vnic_unregister:
enic_clear_intr_mode(enic);
vnic_dev_unregister(enic->vdev);
err_out_iounmap:
enic_iounmap(enic);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out_free_netdev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
return err;
}
static void __devexit enic_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
if (netdev) {
struct enic *enic = netdev_priv(netdev);
flush_scheduled_work();
unregister_netdev(netdev);
enic_free_vnic_resources(enic);
vnic_dev_close(enic->vdev);
enic_clear_intr_mode(enic);
vnic_dev_unregister(enic->vdev);
enic_iounmap(enic);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
}
}
static struct pci_driver enic_driver = {
.name = DRV_NAME,
.id_table = enic_id_table,
.probe = enic_probe,
.remove = __devexit_p(enic_remove),
};
static int __init enic_init_module(void)
{
printk(KERN_INFO PFX "%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION);
return pci_register_driver(&enic_driver);
}
static void __exit enic_cleanup_module(void)
{
pci_unregister_driver(&enic_driver);
}
module_init(enic_init_module);
module_exit(enic_cleanup_module);