| /* |
| * cx18 ADEC audio functions |
| * |
| * Derived from cx25840-audio.c |
| * |
| * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> |
| * Copyright (C) 2008 Andy Walls <awalls@radix.net> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| */ |
| |
| #include "cx18-driver.h" |
| |
| static int set_audclk_freq(struct cx18 *cx, u32 freq) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| |
| if (freq != 32000 && freq != 44100 && freq != 48000) |
| return -EINVAL; |
| |
| /* |
| * The PLL parameters are based on the external crystal frequency that |
| * would ideally be: |
| * |
| * NTSC Color subcarrier freq * 8 = |
| * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz |
| * |
| * The accidents of history and rationale that explain from where this |
| * combination of magic numbers originate can be found in: |
| * |
| * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in |
| * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80 |
| * |
| * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the |
| * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83 |
| * |
| * As Mike Bradley has rightly pointed out, it's not the exact crystal |
| * frequency that matters, only that all parts of the driver and |
| * firmware are using the same value (close to the ideal value). |
| * |
| * Since I have a strong suspicion that, if the firmware ever assumes a |
| * crystal value at all, it will assume 28.636360 MHz, the crystal |
| * freq used in calculations in this driver will be: |
| * |
| * xtal_freq = 28.636360 MHz |
| * |
| * an error of less than 0.13 ppm which is way, way better than any off |
| * the shelf crystal will have for accuracy anyway. |
| * |
| * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error. |
| * |
| * Many thanks to Jeff Campbell and Mike Bradley for their extensive |
| * investigation, experimentation, testing, and suggested solutions of |
| * of audio/video sync problems with SVideo and CVBS captures. |
| */ |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| switch (freq) { |
| case 32000: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 |
| */ |
| cx18_av_write4(cx, 0x108, 0x200d040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x176740c */ |
| /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x0176740c); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */ |
| cx18_av_write4(cx, 0x900, 0x0801f77f); |
| cx18_av_write4(cx, 0x904, 0x0801f77f); |
| cx18_av_write4(cx, 0x90c, 0x0801f77f); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ |
| cx18_av_write(cx, 0x127, 0x60); |
| |
| /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11202fff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = |
| * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa00d2ef8); |
| break; |
| |
| case 44100: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18 |
| */ |
| cx18_av_write4(cx, 0x108, 0x180e040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x062a1f2 */ |
| /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x0062a1f2); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */ |
| cx18_av_write4(cx, 0x900, 0x08016d59); |
| cx18_av_write4(cx, 0x904, 0x08016d59); |
| cx18_av_write4(cx, 0x90c, 0x08016d59); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */ |
| cx18_av_write(cx, 0x127, 0x58); |
| |
| /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x112092ff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = |
| * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa01d4bf8); |
| break; |
| |
| case 48000: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16 |
| */ |
| cx18_av_write4(cx, 0x108, 0x160e040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x05227ad */ |
| /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x005227ad); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */ |
| cx18_av_write4(cx, 0x900, 0x08014faa); |
| cx18_av_write4(cx, 0x904, 0x08014faa); |
| cx18_av_write4(cx, 0x90c, 0x08014faa); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ |
| cx18_av_write(cx, 0x127, 0x56); |
| |
| /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11205fff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x1193f8 = 143999.000 * 8 = |
| * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa01193f8); |
| break; |
| } |
| } else { |
| switch (freq) { |
| case 32000: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30 |
| */ |
| cx18_av_write4(cx, 0x108, 0x300d040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x176740c */ |
| /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x0176740c); |
| |
| /* src1_ctl */ |
| /* 0x1.0000 = 32000/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x08010000); |
| |
| /* src3/4/6_ctl */ |
| /* 0x2.0000 = 2 * (32000/32000) */ |
| cx18_av_write4(cx, 0x900, 0x08020000); |
| cx18_av_write4(cx, 0x904, 0x08020000); |
| cx18_av_write4(cx, 0x90c, 0x08020000); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */ |
| cx18_av_write(cx, 0x127, 0x70); |
| |
| /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11201fff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = |
| * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa00d2ef8); |
| break; |
| |
| case 44100: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24 |
| */ |
| cx18_av_write4(cx, 0x108, 0x240e040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x062a1f2 */ |
| /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x0062a1f2); |
| |
| /* src1_ctl */ |
| /* 0x1.60cd = 44100/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x080160cd); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.7385 = 2 * (32000/44100) */ |
| cx18_av_write4(cx, 0x900, 0x08017385); |
| cx18_av_write4(cx, 0x904, 0x08017385); |
| cx18_av_write4(cx, 0x90c, 0x08017385); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */ |
| cx18_av_write(cx, 0x127, 0x64); |
| |
| /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x112061ff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = |
| * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa01d4bf8); |
| break; |
| |
| case 48000: |
| /* |
| * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 |
| * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 |
| */ |
| cx18_av_write4(cx, 0x108, 0x200d040f); |
| |
| /* VID_PLL Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ |
| cx18_av_write4(cx, 0x10c, 0x002be2fe); |
| |
| /* AUX_PLL Fraction = 0x176740c */ |
| /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/ |
| cx18_av_write4(cx, 0x110, 0x0176740c); |
| |
| /* src1_ctl */ |
| /* 0x1.8000 = 48000/32000 */ |
| cx18_av_write4(cx, 0x8f8, 0x08018000); |
| |
| /* src3/4/6_ctl */ |
| /* 0x1.5555 = 2 * (32000/48000) */ |
| cx18_av_write4(cx, 0x900, 0x08015555); |
| cx18_av_write4(cx, 0x904, 0x08015555); |
| cx18_av_write4(cx, 0x90c, 0x08015555); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ |
| cx18_av_write(cx, 0x127, 0x60); |
| |
| /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ |
| cx18_av_write4(cx, 0x12c, 0x11203fff); |
| |
| /* |
| * EN_AV_LOCK = 0 |
| * VID_COUNT = 0x1193f8 = 143999.000 * 8 = |
| * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 |
| */ |
| cx18_av_write4(cx, 0x128, 0xa01193f8); |
| break; |
| } |
| } |
| |
| state->audclk_freq = freq; |
| |
| return 0; |
| } |
| |
| void cx18_av_audio_set_path(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| u8 v; |
| |
| /* stop microcontroller */ |
| v = cx18_av_read(cx, 0x803) & ~0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| |
| /* assert soft reset */ |
| v = cx18_av_read(cx, 0x810) | 0x01; |
| cx18_av_write_expect(cx, 0x810, v, v, 0x0f); |
| |
| /* Mute everything to prevent the PFFT! */ |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| |
| if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) { |
| /* Set Path1 to Serial Audio Input */ |
| cx18_av_write4(cx, 0x8d0, 0x01011012); |
| |
| /* The microcontroller should not be started for the |
| * non-tuner inputs: autodetection is specific for |
| * TV audio. */ |
| } else { |
| /* Set Path1 to Analog Demod Main Channel */ |
| cx18_av_write4(cx, 0x8d0, 0x1f063870); |
| } |
| |
| set_audclk_freq(cx, state->audclk_freq); |
| |
| /* deassert soft reset */ |
| v = cx18_av_read(cx, 0x810) & ~0x01; |
| cx18_av_write_expect(cx, 0x810, v, v, 0x0f); |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| /* When the microcontroller detects the |
| * audio format, it will unmute the lines */ |
| v = cx18_av_read(cx, 0x803) | 0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| } |
| } |
| |
| static int get_volume(struct cx18 *cx) |
| { |
| /* Volume runs +18dB to -96dB in 1/2dB steps |
| * change to fit the msp3400 -114dB to +12dB range */ |
| |
| /* check PATH1_VOLUME */ |
| int vol = 228 - cx18_av_read(cx, 0x8d4); |
| vol = (vol / 2) + 23; |
| return vol << 9; |
| } |
| |
| static void set_volume(struct cx18 *cx, int volume) |
| { |
| /* First convert the volume to msp3400 values (0-127) */ |
| int vol = volume >> 9; |
| /* now scale it up to cx18_av values |
| * -114dB to -96dB maps to 0 |
| * this should be 19, but in my testing that was 4dB too loud */ |
| if (vol <= 23) |
| vol = 0; |
| else |
| vol -= 23; |
| |
| /* PATH1_VOLUME */ |
| cx18_av_write(cx, 0x8d4, 228 - (vol * 2)); |
| } |
| |
| static int get_bass(struct cx18 *cx) |
| { |
| /* bass is 49 steps +12dB to -12dB */ |
| |
| /* check PATH1_EQ_BASS_VOL */ |
| int bass = cx18_av_read(cx, 0x8d9) & 0x3f; |
| bass = (((48 - bass) * 0xffff) + 47) / 48; |
| return bass; |
| } |
| |
| static void set_bass(struct cx18 *cx, int bass) |
| { |
| /* PATH1_EQ_BASS_VOL */ |
| cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); |
| } |
| |
| static int get_treble(struct cx18 *cx) |
| { |
| /* treble is 49 steps +12dB to -12dB */ |
| |
| /* check PATH1_EQ_TREBLE_VOL */ |
| int treble = cx18_av_read(cx, 0x8db) & 0x3f; |
| treble = (((48 - treble) * 0xffff) + 47) / 48; |
| return treble; |
| } |
| |
| static void set_treble(struct cx18 *cx, int treble) |
| { |
| /* PATH1_EQ_TREBLE_VOL */ |
| cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); |
| } |
| |
| static int get_balance(struct cx18 *cx) |
| { |
| /* balance is 7 bit, 0 to -96dB */ |
| |
| /* check PATH1_BAL_LEVEL */ |
| int balance = cx18_av_read(cx, 0x8d5) & 0x7f; |
| /* check PATH1_BAL_LEFT */ |
| if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0) |
| balance = 0x80 - balance; |
| else |
| balance = 0x80 + balance; |
| return balance << 8; |
| } |
| |
| static void set_balance(struct cx18 *cx, int balance) |
| { |
| int bal = balance >> 8; |
| if (bal > 0x80) { |
| /* PATH1_BAL_LEFT */ |
| cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80); |
| /* PATH1_BAL_LEVEL */ |
| cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f); |
| } else { |
| /* PATH1_BAL_LEFT */ |
| cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00); |
| /* PATH1_BAL_LEVEL */ |
| cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal); |
| } |
| } |
| |
| static int get_mute(struct cx18 *cx) |
| { |
| /* check SRC1_MUTE_EN */ |
| return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0; |
| } |
| |
| static void set_mute(struct cx18 *cx, int mute) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| u8 v; |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| /* Must turn off microcontroller in order to mute sound. |
| * Not sure if this is the best method, but it does work. |
| * If the microcontroller is running, then it will undo any |
| * changes to the mute register. */ |
| v = cx18_av_read(cx, 0x803); |
| if (mute) { |
| /* disable microcontroller */ |
| v &= ~0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| } else { |
| /* enable microcontroller */ |
| v |= 0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| } |
| } else { |
| /* SRC1_MUTE_EN */ |
| cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00); |
| } |
| } |
| |
| int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| struct cx18_av_state *state = &cx->av_state; |
| int retval; |
| u8 v; |
| |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| v = cx18_av_read(cx, 0x803) & ~0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| cx18_av_write(cx, 0x8d3, 0x1f); |
| } |
| v = cx18_av_read(cx, 0x810) | 0x1; |
| cx18_av_write_expect(cx, 0x810, v, v, 0x0f); |
| |
| retval = set_audclk_freq(cx, freq); |
| |
| v = cx18_av_read(cx, 0x810) & ~0x1; |
| cx18_av_write_expect(cx, 0x810, v, v, 0x0f); |
| if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { |
| v = cx18_av_read(cx, 0x803) | 0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| } |
| return retval; |
| } |
| |
| int cx18_av_audio_g_ctrl(struct cx18 *cx, struct v4l2_control *ctrl) |
| { |
| switch (ctrl->id) { |
| case V4L2_CID_AUDIO_VOLUME: |
| ctrl->value = get_volume(cx); |
| break; |
| case V4L2_CID_AUDIO_BASS: |
| ctrl->value = get_bass(cx); |
| break; |
| case V4L2_CID_AUDIO_TREBLE: |
| ctrl->value = get_treble(cx); |
| break; |
| case V4L2_CID_AUDIO_BALANCE: |
| ctrl->value = get_balance(cx); |
| break; |
| case V4L2_CID_AUDIO_MUTE: |
| ctrl->value = get_mute(cx); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int cx18_av_audio_s_ctrl(struct cx18 *cx, struct v4l2_control *ctrl) |
| { |
| switch (ctrl->id) { |
| case V4L2_CID_AUDIO_VOLUME: |
| set_volume(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_BASS: |
| set_bass(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_TREBLE: |
| set_treble(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_BALANCE: |
| set_balance(cx, ctrl->value); |
| break; |
| case V4L2_CID_AUDIO_MUTE: |
| set_mute(cx, ctrl->value); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |