| #ifndef __ASM_SPINLOCK_H |
| #define __ASM_SPINLOCK_H |
| |
| #if __LINUX_ARM_ARCH__ < 6 |
| #error SMP not supported on pre-ARMv6 CPUs |
| #endif |
| |
| #include <asm/processor.h> |
| |
| extern int msm_krait_need_wfe_fixup; |
| |
| /* |
| * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K |
| * extensions, so when running on UP, we have to patch these instructions away. |
| */ |
| #define ALT_SMP(smp, up) \ |
| "9998: " smp "\n" \ |
| " .pushsection \".alt.smp.init\", \"a\"\n" \ |
| " .long 9998b\n" \ |
| " " up "\n" \ |
| " .popsection\n" |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| #define SEV ALT_SMP("sev.w", "nop.w") |
| /* |
| * Both instructions given to the ALT_SMP macro need to be the same size, to |
| * allow the SMP_ON_UP fixups to function correctly. Hence the explicit encoding |
| * specifications. |
| */ |
| #define WFE() ALT_SMP( \ |
| "wfe.w", \ |
| "nop.w" \ |
| ) |
| #else |
| #define SEV ALT_SMP("sev", "nop") |
| #define WFE() ALT_SMP("wfe", "nop") |
| #endif |
| |
| /* |
| * The fixup involves disabling FIQs during execution of the WFE instruction. |
| * This could potentially lead to deadlock if a thread is trying to acquire a |
| * spinlock which is being released from an FIQ. This should not be a problem |
| * because FIQs are handled by the secure environment and do not directly |
| * manipulate spinlocks. |
| */ |
| #ifdef CONFIG_MSM_KRAIT_WFE_FIXUP |
| #define WFE_SAFE(fixup, tmp) \ |
| " mrs " tmp ", cpsr\n" \ |
| " cmp " fixup ", #0\n" \ |
| " wfeeq\n" \ |
| " beq 10f\n" \ |
| " cpsid f\n" \ |
| " mrc p15, 7, " fixup ", c15, c0, 5\n" \ |
| " bic " fixup ", " fixup ", #0x10000\n" \ |
| " mcr p15, 7, " fixup ", c15, c0, 5\n" \ |
| " isb\n" \ |
| " wfe\n" \ |
| " orr " fixup ", " fixup ", #0x10000\n" \ |
| " mcr p15, 7, " fixup ", c15, c0, 5\n" \ |
| " isb\n" \ |
| "10: msr cpsr_cf, " tmp "\n" |
| #else |
| #define WFE_SAFE(fixup, tmp) " wfe\n" |
| #endif |
| |
| static inline void dsb_sev(void) |
| { |
| #if __LINUX_ARM_ARCH__ >= 7 |
| __asm__ __volatile__ ( |
| "dsb\n" |
| SEV |
| ); |
| #else |
| __asm__ __volatile__ ( |
| "mcr p15, 0, %0, c7, c10, 4\n" |
| SEV |
| : : "r" (0) |
| ); |
| #endif |
| } |
| |
| #ifndef CONFIG_ARM_TICKET_LOCKS |
| /* |
| * ARMv6 Spin-locking. |
| * |
| * We exclusively read the old value. If it is zero, we may have |
| * won the lock, so we try exclusively storing it. A memory barrier |
| * is required after we get a lock, and before we release it, because |
| * V6 CPUs are assumed to have weakly ordered memory. |
| * |
| * Unlocked value: 0 |
| * Locked value: 1 |
| */ |
| |
| #define arch_spin_is_locked(x) ((x)->lock != 0) |
| #define arch_spin_unlock_wait(lock) \ |
| do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0) |
| |
| #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) |
| |
| static inline void arch_spin_lock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp, fixup = msm_krait_need_wfe_fixup; |
| |
| __asm__ __volatile__( |
| "1: ldrex %[tmp], [%[lock]]\n" |
| " teq %[tmp], #0\n" |
| " beq 2f\n" |
| WFE_SAFE("%[fixup]", "%[tmp]") |
| "2:\n" |
| " strexeq %[tmp], %[bit0], [%[lock]]\n" |
| " teqeq %[tmp], #0\n" |
| " bne 1b" |
| : [tmp] "=&r" (tmp), [fixup] "+r" (fixup) |
| : [lock] "r" (&lock->lock), [bit0] "r" (1) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline int arch_spin_trylock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| " ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&lock->lock), "r" (1) |
| : "cc"); |
| |
| if (tmp == 0) { |
| smp_mb(); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline void arch_spin_unlock(arch_spinlock_t *lock) |
| { |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| " str %1, [%0]\n" |
| : |
| : "r" (&lock->lock), "r" (0) |
| : "cc"); |
| |
| dsb_sev(); |
| } |
| #else |
| /* |
| * ARM Ticket spin-locking |
| * |
| * Ticket locks are conceptually two parts, one indicating the current head of |
| * the queue, and the other indicating the current tail. The lock is acquired |
| * by atomically noting the tail and incrementing it by one (thus adding |
| * ourself to the queue and noting our position), then waiting until the head |
| * becomes equal to the the initial value of the tail. |
| * |
| * Unlocked value: 0 |
| * Locked value: now_serving != next_ticket |
| * |
| * 31 17 16 15 14 0 |
| * +----------------------------------------------------+ |
| * | now_serving | next_ticket | |
| * +----------------------------------------------------+ |
| */ |
| |
| #define TICKET_SHIFT 16 |
| #define TICKET_BITS 16 |
| #define TICKET_MASK 0xFFFF |
| |
| #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) |
| |
| static inline void arch_spin_lock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp, ticket, next_ticket; |
| unsigned long fixup = msm_krait_need_wfe_fixup; |
| |
| /* Grab the next ticket and wait for it to be "served" */ |
| __asm__ __volatile__( |
| "1: ldrex %[ticket], [%[lockaddr]]\n" |
| " uadd16 %[next_ticket], %[ticket], %[val1]\n" |
| " strex %[tmp], %[next_ticket], [%[lockaddr]]\n" |
| " teq %[tmp], #0\n" |
| " bne 1b\n" |
| " uxth %[ticket], %[ticket]\n" |
| "2:\n" |
| #ifdef CONFIG_CPU_32v6K |
| " beq 3f\n" |
| WFE_SAFE("%[fixup]", "%[tmp]") |
| "3:\n" |
| #endif |
| " ldr %[tmp], [%[lockaddr]]\n" |
| " cmp %[ticket], %[tmp], lsr #16\n" |
| " bne 2b" |
| : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), |
| [next_ticket]"=&r" (next_ticket), [fixup]"+r" (fixup) |
| : [lockaddr]"r" (&lock->lock), [val1]"r" (1) |
| : "cc"); |
| smp_mb(); |
| } |
| |
| static inline int arch_spin_trylock(arch_spinlock_t *lock) |
| { |
| unsigned long tmp, ticket, next_ticket; |
| |
| /* Grab lock if now_serving == next_ticket and access is exclusive */ |
| __asm__ __volatile__( |
| " ldrex %[ticket], [%[lockaddr]]\n" |
| " ror %[tmp], %[ticket], #16\n" |
| " eors %[tmp], %[tmp], %[ticket]\n" |
| " bne 1f\n" |
| " uadd16 %[next_ticket], %[ticket], %[val1]\n" |
| " strex %[tmp], %[next_ticket], [%[lockaddr]]\n" |
| "1:" |
| : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), |
| [next_ticket]"=&r" (next_ticket) |
| : [lockaddr]"r" (&lock->lock), [val1]"r" (1) |
| : "cc"); |
| if (!tmp) |
| smp_mb(); |
| return !tmp; |
| } |
| |
| static inline void arch_spin_unlock(arch_spinlock_t *lock) |
| { |
| unsigned long ticket, tmp; |
| |
| smp_mb(); |
| |
| /* Bump now_serving by 1 */ |
| __asm__ __volatile__( |
| "1: ldrex %[ticket], [%[lockaddr]]\n" |
| " uadd16 %[ticket], %[ticket], %[serving1]\n" |
| " strex %[tmp], %[ticket], [%[lockaddr]]\n" |
| " teq %[tmp], #0\n" |
| " bne 1b" |
| : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp) |
| : [lockaddr]"r" (&lock->lock), [serving1]"r" (0x00010000) |
| : "cc"); |
| dsb_sev(); |
| } |
| |
| static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) |
| { |
| unsigned long ticket, tmp, fixup = msm_krait_need_wfe_fixup; |
| |
| /* Wait for now_serving == next_ticket */ |
| __asm__ __volatile__( |
| #ifdef CONFIG_CPU_32v6K |
| " cmpne %[lockaddr], %[lockaddr]\n" |
| "1:\n" |
| " beq 2f\n" |
| WFE_SAFE("%[fixup]", "%[tmp]") |
| "2:\n" |
| #else |
| "1:\n" |
| #endif |
| " ldr %[ticket], [%[lockaddr]]\n" |
| " eor %[ticket], %[ticket], %[ticket], lsr #16\n" |
| " uxth %[ticket], %[ticket]\n" |
| " cmp %[ticket], #0\n" |
| " bne 1b" |
| : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), |
| [fixup]"+r" (fixup) |
| : [lockaddr]"r" (&lock->lock) |
| : "cc"); |
| } |
| |
| static inline int arch_spin_is_locked(arch_spinlock_t *lock) |
| { |
| unsigned long tmp = ACCESS_ONCE(lock->lock); |
| return (((tmp >> TICKET_SHIFT) ^ tmp) & TICKET_MASK) != 0; |
| } |
| |
| static inline int arch_spin_is_contended(arch_spinlock_t *lock) |
| { |
| unsigned long tmp = ACCESS_ONCE(lock->lock); |
| return ((tmp - (tmp >> TICKET_SHIFT)) & TICKET_MASK) > 1; |
| } |
| #endif |
| |
| /* |
| * RWLOCKS |
| * |
| * |
| * Write locks are easy - we just set bit 31. When unlocking, we can |
| * just write zero since the lock is exclusively held. |
| */ |
| |
| static inline void arch_write_lock(arch_rwlock_t *rw) |
| { |
| unsigned long tmp, fixup = msm_krait_need_wfe_fixup; |
| |
| __asm__ __volatile__( |
| "1: ldrex %[tmp], [%[lock]]\n" |
| " teq %[tmp], #0\n" |
| " beq 2f\n" |
| WFE_SAFE("%[fixup]", "%[tmp]") |
| "2:\n" |
| " strexeq %[tmp], %[bit31], [%[lock]]\n" |
| " teq %[tmp], #0\n" |
| " bne 1b" |
| : [tmp] "=&r" (tmp), [fixup] "+r" (fixup) |
| : [lock] "r" (&rw->lock), [bit31] "r" (0x80000000) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline int arch_write_trylock(arch_rwlock_t *rw) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&rw->lock), "r" (0x80000000) |
| : "cc"); |
| |
| if (tmp == 0) { |
| smp_mb(); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline void arch_write_unlock(arch_rwlock_t *rw) |
| { |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| "str %1, [%0]\n" |
| : |
| : "r" (&rw->lock), "r" (0) |
| : "cc"); |
| |
| dsb_sev(); |
| } |
| |
| /* write_can_lock - would write_trylock() succeed? */ |
| #define arch_write_can_lock(x) ((x)->lock == 0) |
| |
| /* |
| * Read locks are a bit more hairy: |
| * - Exclusively load the lock value. |
| * - Increment it. |
| * - Store new lock value if positive, and we still own this location. |
| * If the value is negative, we've already failed. |
| * - If we failed to store the value, we want a negative result. |
| * - If we failed, try again. |
| * Unlocking is similarly hairy. We may have multiple read locks |
| * currently active. However, we know we won't have any write |
| * locks. |
| */ |
| static inline void arch_read_lock(arch_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2, fixup = msm_krait_need_wfe_fixup; |
| |
| __asm__ __volatile__( |
| "1: ldrex %[tmp], [%[lock]]\n" |
| " adds %[tmp], %[tmp], #1\n" |
| " strexpl %[tmp2], %[tmp], [%[lock]]\n" |
| " bpl 2f\n" |
| WFE_SAFE("%[fixup]", "%[tmp]") |
| "2:\n" |
| " rsbpls %[tmp], %[tmp2], #0\n" |
| " bmi 1b" |
| : [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2), [fixup] "+r" (fixup) |
| : [lock] "r" (&rw->lock) |
| : "cc"); |
| |
| smp_mb(); |
| } |
| |
| static inline void arch_read_unlock(arch_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2; |
| |
| smp_mb(); |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " sub %0, %0, #1\n" |
| " strex %1, %0, [%2]\n" |
| " teq %1, #0\n" |
| " bne 1b" |
| : "=&r" (tmp), "=&r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc"); |
| |
| if (tmp == 0) |
| dsb_sev(); |
| } |
| |
| static inline int arch_read_trylock(arch_rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2 = 1; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " adds %0, %0, #1\n" |
| " strexpl %1, %0, [%2]\n" |
| : "=&r" (tmp), "+r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc"); |
| |
| smp_mb(); |
| return tmp2 == 0; |
| } |
| |
| /* read_can_lock - would read_trylock() succeed? */ |
| #define arch_read_can_lock(x) ((x)->lock < 0x80000000) |
| |
| #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) |
| #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) |
| |
| #define arch_spin_relax(lock) cpu_relax() |
| #define arch_read_relax(lock) cpu_relax() |
| #define arch_write_relax(lock) cpu_relax() |
| |
| #endif /* __ASM_SPINLOCK_H */ |