blob: ccb20a6f5f36d7593b991d985cb8a478f704368f [file] [log] [blame]
/*
* drivers/sbus/char/bpp.c
*
* Copyright (c) 1995 Picture Elements
* Stephen Williams (steve@icarus.com)
* Gus Baldauf (gbaldauf@ix.netcom.com)
*
* Linux/SPARC port by Peter Zaitcev.
* Integration into SPARC tree by Tom Dyas.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/major.h>
#include <linux/devfs_fs_kernel.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#if defined(__i386__)
# include <asm/system.h>
#endif
#if defined(__sparc__)
# include <linux/init.h>
# include <linux/delay.h> /* udelay() */
# include <asm/oplib.h> /* OpenProm Library */
# include <asm/sbus.h>
#endif
#include <asm/bpp.h>
#define BPP_PROBE_CODE 0x55
#define BPP_DELAY 100
static const unsigned BPP_MAJOR = LP_MAJOR;
static const char* dev_name = "bpp";
/* When switching from compatibility to a mode where I can read, try
the following mode first. */
/* const unsigned char DEFAULT_ECP = 0x10; */
static const unsigned char DEFAULT_ECP = 0x30;
static const unsigned char DEFAULT_NIBBLE = 0x00;
/*
* These are 1284 time constraints, in units of jiffies.
*/
static const unsigned long TIME_PSetup = 1;
static const unsigned long TIME_PResponse = 6;
static const unsigned long TIME_IDLE_LIMIT = 2000;
/*
* One instance per supported subdevice...
*/
# define BPP_NO 3
enum IEEE_Mode { COMPATIBILITY, NIBBLE, ECP, ECP_RLE, EPP };
struct inst {
unsigned present : 1; /* True if the hardware exists */
unsigned enhanced : 1; /* True if the hardware in "enhanced" */
unsigned opened : 1; /* True if the device is opened already */
unsigned run_flag : 1; /* True if waiting for a repeate byte */
unsigned char direction; /* 0 --> out, 0x20 --> IN */
unsigned char pp_state; /* State of host controlled pins. */
enum IEEE_Mode mode;
unsigned char run_length;
unsigned char repeat_byte;
};
static struct inst instances[BPP_NO];
#if defined(__i386__)
static const unsigned short base_addrs[BPP_NO] = { 0x278, 0x378, 0x3bc };
/*
* These are for data access.
* Control lines accesses are hidden in set_bits() and get_bits().
* The exception is the probe procedure, which is system-dependent.
*/
#define bpp_outb_p(data, base) outb_p((data), (base))
#define bpp_inb(base) inb(base)
#define bpp_inb_p(base) inb_p(base)
/*
* This method takes the pin values mask and sets the hardware pins to
* the requested value: 1 == high voltage, 0 == low voltage. This
* burries the annoying PC bit inversion and preserves the direction
* flag.
*/
static void set_pins(unsigned short pins, unsigned minor)
{
unsigned char bits = instances[minor].direction; /* == 0x20 */
if (! (pins & BPP_PP_nStrobe)) bits |= 1;
if (! (pins & BPP_PP_nAutoFd)) bits |= 2;
if ( pins & BPP_PP_nInit) bits |= 4;
if (! (pins & BPP_PP_nSelectIn)) bits |= 8;
instances[minor].pp_state = bits;
outb_p(bits, base_addrs[minor]+2);
}
static unsigned short get_pins(unsigned minor)
{
unsigned short bits = 0;
unsigned value = instances[minor].pp_state;
if (! (value & 0x01)) bits |= BPP_PP_nStrobe;
if (! (value & 0x02)) bits |= BPP_PP_nAutoFd;
if (value & 0x04) bits |= BPP_PP_nInit;
if (! (value & 0x08)) bits |= BPP_PP_nSelectIn;
value = inb_p(base_addrs[minor]+1);
if (value & 0x08) bits |= BPP_GP_nFault;
if (value & 0x10) bits |= BPP_GP_Select;
if (value & 0x20) bits |= BPP_GP_PError;
if (value & 0x40) bits |= BPP_GP_nAck;
if (! (value & 0x80)) bits |= BPP_GP_Busy;
return bits;
}
#endif /* __i386__ */
#if defined(__sparc__)
/*
* Register block
*/
/* DMA registers */
#define BPP_CSR 0x00
#define BPP_ADDR 0x04
#define BPP_BCNT 0x08
#define BPP_TST_CSR 0x0C
/* Parallel Port registers */
#define BPP_HCR 0x10
#define BPP_OCR 0x12
#define BPP_DR 0x14
#define BPP_TCR 0x15
#define BPP_OR 0x16
#define BPP_IR 0x17
#define BPP_ICR 0x18
#define BPP_SIZE 0x1A
/* BPP_CSR. Bits of type RW1 are cleared with writting '1'. */
#define P_DEV_ID_MASK 0xf0000000 /* R */
#define P_DEV_ID_ZEBRA 0x40000000
#define P_DEV_ID_L64854 0xa0000000 /* == NCR 89C100+89C105. Pity. */
#define P_NA_LOADED 0x08000000 /* R NA wirtten but was not used */
#define P_A_LOADED 0x04000000 /* R */
#define P_DMA_ON 0x02000000 /* R DMA is not disabled */
#define P_EN_NEXT 0x01000000 /* RW */
#define P_TCI_DIS 0x00800000 /* RW TCI forbidden from interrupts */
#define P_DIAG 0x00100000 /* RW Disables draining and resetting
of P-FIFO on loading of P_ADDR*/
#define P_BURST_SIZE 0x000c0000 /* RW SBus burst size */
#define P_BURST_8 0x00000000
#define P_BURST_4 0x00040000
#define P_BURST_1 0x00080000 /* "No burst" write */
#define P_TC 0x00004000 /* RW1 Term Count, can be cleared when
P_EN_NEXT=1 */
#define P_EN_CNT 0x00002000 /* RW */
#define P_EN_DMA 0x00000200 /* RW */
#define P_WRITE 0x00000100 /* R DMA dir, 1=to ram, 0=to port */
#define P_RESET 0x00000080 /* RW */
#define P_SLAVE_ERR 0x00000040 /* RW1 Access size error */
#define P_INVALIDATE 0x00000020 /* W Drop P-FIFO */
#define P_INT_EN 0x00000010 /* RW OK to P_INT_PEND||P_ERR_PEND */
#define P_DRAINING 0x0000000c /* R P-FIFO is draining to memory */
#define P_ERR_PEND 0x00000002 /* R */
#define P_INT_PEND 0x00000001 /* R */
/* BPP_HCR. Time is in increments of SBus clock. */
#define P_HCR_TEST 0x8000 /* Allows buried counters to be read */
#define P_HCR_DSW 0x7f00 /* Data strobe width (in ticks) */
#define P_HCR_DDS 0x007f /* Data setup before strobe (in ticks) */
/* BPP_OCR. */
#define P_OCR_MEM_CLR 0x8000
#define P_OCR_DATA_SRC 0x4000 /* ) */
#define P_OCR_DS_DSEL 0x2000 /* ) Bidirectional */
#define P_OCR_BUSY_DSEL 0x1000 /* ) selects */
#define P_OCR_ACK_DSEL 0x0800 /* ) */
#define P_OCR_EN_DIAG 0x0400
#define P_OCR_BUSY_OP 0x0200 /* Busy operation */
#define P_OCR_ACK_OP 0x0100 /* Ack operation */
#define P_OCR_SRST 0x0080 /* Reset state machines. Not selfcleaning. */
#define P_OCR_IDLE 0x0008 /* PP data transfer state machine is idle */
#define P_OCR_V_ILCK 0x0002 /* Versatec faded. Zebra only. */
#define P_OCR_EN_VER 0x0001 /* Enable Versatec (0 - enable). Zebra only. */
/* BPP_TCR */
#define P_TCR_DIR 0x08
#define P_TCR_BUSY 0x04
#define P_TCR_ACK 0x02
#define P_TCR_DS 0x01 /* Strobe */
/* BPP_OR */
#define P_OR_V3 0x20 /* ) */
#define P_OR_V2 0x10 /* ) on Zebra only */
#define P_OR_V1 0x08 /* ) */
#define P_OR_INIT 0x04
#define P_OR_AFXN 0x02 /* Auto Feed */
#define P_OR_SLCT_IN 0x01
/* BPP_IR */
#define P_IR_PE 0x04
#define P_IR_SLCT 0x02
#define P_IR_ERR 0x01
/* BPP_ICR */
#define P_DS_IRQ 0x8000 /* RW1 */
#define P_ACK_IRQ 0x4000 /* RW1 */
#define P_BUSY_IRQ 0x2000 /* RW1 */
#define P_PE_IRQ 0x1000 /* RW1 */
#define P_SLCT_IRQ 0x0800 /* RW1 */
#define P_ERR_IRQ 0x0400 /* RW1 */
#define P_DS_IRQ_EN 0x0200 /* RW Always on rising edge */
#define P_ACK_IRQ_EN 0x0100 /* RW Always on rising edge */
#define P_BUSY_IRP 0x0080 /* RW 1= rising edge */
#define P_BUSY_IRQ_EN 0x0040 /* RW */
#define P_PE_IRP 0x0020 /* RW 1= rising edge */
#define P_PE_IRQ_EN 0x0010 /* RW */
#define P_SLCT_IRP 0x0008 /* RW 1= rising edge */
#define P_SLCT_IRQ_EN 0x0004 /* RW */
#define P_ERR_IRP 0x0002 /* RW1 1= rising edge */
#define P_ERR_IRQ_EN 0x0001 /* RW */
static void __iomem *base_addrs[BPP_NO];
#define bpp_outb_p(data, base) sbus_writeb(data, (base) + BPP_DR)
#define bpp_inb_p(base) sbus_readb((base) + BPP_DR)
#define bpp_inb(base) sbus_readb((base) + BPP_DR)
static void set_pins(unsigned short pins, unsigned minor)
{
void __iomem *base = base_addrs[minor];
unsigned char bits_tcr = 0, bits_or = 0;
if (instances[minor].direction & 0x20) bits_tcr |= P_TCR_DIR;
if ( pins & BPP_PP_nStrobe) bits_tcr |= P_TCR_DS;
if ( pins & BPP_PP_nAutoFd) bits_or |= P_OR_AFXN;
if (! (pins & BPP_PP_nInit)) bits_or |= P_OR_INIT;
if (! (pins & BPP_PP_nSelectIn)) bits_or |= P_OR_SLCT_IN;
sbus_writeb(bits_or, base + BPP_OR);
sbus_writeb(bits_tcr, base + BPP_TCR);
}
/*
* i386 people read output pins from a software image.
* We may get them back from hardware.
* Again, inversion of pins must he buried here.
*/
static unsigned short get_pins(unsigned minor)
{
void __iomem *base = base_addrs[minor];
unsigned short bits = 0;
unsigned value_tcr = sbus_readb(base + BPP_TCR);
unsigned value_ir = sbus_readb(base + BPP_IR);
unsigned value_or = sbus_readb(base + BPP_OR);
if (value_tcr & P_TCR_DS) bits |= BPP_PP_nStrobe;
if (value_or & P_OR_AFXN) bits |= BPP_PP_nAutoFd;
if (! (value_or & P_OR_INIT)) bits |= BPP_PP_nInit;
if (! (value_or & P_OR_SLCT_IN)) bits |= BPP_PP_nSelectIn;
if (value_ir & P_IR_ERR) bits |= BPP_GP_nFault;
if (! (value_ir & P_IR_SLCT)) bits |= BPP_GP_Select;
if (! (value_ir & P_IR_PE)) bits |= BPP_GP_PError;
if (! (value_tcr & P_TCR_ACK)) bits |= BPP_GP_nAck;
if (value_tcr & P_TCR_BUSY) bits |= BPP_GP_Busy;
return bits;
}
#endif /* __sparc__ */
static void snooze(unsigned long snooze_time, unsigned minor)
{
schedule_timeout_uninterruptible(snooze_time + 1);
}
static int wait_for(unsigned short set, unsigned short clr,
unsigned long delay, unsigned minor)
{
unsigned short pins = get_pins(minor);
unsigned long extime = 0;
/*
* Try a real fast scan for the first jiffy, in case the device
* responds real good. The first while loop guesses an expire
* time accounting for possible wraparound of jiffies.
*/
while (time_after_eq(jiffies, extime)) extime = jiffies + 1;
while ( (time_before(jiffies, extime))
&& (((pins & set) != set) || ((pins & clr) != 0)) ) {
pins = get_pins(minor);
}
delay -= 1;
/*
* If my delay expired or the pins are still not where I want
* them, then resort to using the timer and greatly reduce my
* sample rate. If the peripheral is going to be slow, this will
* give the CPU up to some more worthy process.
*/
while ( delay && (((pins & set) != set) || ((pins & clr) != 0)) ) {
snooze(1, minor);
pins = get_pins(minor);
delay -= 1;
}
if (delay == 0) return -1;
else return pins;
}
/*
* Return ZERO(0) If the negotiation succeeds, an errno otherwise. An
* errno means something broke, and I do not yet know how to fix it.
*/
static int negotiate(unsigned char mode, unsigned minor)
{
int rc;
unsigned short pins = get_pins(minor);
if (pins & BPP_PP_nSelectIn) return -EIO;
/* Event 0: Write the mode to the data lines */
bpp_outb_p(mode, base_addrs[minor]);
snooze(TIME_PSetup, minor);
/* Event 1: Strobe the mode code into the peripheral */
set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nInit, minor);
/* Wait for Event 2: Peripheral responds as a 1284 device. */
rc = wait_for(BPP_GP_PError|BPP_GP_Select|BPP_GP_nFault,
BPP_GP_nAck,
TIME_PResponse,
minor);
if (rc == -1) return -ETIMEDOUT;
/* Event 3: latch extensibility request */
set_pins(BPP_PP_nSelectIn|BPP_PP_nInit, minor);
/* ... quick nap while peripheral ponders the byte i'm sending...*/
snooze(1, minor);
/* Event 4: restore strobe, to ACK peripheral's response. */
set_pins(BPP_PP_nSelectIn|BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor);
/* Wait for Event 6: Peripheral latches response bits */
rc = wait_for(BPP_GP_nAck, 0, TIME_PSetup+TIME_PResponse, minor);
if (rc == -1) return -EIO;
/* A 1284 device cannot refuse nibble mode */
if (mode == DEFAULT_NIBBLE) return 0;
if (pins & BPP_GP_Select) return 0;
return -EPROTONOSUPPORT;
}
static int terminate(unsigned minor)
{
int rc;
/* Event 22: Request termination of 1284 mode */
set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor);
/* Wait for Events 23 and 24: ACK termination request. */
rc = wait_for(BPP_GP_Busy|BPP_GP_nFault,
BPP_GP_nAck,
TIME_PSetup+TIME_PResponse,
minor);
instances[minor].direction = 0;
instances[minor].mode = COMPATIBILITY;
if (rc == -1) {
return -EIO;
}
/* Event 25: Handshake by lowering nAutoFd */
set_pins(BPP_PP_nStrobe|BPP_PP_nInit, minor);
/* Event 26: Peripheral wiggles lines... */
/* Event 27: Peripheral sets nAck HIGH to ack handshake */
rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor);
if (rc == -1) {
set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor);
return -EIO;
}
/* Event 28: Finish phase by raising nAutoFd */
set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor);
return 0;
}
static DEFINE_SPINLOCK(bpp_open_lock);
/*
* Allow only one process to open the device at a time.
*/
static int bpp_open(struct inode *inode, struct file *f)
{
unsigned minor = iminor(inode);
int ret;
spin_lock(&bpp_open_lock);
ret = 0;
if (minor >= BPP_NO) {
ret = -ENODEV;
} else {
if (! instances[minor].present) {
ret = -ENODEV;
} else {
if (instances[minor].opened)
ret = -EBUSY;
else
instances[minor].opened = 1;
}
}
spin_unlock(&bpp_open_lock);
return ret;
}
/*
* When the process closes the device, this method is called to clean
* up and reset the hardware. Always leave the device in compatibility
* mode as this is a reasonable place to clean up from messes made by
* ioctls, or other mayhem.
*/
static int bpp_release(struct inode *inode, struct file *f)
{
unsigned minor = iminor(inode);
spin_lock(&bpp_open_lock);
instances[minor].opened = 0;
if (instances[minor].mode != COMPATIBILITY)
terminate(minor);
spin_unlock(&bpp_open_lock);
return 0;
}
static long read_nibble(unsigned minor, char __user *c, unsigned long cnt)
{
unsigned long remaining = cnt;
long rc;
while (remaining > 0) {
unsigned char byte = 0;
int pins;
/* Event 7: request nibble */
set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe, minor);
/* Wait for event 9: Peripher strobes first nibble */
pins = wait_for(0, BPP_GP_nAck, TIME_IDLE_LIMIT, minor);
if (pins == -1) return -ETIMEDOUT;
/* Event 10: I handshake nibble */
set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nAutoFd, minor);
if (pins & BPP_GP_nFault) byte |= 0x01;
if (pins & BPP_GP_Select) byte |= 0x02;
if (pins & BPP_GP_PError) byte |= 0x04;
if (pins & BPP_GP_Busy) byte |= 0x08;
/* Wait for event 11: Peripheral handshakes nibble */
rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor);
/* Event 7: request nibble */
set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe, minor);
/* Wait for event 9: Peripher strobes first nibble */
pins = wait_for(0, BPP_GP_nAck, TIME_PResponse, minor);
if (rc == -1) return -ETIMEDOUT;
/* Event 10: I handshake nibble */
set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nAutoFd, minor);
if (pins & BPP_GP_nFault) byte |= 0x10;
if (pins & BPP_GP_Select) byte |= 0x20;
if (pins & BPP_GP_PError) byte |= 0x40;
if (pins & BPP_GP_Busy) byte |= 0x80;
if (put_user(byte, c))
return -EFAULT;
c += 1;
remaining -= 1;
/* Wait for event 11: Peripheral handshakes nibble */
rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor);
if (rc == -1) return -EIO;
}
return cnt - remaining;
}
static long read_ecp(unsigned minor, char __user *c, unsigned long cnt)
{
unsigned long remaining;
long rc;
/* Turn ECP mode from forward to reverse if needed. */
if (! instances[minor].direction) {
unsigned short pins = get_pins(minor);
/* Event 38: Turn the bus around */
instances[minor].direction = 0x20;
pins &= ~BPP_PP_nAutoFd;
set_pins(pins, minor);
/* Event 39: Set pins for reverse mode. */
snooze(TIME_PSetup, minor);
set_pins(BPP_PP_nStrobe|BPP_PP_nSelectIn, minor);
/* Wait for event 40: Peripheral ready to be strobed */
rc = wait_for(0, BPP_GP_PError, TIME_PResponse, minor);
if (rc == -1) return -ETIMEDOUT;
}
remaining = cnt;
while (remaining > 0) {
/* If there is a run length for a repeated byte, repeat */
/* that byte a few times. */
if (instances[minor].run_length && !instances[minor].run_flag) {
char buffer[128];
unsigned idx;
unsigned repeat = remaining < instances[minor].run_length
? remaining
: instances[minor].run_length;
for (idx = 0 ; idx < repeat ; idx += 1)
buffer[idx] = instances[minor].repeat_byte;
if (copy_to_user(c, buffer, repeat))
return -EFAULT;
remaining -= repeat;
c += repeat;
instances[minor].run_length -= repeat;
}
if (remaining == 0) break;
/* Wait for Event 43: Data active on the bus. */
rc = wait_for(0, BPP_GP_nAck, TIME_IDLE_LIMIT, minor);
if (rc == -1) break;
if (rc & BPP_GP_Busy) {
/* OK, this is data. read it in. */
unsigned char byte = bpp_inb(base_addrs[minor]);
if (put_user(byte, c))
return -EFAULT;
c += 1;
remaining -= 1;
if (instances[minor].run_flag) {
instances[minor].repeat_byte = byte;
instances[minor].run_flag = 0;
}
} else {
unsigned char byte = bpp_inb(base_addrs[minor]);
if (byte & 0x80) {
printk("bpp%d: "
"Ignoring ECP channel %u from device.\n",
minor, byte & 0x7f);
} else {
instances[minor].run_length = byte;
instances[minor].run_flag = 1;
}
}
/* Event 44: I got it. */
set_pins(BPP_PP_nStrobe|BPP_PP_nAutoFd|BPP_PP_nSelectIn, minor);
/* Wait for event 45: peripheral handshake */
rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor);
if (rc == -1) return -ETIMEDOUT;
/* Event 46: Finish handshake */
set_pins(BPP_PP_nStrobe|BPP_PP_nSelectIn, minor);
}
return cnt - remaining;
}
static ssize_t bpp_read(struct file *f, char __user *c, size_t cnt, loff_t * ppos)
{
long rc;
unsigned minor = iminor(f->f_dentry->d_inode);
if (minor >= BPP_NO) return -ENODEV;
if (!instances[minor].present) return -ENODEV;
switch (instances[minor].mode) {
default:
if (instances[minor].mode != COMPATIBILITY)
terminate(minor);
if (instances[minor].enhanced) {
/* For now, do all reads with ECP-RLE mode */
unsigned short pins;
rc = negotiate(DEFAULT_ECP, minor);
if (rc < 0) break;
instances[minor].mode = ECP_RLE;
/* Event 30: set nAutoFd low to setup for ECP mode */
pins = get_pins(minor);
pins &= ~BPP_PP_nAutoFd;
set_pins(pins, minor);
/* Wait for Event 31: peripheral ready */
rc = wait_for(BPP_GP_PError, 0, TIME_PResponse, minor);
if (rc == -1) return -ETIMEDOUT;
rc = read_ecp(minor, c, cnt);
} else {
rc = negotiate(DEFAULT_NIBBLE, minor);
if (rc < 0) break;
instances[minor].mode = NIBBLE;
rc = read_nibble(minor, c, cnt);
}
break;
case NIBBLE:
rc = read_nibble(minor, c, cnt);
break;
case ECP:
case ECP_RLE:
rc = read_ecp(minor, c, cnt);
break;
}
return rc;
}
/*
* Compatibility mode handshaking is a matter of writing data,
* strobing it, and waiting for the printer to stop being busy.
*/
static long write_compat(unsigned minor, const char __user *c, unsigned long cnt)
{
long rc;
unsigned short pins = get_pins(minor);
unsigned long remaining = cnt;
while (remaining > 0) {
unsigned char byte;
if (get_user(byte, c))
return -EFAULT;
c += 1;
rc = wait_for(BPP_GP_nAck, BPP_GP_Busy, TIME_IDLE_LIMIT, minor);
if (rc == -1) return -ETIMEDOUT;
bpp_outb_p(byte, base_addrs[minor]);
remaining -= 1;
/* snooze(1, minor); */
pins &= ~BPP_PP_nStrobe;
set_pins(pins, minor);
rc = wait_for(BPP_GP_Busy, 0, TIME_PResponse, minor);
pins |= BPP_PP_nStrobe;
set_pins(pins, minor);
}
return cnt - remaining;
}
/*
* Write data using ECP mode. Watch out that the port may be set up
* for reading. If so, turn the port around.
*/
static long write_ecp(unsigned minor, const char __user *c, unsigned long cnt)
{
unsigned short pins = get_pins(minor);
unsigned long remaining = cnt;
if (instances[minor].direction) {
int rc;
/* Event 47 Request bus be turned around */
pins |= BPP_PP_nInit;
set_pins(pins, minor);
/* Wait for Event 49: Peripheral relinquished bus */
rc = wait_for(BPP_GP_PError, 0, TIME_PResponse, minor);
pins |= BPP_PP_nAutoFd;
instances[minor].direction = 0;
set_pins(pins, minor);
}
while (remaining > 0) {
unsigned char byte;
int rc;
if (get_user(byte, c))
return -EFAULT;
rc = wait_for(0, BPP_GP_Busy, TIME_PResponse, minor);
if (rc == -1) return -ETIMEDOUT;
c += 1;
bpp_outb_p(byte, base_addrs[minor]);
pins &= ~BPP_PP_nStrobe;
set_pins(pins, minor);
pins |= BPP_PP_nStrobe;
rc = wait_for(BPP_GP_Busy, 0, TIME_PResponse, minor);
if (rc == -1) return -EIO;
set_pins(pins, minor);
}
return cnt - remaining;
}
/*
* Write to the peripheral. Be sensitive of the current mode. If I'm
* in a mode that can be turned around (ECP) then just do
* that. Otherwise, terminate and do my writing in compat mode. This
* is the safest course as any device can handle it.
*/
static ssize_t bpp_write(struct file *f, const char __user *c, size_t cnt, loff_t * ppos)
{
long errno = 0;
unsigned minor = iminor(f->f_dentry->d_inode);
if (minor >= BPP_NO) return -ENODEV;
if (!instances[minor].present) return -ENODEV;
switch (instances[minor].mode) {
case ECP:
case ECP_RLE:
errno = write_ecp(minor, c, cnt);
break;
case COMPATIBILITY:
errno = write_compat(minor, c, cnt);
break;
default:
terminate(minor);
errno = write_compat(minor, c, cnt);
}
return errno;
}
static int bpp_ioctl(struct inode *inode, struct file *f, unsigned int cmd,
unsigned long arg)
{
int errno = 0;
unsigned minor = iminor(inode);
if (minor >= BPP_NO) return -ENODEV;
if (!instances[minor].present) return -ENODEV;
switch (cmd) {
case BPP_PUT_PINS:
set_pins(arg, minor);
break;
case BPP_GET_PINS:
errno = get_pins(minor);
break;
case BPP_PUT_DATA:
bpp_outb_p(arg, base_addrs[minor]);
break;
case BPP_GET_DATA:
errno = bpp_inb_p(base_addrs[minor]);
break;
case BPP_SET_INPUT:
if (arg)
if (instances[minor].enhanced) {
unsigned short bits = get_pins(minor);
instances[minor].direction = 0x20;
set_pins(bits, minor);
} else {
errno = -ENOTTY;
}
else {
unsigned short bits = get_pins(minor);
instances[minor].direction = 0x00;
set_pins(bits, minor);
}
break;
default:
errno = -EINVAL;
}
return errno;
}
static struct file_operations bpp_fops = {
.owner = THIS_MODULE,
.read = bpp_read,
.write = bpp_write,
.ioctl = bpp_ioctl,
.open = bpp_open,
.release = bpp_release,
};
#if defined(__i386__)
#define collectLptPorts() {}
static void probeLptPort(unsigned idx)
{
unsigned int testvalue;
const unsigned short lpAddr = base_addrs[idx];
instances[idx].present = 0;
instances[idx].enhanced = 0;
instances[idx].direction = 0;
instances[idx].mode = COMPATIBILITY;
instances[idx].run_length = 0;
instances[idx].run_flag = 0;
if (!request_region(lpAddr,3, dev_name)) return;
/*
* First, make sure the instance exists. Do this by writing to
* the data latch and reading the value back. If the port *is*
* present, test to see if it supports extended-mode
* operation. This will be required for IEEE1284 reverse
* transfers.
*/
outb_p(BPP_PROBE_CODE, lpAddr);
for (testvalue=0; testvalue<BPP_DELAY; testvalue++)
;
testvalue = inb_p(lpAddr);
if (testvalue == BPP_PROBE_CODE) {
unsigned save;
instances[idx].present = 1;
save = inb_p(lpAddr+2);
for (testvalue=0; testvalue<BPP_DELAY; testvalue++)
;
outb_p(save|0x20, lpAddr+2);
for (testvalue=0; testvalue<BPP_DELAY; testvalue++)
;
outb_p(~BPP_PROBE_CODE, lpAddr);
for (testvalue=0; testvalue<BPP_DELAY; testvalue++)
;
testvalue = inb_p(lpAddr);
if ((testvalue&0xff) == (0xff&~BPP_PROBE_CODE))
instances[idx].enhanced = 0;
else
instances[idx].enhanced = 1;
outb_p(save, lpAddr+2);
}
else {
release_region(lpAddr,3);
}
/*
* Leave the port in compat idle mode.
*/
set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, idx);
printk("bpp%d: Port at 0x%03x: Enhanced mode %s\n", idx, base_addrs[idx],
instances[idx].enhanced? "SUPPORTED" : "UNAVAILABLE");
}
static inline void freeLptPort(int idx)
{
release_region(base_addrs[idx], 3);
}
#endif
#if defined(__sparc__)
static void __iomem *map_bpp(struct sbus_dev *dev, int idx)
{
return sbus_ioremap(&dev->resource[0], 0, BPP_SIZE, "bpp");
}
static int collectLptPorts(void)
{
struct sbus_bus *bus;
struct sbus_dev *dev;
int count;
count = 0;
for_all_sbusdev(dev, bus) {
if (strcmp(dev->prom_name, "SUNW,bpp") == 0) {
if (count >= BPP_NO) {
printk(KERN_NOTICE
"bpp: More than %d bpp ports,"
" rest is ignored\n", BPP_NO);
return count;
}
base_addrs[count] = map_bpp(dev, count);
count++;
}
}
return count;
}
static void probeLptPort(unsigned idx)
{
void __iomem *rp = base_addrs[idx];
__u32 csr;
char *brand;
instances[idx].present = 0;
instances[idx].enhanced = 0;
instances[idx].direction = 0;
instances[idx].mode = COMPATIBILITY;
instances[idx].run_length = 0;
instances[idx].run_flag = 0;
if (!rp) return;
instances[idx].present = 1;
instances[idx].enhanced = 1; /* Sure */
csr = sbus_readl(rp + BPP_CSR);
if ((csr & P_DRAINING) != 0 && (csr & P_ERR_PEND) == 0) {
udelay(20);
csr = sbus_readl(rp + BPP_CSR);
if ((csr & P_DRAINING) != 0 && (csr & P_ERR_PEND) == 0) {
printk("bpp%d: DRAINING still active (0x%08x)\n", idx, csr);
}
}
printk("bpp%d: reset with 0x%08x ..", idx, csr);
sbus_writel((csr | P_RESET) & ~P_INT_EN, rp + BPP_CSR);
udelay(500);
sbus_writel(sbus_readl(rp + BPP_CSR) & ~P_RESET, rp + BPP_CSR);
csr = sbus_readl(rp + BPP_CSR);
printk(" done with csr=0x%08x ocr=0x%04x\n",
csr, sbus_readw(rp + BPP_OCR));
switch (csr & P_DEV_ID_MASK) {
case P_DEV_ID_ZEBRA:
brand = "Zebra";
break;
case P_DEV_ID_L64854:
brand = "DMA2";
break;
default:
brand = "Unknown";
}
printk("bpp%d: %s at %p\n", idx, brand, rp);
/*
* Leave the port in compat idle mode.
*/
set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, idx);
return;
}
static inline void freeLptPort(int idx)
{
sbus_iounmap(base_addrs[idx], BPP_SIZE);
}
#endif
static int __init bpp_init(void)
{
int rc;
unsigned idx;
rc = collectLptPorts();
if (rc == 0)
return -ENODEV;
rc = register_chrdev(BPP_MAJOR, dev_name, &bpp_fops);
if (rc < 0)
return rc;
for (idx = 0; idx < BPP_NO; idx++) {
instances[idx].opened = 0;
probeLptPort(idx);
}
devfs_mk_dir("bpp");
for (idx = 0; idx < BPP_NO; idx++) {
devfs_mk_cdev(MKDEV(BPP_MAJOR, idx),
S_IFCHR | S_IRUSR | S_IWUSR, "bpp/%d", idx);
}
return 0;
}
static void __exit bpp_cleanup(void)
{
unsigned idx;
for (idx = 0; idx < BPP_NO; idx++)
devfs_remove("bpp/%d", idx);
devfs_remove("bpp");
unregister_chrdev(BPP_MAJOR, dev_name);
for (idx = 0; idx < BPP_NO; idx++) {
if (instances[idx].present)
freeLptPort(idx);
}
}
module_init(bpp_init);
module_exit(bpp_cleanup);
MODULE_LICENSE("GPL");