| /* |
| * Copyright (C) 2001 Sistina Software (UK) Limited. |
| * Copyright (C) 2004 Red Hat, Inc. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm.h" |
| |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/blkdev.h> |
| #include <linux/namei.h> |
| #include <linux/ctype.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/mutex.h> |
| #include <asm/atomic.h> |
| |
| #define DM_MSG_PREFIX "table" |
| |
| #define MAX_DEPTH 16 |
| #define NODE_SIZE L1_CACHE_BYTES |
| #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) |
| #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) |
| |
| struct dm_table { |
| struct mapped_device *md; |
| atomic_t holders; |
| |
| /* btree table */ |
| unsigned int depth; |
| unsigned int counts[MAX_DEPTH]; /* in nodes */ |
| sector_t *index[MAX_DEPTH]; |
| |
| unsigned int num_targets; |
| unsigned int num_allocated; |
| sector_t *highs; |
| struct dm_target *targets; |
| |
| /* |
| * Indicates the rw permissions for the new logical |
| * device. This should be a combination of FMODE_READ |
| * and FMODE_WRITE. |
| */ |
| int mode; |
| |
| /* a list of devices used by this table */ |
| struct list_head devices; |
| |
| /* |
| * These are optimistic limits taken from all the |
| * targets, some targets will need smaller limits. |
| */ |
| struct io_restrictions limits; |
| |
| /* events get handed up using this callback */ |
| void (*event_fn)(void *); |
| void *event_context; |
| }; |
| |
| /* |
| * Similar to ceiling(log_size(n)) |
| */ |
| static unsigned int int_log(unsigned int n, unsigned int base) |
| { |
| int result = 0; |
| |
| while (n > 1) { |
| n = dm_div_up(n, base); |
| result++; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Returns the minimum that is _not_ zero, unless both are zero. |
| */ |
| #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) |
| |
| /* |
| * Combine two io_restrictions, always taking the lower value. |
| */ |
| static void combine_restrictions_low(struct io_restrictions *lhs, |
| struct io_restrictions *rhs) |
| { |
| lhs->max_sectors = |
| min_not_zero(lhs->max_sectors, rhs->max_sectors); |
| |
| lhs->max_phys_segments = |
| min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); |
| |
| lhs->max_hw_segments = |
| min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); |
| |
| lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); |
| |
| lhs->max_segment_size = |
| min_not_zero(lhs->max_segment_size, rhs->max_segment_size); |
| |
| lhs->max_hw_sectors = |
| min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); |
| |
| lhs->seg_boundary_mask = |
| min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); |
| |
| lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); |
| |
| lhs->no_cluster |= rhs->no_cluster; |
| } |
| |
| /* |
| * Calculate the index of the child node of the n'th node k'th key. |
| */ |
| static inline unsigned int get_child(unsigned int n, unsigned int k) |
| { |
| return (n * CHILDREN_PER_NODE) + k; |
| } |
| |
| /* |
| * Return the n'th node of level l from table t. |
| */ |
| static inline sector_t *get_node(struct dm_table *t, |
| unsigned int l, unsigned int n) |
| { |
| return t->index[l] + (n * KEYS_PER_NODE); |
| } |
| |
| /* |
| * Return the highest key that you could lookup from the n'th |
| * node on level l of the btree. |
| */ |
| static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) |
| { |
| for (; l < t->depth - 1; l++) |
| n = get_child(n, CHILDREN_PER_NODE - 1); |
| |
| if (n >= t->counts[l]) |
| return (sector_t) - 1; |
| |
| return get_node(t, l, n)[KEYS_PER_NODE - 1]; |
| } |
| |
| /* |
| * Fills in a level of the btree based on the highs of the level |
| * below it. |
| */ |
| static int setup_btree_index(unsigned int l, struct dm_table *t) |
| { |
| unsigned int n, k; |
| sector_t *node; |
| |
| for (n = 0U; n < t->counts[l]; n++) { |
| node = get_node(t, l, n); |
| |
| for (k = 0U; k < KEYS_PER_NODE; k++) |
| node[k] = high(t, l + 1, get_child(n, k)); |
| } |
| |
| return 0; |
| } |
| |
| void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) |
| { |
| unsigned long size; |
| void *addr; |
| |
| /* |
| * Check that we're not going to overflow. |
| */ |
| if (nmemb > (ULONG_MAX / elem_size)) |
| return NULL; |
| |
| size = nmemb * elem_size; |
| addr = vmalloc(size); |
| if (addr) |
| memset(addr, 0, size); |
| |
| return addr; |
| } |
| |
| /* |
| * highs, and targets are managed as dynamic arrays during a |
| * table load. |
| */ |
| static int alloc_targets(struct dm_table *t, unsigned int num) |
| { |
| sector_t *n_highs; |
| struct dm_target *n_targets; |
| int n = t->num_targets; |
| |
| /* |
| * Allocate both the target array and offset array at once. |
| * Append an empty entry to catch sectors beyond the end of |
| * the device. |
| */ |
| n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + |
| sizeof(sector_t)); |
| if (!n_highs) |
| return -ENOMEM; |
| |
| n_targets = (struct dm_target *) (n_highs + num); |
| |
| if (n) { |
| memcpy(n_highs, t->highs, sizeof(*n_highs) * n); |
| memcpy(n_targets, t->targets, sizeof(*n_targets) * n); |
| } |
| |
| memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); |
| vfree(t->highs); |
| |
| t->num_allocated = num; |
| t->highs = n_highs; |
| t->targets = n_targets; |
| |
| return 0; |
| } |
| |
| int dm_table_create(struct dm_table **result, int mode, |
| unsigned num_targets, struct mapped_device *md) |
| { |
| struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); |
| |
| if (!t) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&t->devices); |
| atomic_set(&t->holders, 1); |
| |
| if (!num_targets) |
| num_targets = KEYS_PER_NODE; |
| |
| num_targets = dm_round_up(num_targets, KEYS_PER_NODE); |
| |
| if (alloc_targets(t, num_targets)) { |
| kfree(t); |
| t = NULL; |
| return -ENOMEM; |
| } |
| |
| t->mode = mode; |
| t->md = md; |
| *result = t; |
| return 0; |
| } |
| |
| static void free_devices(struct list_head *devices) |
| { |
| struct list_head *tmp, *next; |
| |
| list_for_each_safe(tmp, next, devices) { |
| struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); |
| kfree(dd); |
| } |
| } |
| |
| static void table_destroy(struct dm_table *t) |
| { |
| unsigned int i; |
| |
| /* free the indexes (see dm_table_complete) */ |
| if (t->depth >= 2) |
| vfree(t->index[t->depth - 2]); |
| |
| /* free the targets */ |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *tgt = t->targets + i; |
| |
| if (tgt->type->dtr) |
| tgt->type->dtr(tgt); |
| |
| dm_put_target_type(tgt->type); |
| } |
| |
| vfree(t->highs); |
| |
| /* free the device list */ |
| if (t->devices.next != &t->devices) { |
| DMWARN("devices still present during destroy: " |
| "dm_table_remove_device calls missing"); |
| |
| free_devices(&t->devices); |
| } |
| |
| kfree(t); |
| } |
| |
| void dm_table_get(struct dm_table *t) |
| { |
| atomic_inc(&t->holders); |
| } |
| |
| void dm_table_put(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| if (atomic_dec_and_test(&t->holders)) |
| table_destroy(t); |
| } |
| |
| /* |
| * Checks to see if we need to extend highs or targets. |
| */ |
| static inline int check_space(struct dm_table *t) |
| { |
| if (t->num_targets >= t->num_allocated) |
| return alloc_targets(t, t->num_allocated * 2); |
| |
| return 0; |
| } |
| |
| /* |
| * Convert a device path to a dev_t. |
| */ |
| static int lookup_device(const char *path, dev_t *dev) |
| { |
| int r; |
| struct nameidata nd; |
| struct inode *inode; |
| |
| if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) |
| return r; |
| |
| inode = nd.path.dentry->d_inode; |
| if (!inode) { |
| r = -ENOENT; |
| goto out; |
| } |
| |
| if (!S_ISBLK(inode->i_mode)) { |
| r = -ENOTBLK; |
| goto out; |
| } |
| |
| *dev = inode->i_rdev; |
| |
| out: |
| path_put(&nd.path); |
| return r; |
| } |
| |
| /* |
| * See if we've already got a device in the list. |
| */ |
| static struct dm_dev *find_device(struct list_head *l, dev_t dev) |
| { |
| struct dm_dev *dd; |
| |
| list_for_each_entry (dd, l, list) |
| if (dd->bdev->bd_dev == dev) |
| return dd; |
| |
| return NULL; |
| } |
| |
| /* |
| * Open a device so we can use it as a map destination. |
| */ |
| static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) |
| { |
| static char *_claim_ptr = "I belong to device-mapper"; |
| struct block_device *bdev; |
| |
| int r; |
| |
| BUG_ON(d->bdev); |
| |
| bdev = open_by_devnum(dev, d->mode); |
| if (IS_ERR(bdev)) |
| return PTR_ERR(bdev); |
| r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); |
| if (r) |
| blkdev_put(bdev); |
| else |
| d->bdev = bdev; |
| return r; |
| } |
| |
| /* |
| * Close a device that we've been using. |
| */ |
| static void close_dev(struct dm_dev *d, struct mapped_device *md) |
| { |
| if (!d->bdev) |
| return; |
| |
| bd_release_from_disk(d->bdev, dm_disk(md)); |
| blkdev_put(d->bdev); |
| d->bdev = NULL; |
| } |
| |
| /* |
| * If possible, this checks an area of a destination device is valid. |
| */ |
| static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) |
| { |
| sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; |
| |
| if (!dev_size) |
| return 1; |
| |
| return ((start < dev_size) && (len <= (dev_size - start))); |
| } |
| |
| /* |
| * This upgrades the mode on an already open dm_dev. Being |
| * careful to leave things as they were if we fail to reopen the |
| * device. |
| */ |
| static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) |
| { |
| int r; |
| struct dm_dev dd_copy; |
| dev_t dev = dd->bdev->bd_dev; |
| |
| dd_copy = *dd; |
| |
| dd->mode |= new_mode; |
| dd->bdev = NULL; |
| r = open_dev(dd, dev, md); |
| if (!r) |
| close_dev(&dd_copy, md); |
| else |
| *dd = dd_copy; |
| |
| return r; |
| } |
| |
| /* |
| * Add a device to the list, or just increment the usage count if |
| * it's already present. |
| */ |
| static int __table_get_device(struct dm_table *t, struct dm_target *ti, |
| const char *path, sector_t start, sector_t len, |
| int mode, struct dm_dev **result) |
| { |
| int r; |
| dev_t uninitialized_var(dev); |
| struct dm_dev *dd; |
| unsigned int major, minor; |
| |
| BUG_ON(!t); |
| |
| if (sscanf(path, "%u:%u", &major, &minor) == 2) { |
| /* Extract the major/minor numbers */ |
| dev = MKDEV(major, minor); |
| if (MAJOR(dev) != major || MINOR(dev) != minor) |
| return -EOVERFLOW; |
| } else { |
| /* convert the path to a device */ |
| if ((r = lookup_device(path, &dev))) |
| return r; |
| } |
| |
| dd = find_device(&t->devices, dev); |
| if (!dd) { |
| dd = kmalloc(sizeof(*dd), GFP_KERNEL); |
| if (!dd) |
| return -ENOMEM; |
| |
| dd->mode = mode; |
| dd->bdev = NULL; |
| |
| if ((r = open_dev(dd, dev, t->md))) { |
| kfree(dd); |
| return r; |
| } |
| |
| format_dev_t(dd->name, dev); |
| |
| atomic_set(&dd->count, 0); |
| list_add(&dd->list, &t->devices); |
| |
| } else if (dd->mode != (mode | dd->mode)) { |
| r = upgrade_mode(dd, mode, t->md); |
| if (r) |
| return r; |
| } |
| atomic_inc(&dd->count); |
| |
| if (!check_device_area(dd, start, len)) { |
| DMWARN("device %s too small for target", path); |
| dm_put_device(ti, dd); |
| return -EINVAL; |
| } |
| |
| *result = dd; |
| |
| return 0; |
| } |
| |
| void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) |
| { |
| struct request_queue *q = bdev_get_queue(bdev); |
| struct io_restrictions *rs = &ti->limits; |
| |
| /* |
| * Combine the device limits low. |
| * |
| * FIXME: if we move an io_restriction struct |
| * into q this would just be a call to |
| * combine_restrictions_low() |
| */ |
| rs->max_sectors = |
| min_not_zero(rs->max_sectors, q->max_sectors); |
| |
| /* FIXME: Device-Mapper on top of RAID-0 breaks because DM |
| * currently doesn't honor MD's merge_bvec_fn routine. |
| * In this case, we'll force DM to use PAGE_SIZE or |
| * smaller I/O, just to be safe. A better fix is in the |
| * works, but add this for the time being so it will at |
| * least operate correctly. |
| */ |
| if (q->merge_bvec_fn) |
| rs->max_sectors = |
| min_not_zero(rs->max_sectors, |
| (unsigned int) (PAGE_SIZE >> 9)); |
| |
| rs->max_phys_segments = |
| min_not_zero(rs->max_phys_segments, |
| q->max_phys_segments); |
| |
| rs->max_hw_segments = |
| min_not_zero(rs->max_hw_segments, q->max_hw_segments); |
| |
| rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); |
| |
| rs->max_segment_size = |
| min_not_zero(rs->max_segment_size, q->max_segment_size); |
| |
| rs->max_hw_sectors = |
| min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); |
| |
| rs->seg_boundary_mask = |
| min_not_zero(rs->seg_boundary_mask, |
| q->seg_boundary_mask); |
| |
| rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); |
| |
| rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); |
| } |
| EXPORT_SYMBOL_GPL(dm_set_device_limits); |
| |
| int dm_get_device(struct dm_target *ti, const char *path, sector_t start, |
| sector_t len, int mode, struct dm_dev **result) |
| { |
| int r = __table_get_device(ti->table, ti, path, |
| start, len, mode, result); |
| |
| if (!r) |
| dm_set_device_limits(ti, (*result)->bdev); |
| |
| return r; |
| } |
| |
| /* |
| * Decrement a devices use count and remove it if necessary. |
| */ |
| void dm_put_device(struct dm_target *ti, struct dm_dev *dd) |
| { |
| if (atomic_dec_and_test(&dd->count)) { |
| close_dev(dd, ti->table->md); |
| list_del(&dd->list); |
| kfree(dd); |
| } |
| } |
| |
| /* |
| * Checks to see if the target joins onto the end of the table. |
| */ |
| static int adjoin(struct dm_table *table, struct dm_target *ti) |
| { |
| struct dm_target *prev; |
| |
| if (!table->num_targets) |
| return !ti->begin; |
| |
| prev = &table->targets[table->num_targets - 1]; |
| return (ti->begin == (prev->begin + prev->len)); |
| } |
| |
| /* |
| * Used to dynamically allocate the arg array. |
| */ |
| static char **realloc_argv(unsigned *array_size, char **old_argv) |
| { |
| char **argv; |
| unsigned new_size; |
| |
| new_size = *array_size ? *array_size * 2 : 64; |
| argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); |
| if (argv) { |
| memcpy(argv, old_argv, *array_size * sizeof(*argv)); |
| *array_size = new_size; |
| } |
| |
| kfree(old_argv); |
| return argv; |
| } |
| |
| /* |
| * Destructively splits up the argument list to pass to ctr. |
| */ |
| int dm_split_args(int *argc, char ***argvp, char *input) |
| { |
| char *start, *end = input, *out, **argv = NULL; |
| unsigned array_size = 0; |
| |
| *argc = 0; |
| |
| if (!input) { |
| *argvp = NULL; |
| return 0; |
| } |
| |
| argv = realloc_argv(&array_size, argv); |
| if (!argv) |
| return -ENOMEM; |
| |
| while (1) { |
| start = end; |
| |
| /* Skip whitespace */ |
| while (*start && isspace(*start)) |
| start++; |
| |
| if (!*start) |
| break; /* success, we hit the end */ |
| |
| /* 'out' is used to remove any back-quotes */ |
| end = out = start; |
| while (*end) { |
| /* Everything apart from '\0' can be quoted */ |
| if (*end == '\\' && *(end + 1)) { |
| *out++ = *(end + 1); |
| end += 2; |
| continue; |
| } |
| |
| if (isspace(*end)) |
| break; /* end of token */ |
| |
| *out++ = *end++; |
| } |
| |
| /* have we already filled the array ? */ |
| if ((*argc + 1) > array_size) { |
| argv = realloc_argv(&array_size, argv); |
| if (!argv) |
| return -ENOMEM; |
| } |
| |
| /* we know this is whitespace */ |
| if (*end) |
| end++; |
| |
| /* terminate the string and put it in the array */ |
| *out = '\0'; |
| argv[*argc] = start; |
| (*argc)++; |
| } |
| |
| *argvp = argv; |
| return 0; |
| } |
| |
| static void check_for_valid_limits(struct io_restrictions *rs) |
| { |
| if (!rs->max_sectors) |
| rs->max_sectors = SAFE_MAX_SECTORS; |
| if (!rs->max_hw_sectors) |
| rs->max_hw_sectors = SAFE_MAX_SECTORS; |
| if (!rs->max_phys_segments) |
| rs->max_phys_segments = MAX_PHYS_SEGMENTS; |
| if (!rs->max_hw_segments) |
| rs->max_hw_segments = MAX_HW_SEGMENTS; |
| if (!rs->hardsect_size) |
| rs->hardsect_size = 1 << SECTOR_SHIFT; |
| if (!rs->max_segment_size) |
| rs->max_segment_size = MAX_SEGMENT_SIZE; |
| if (!rs->seg_boundary_mask) |
| rs->seg_boundary_mask = -1; |
| if (!rs->bounce_pfn) |
| rs->bounce_pfn = -1; |
| } |
| |
| int dm_table_add_target(struct dm_table *t, const char *type, |
| sector_t start, sector_t len, char *params) |
| { |
| int r = -EINVAL, argc; |
| char **argv; |
| struct dm_target *tgt; |
| |
| if ((r = check_space(t))) |
| return r; |
| |
| tgt = t->targets + t->num_targets; |
| memset(tgt, 0, sizeof(*tgt)); |
| |
| if (!len) { |
| DMERR("%s: zero-length target", dm_device_name(t->md)); |
| return -EINVAL; |
| } |
| |
| tgt->type = dm_get_target_type(type); |
| if (!tgt->type) { |
| DMERR("%s: %s: unknown target type", dm_device_name(t->md), |
| type); |
| return -EINVAL; |
| } |
| |
| tgt->table = t; |
| tgt->begin = start; |
| tgt->len = len; |
| tgt->error = "Unknown error"; |
| |
| /* |
| * Does this target adjoin the previous one ? |
| */ |
| if (!adjoin(t, tgt)) { |
| tgt->error = "Gap in table"; |
| r = -EINVAL; |
| goto bad; |
| } |
| |
| r = dm_split_args(&argc, &argv, params); |
| if (r) { |
| tgt->error = "couldn't split parameters (insufficient memory)"; |
| goto bad; |
| } |
| |
| r = tgt->type->ctr(tgt, argc, argv); |
| kfree(argv); |
| if (r) |
| goto bad; |
| |
| t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; |
| |
| /* FIXME: the plan is to combine high here and then have |
| * the merge fn apply the target level restrictions. */ |
| combine_restrictions_low(&t->limits, &tgt->limits); |
| return 0; |
| |
| bad: |
| DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); |
| dm_put_target_type(tgt->type); |
| return r; |
| } |
| |
| static int setup_indexes(struct dm_table *t) |
| { |
| int i; |
| unsigned int total = 0; |
| sector_t *indexes; |
| |
| /* allocate the space for *all* the indexes */ |
| for (i = t->depth - 2; i >= 0; i--) { |
| t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); |
| total += t->counts[i]; |
| } |
| |
| indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); |
| if (!indexes) |
| return -ENOMEM; |
| |
| /* set up internal nodes, bottom-up */ |
| for (i = t->depth - 2; i >= 0; i--) { |
| t->index[i] = indexes; |
| indexes += (KEYS_PER_NODE * t->counts[i]); |
| setup_btree_index(i, t); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Builds the btree to index the map. |
| */ |
| int dm_table_complete(struct dm_table *t) |
| { |
| int r = 0; |
| unsigned int leaf_nodes; |
| |
| check_for_valid_limits(&t->limits); |
| |
| /* how many indexes will the btree have ? */ |
| leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); |
| t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); |
| |
| /* leaf layer has already been set up */ |
| t->counts[t->depth - 1] = leaf_nodes; |
| t->index[t->depth - 1] = t->highs; |
| |
| if (t->depth >= 2) |
| r = setup_indexes(t); |
| |
| return r; |
| } |
| |
| static DEFINE_MUTEX(_event_lock); |
| void dm_table_event_callback(struct dm_table *t, |
| void (*fn)(void *), void *context) |
| { |
| mutex_lock(&_event_lock); |
| t->event_fn = fn; |
| t->event_context = context; |
| mutex_unlock(&_event_lock); |
| } |
| |
| void dm_table_event(struct dm_table *t) |
| { |
| /* |
| * You can no longer call dm_table_event() from interrupt |
| * context, use a bottom half instead. |
| */ |
| BUG_ON(in_interrupt()); |
| |
| mutex_lock(&_event_lock); |
| if (t->event_fn) |
| t->event_fn(t->event_context); |
| mutex_unlock(&_event_lock); |
| } |
| |
| sector_t dm_table_get_size(struct dm_table *t) |
| { |
| return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; |
| } |
| |
| struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) |
| { |
| if (index >= t->num_targets) |
| return NULL; |
| |
| return t->targets + index; |
| } |
| |
| /* |
| * Search the btree for the correct target. |
| * |
| * Caller should check returned pointer with dm_target_is_valid() |
| * to trap I/O beyond end of device. |
| */ |
| struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) |
| { |
| unsigned int l, n = 0, k = 0; |
| sector_t *node; |
| |
| for (l = 0; l < t->depth; l++) { |
| n = get_child(n, k); |
| node = get_node(t, l, n); |
| |
| for (k = 0; k < KEYS_PER_NODE; k++) |
| if (node[k] >= sector) |
| break; |
| } |
| |
| return &t->targets[(KEYS_PER_NODE * n) + k]; |
| } |
| |
| void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) |
| { |
| /* |
| * Make sure we obey the optimistic sub devices |
| * restrictions. |
| */ |
| blk_queue_max_sectors(q, t->limits.max_sectors); |
| q->max_phys_segments = t->limits.max_phys_segments; |
| q->max_hw_segments = t->limits.max_hw_segments; |
| q->hardsect_size = t->limits.hardsect_size; |
| q->max_segment_size = t->limits.max_segment_size; |
| q->max_hw_sectors = t->limits.max_hw_sectors; |
| q->seg_boundary_mask = t->limits.seg_boundary_mask; |
| q->bounce_pfn = t->limits.bounce_pfn; |
| if (t->limits.no_cluster) |
| q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER); |
| else |
| q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER); |
| |
| } |
| |
| unsigned int dm_table_get_num_targets(struct dm_table *t) |
| { |
| return t->num_targets; |
| } |
| |
| struct list_head *dm_table_get_devices(struct dm_table *t) |
| { |
| return &t->devices; |
| } |
| |
| int dm_table_get_mode(struct dm_table *t) |
| { |
| return t->mode; |
| } |
| |
| static void suspend_targets(struct dm_table *t, unsigned postsuspend) |
| { |
| int i = t->num_targets; |
| struct dm_target *ti = t->targets; |
| |
| while (i--) { |
| if (postsuspend) { |
| if (ti->type->postsuspend) |
| ti->type->postsuspend(ti); |
| } else if (ti->type->presuspend) |
| ti->type->presuspend(ti); |
| |
| ti++; |
| } |
| } |
| |
| void dm_table_presuspend_targets(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| suspend_targets(t, 0); |
| } |
| |
| void dm_table_postsuspend_targets(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| suspend_targets(t, 1); |
| } |
| |
| int dm_table_resume_targets(struct dm_table *t) |
| { |
| int i, r = 0; |
| |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = t->targets + i; |
| |
| if (!ti->type->preresume) |
| continue; |
| |
| r = ti->type->preresume(ti); |
| if (r) |
| return r; |
| } |
| |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = t->targets + i; |
| |
| if (ti->type->resume) |
| ti->type->resume(ti); |
| } |
| |
| return 0; |
| } |
| |
| int dm_table_any_congested(struct dm_table *t, int bdi_bits) |
| { |
| struct dm_dev *dd; |
| struct list_head *devices = dm_table_get_devices(t); |
| int r = 0; |
| |
| list_for_each_entry(dd, devices, list) { |
| struct request_queue *q = bdev_get_queue(dd->bdev); |
| r |= bdi_congested(&q->backing_dev_info, bdi_bits); |
| } |
| |
| return r; |
| } |
| |
| void dm_table_unplug_all(struct dm_table *t) |
| { |
| struct dm_dev *dd; |
| struct list_head *devices = dm_table_get_devices(t); |
| |
| list_for_each_entry(dd, devices, list) { |
| struct request_queue *q = bdev_get_queue(dd->bdev); |
| |
| blk_unplug(q); |
| } |
| } |
| |
| struct mapped_device *dm_table_get_md(struct dm_table *t) |
| { |
| dm_get(t->md); |
| |
| return t->md; |
| } |
| |
| EXPORT_SYMBOL(dm_vcalloc); |
| EXPORT_SYMBOL(dm_get_device); |
| EXPORT_SYMBOL(dm_put_device); |
| EXPORT_SYMBOL(dm_table_event); |
| EXPORT_SYMBOL(dm_table_get_size); |
| EXPORT_SYMBOL(dm_table_get_mode); |
| EXPORT_SYMBOL(dm_table_get_md); |
| EXPORT_SYMBOL(dm_table_put); |
| EXPORT_SYMBOL(dm_table_get); |
| EXPORT_SYMBOL(dm_table_unplug_all); |