| /* |
| * PPC64 (POWER4) Huge TLB Page Support for Kernel. |
| * |
| * Copyright (C) 2003 David Gibson, IBM Corporation. |
| * |
| * Based on the IA-32 version: |
| * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/hugetlb.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| |
| #define PAGE_SHIFT_64K 16 |
| #define PAGE_SHIFT_16M 24 |
| #define PAGE_SHIFT_16G 34 |
| |
| #define MAX_NUMBER_GPAGES 1024 |
| |
| /* Tracks the 16G pages after the device tree is scanned and before the |
| * huge_boot_pages list is ready. */ |
| static unsigned long gpage_freearray[MAX_NUMBER_GPAGES]; |
| static unsigned nr_gpages; |
| |
| /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad() |
| * will choke on pointers to hugepte tables, which is handy for |
| * catching screwups early. */ |
| |
| static inline int shift_to_mmu_psize(unsigned int shift) |
| { |
| int psize; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) |
| if (mmu_psize_defs[psize].shift == shift) |
| return psize; |
| return -1; |
| } |
| |
| static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) |
| { |
| if (mmu_psize_defs[mmu_psize].shift) |
| return mmu_psize_defs[mmu_psize].shift; |
| BUG(); |
| } |
| |
| #define hugepd_none(hpd) ((hpd).pd == 0) |
| |
| static inline pte_t *hugepd_page(hugepd_t hpd) |
| { |
| BUG_ON(!hugepd_ok(hpd)); |
| return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000); |
| } |
| |
| static inline unsigned int hugepd_shift(hugepd_t hpd) |
| { |
| return hpd.pd & HUGEPD_SHIFT_MASK; |
| } |
| |
| static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift) |
| { |
| unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp); |
| pte_t *dir = hugepd_page(*hpdp); |
| |
| return dir + idx; |
| } |
| |
| pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) |
| { |
| pgd_t *pg; |
| pud_t *pu; |
| pmd_t *pm; |
| hugepd_t *hpdp = NULL; |
| unsigned pdshift = PGDIR_SHIFT; |
| |
| if (shift) |
| *shift = 0; |
| |
| pg = pgdir + pgd_index(ea); |
| if (is_hugepd(pg)) { |
| hpdp = (hugepd_t *)pg; |
| } else if (!pgd_none(*pg)) { |
| pdshift = PUD_SHIFT; |
| pu = pud_offset(pg, ea); |
| if (is_hugepd(pu)) |
| hpdp = (hugepd_t *)pu; |
| else if (!pud_none(*pu)) { |
| pdshift = PMD_SHIFT; |
| pm = pmd_offset(pu, ea); |
| if (is_hugepd(pm)) |
| hpdp = (hugepd_t *)pm; |
| else if (!pmd_none(*pm)) { |
| return pte_offset_map(pm, ea); |
| } |
| } |
| } |
| |
| if (!hpdp) |
| return NULL; |
| |
| if (shift) |
| *shift = hugepd_shift(*hpdp); |
| return hugepte_offset(hpdp, ea, pdshift); |
| } |
| |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) |
| { |
| return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); |
| } |
| |
| static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, |
| unsigned long address, unsigned pdshift, unsigned pshift) |
| { |
| pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift), |
| GFP_KERNEL|__GFP_REPEAT); |
| |
| BUG_ON(pshift > HUGEPD_SHIFT_MASK); |
| BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); |
| |
| if (! new) |
| return -ENOMEM; |
| |
| spin_lock(&mm->page_table_lock); |
| if (!hugepd_none(*hpdp)) |
| kmem_cache_free(PGT_CACHE(pdshift - pshift), new); |
| else |
| hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift; |
| spin_unlock(&mm->page_table_lock); |
| return 0; |
| } |
| |
| pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) |
| { |
| pgd_t *pg; |
| pud_t *pu; |
| pmd_t *pm; |
| hugepd_t *hpdp = NULL; |
| unsigned pshift = __ffs(sz); |
| unsigned pdshift = PGDIR_SHIFT; |
| |
| addr &= ~(sz-1); |
| |
| pg = pgd_offset(mm, addr); |
| if (pshift >= PUD_SHIFT) { |
| hpdp = (hugepd_t *)pg; |
| } else { |
| pdshift = PUD_SHIFT; |
| pu = pud_alloc(mm, pg, addr); |
| if (pshift >= PMD_SHIFT) { |
| hpdp = (hugepd_t *)pu; |
| } else { |
| pdshift = PMD_SHIFT; |
| pm = pmd_alloc(mm, pu, addr); |
| hpdp = (hugepd_t *)pm; |
| } |
| } |
| |
| if (!hpdp) |
| return NULL; |
| |
| BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); |
| |
| if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) |
| return NULL; |
| |
| return hugepte_offset(hpdp, addr, pdshift); |
| } |
| |
| /* Build list of addresses of gigantic pages. This function is used in early |
| * boot before the buddy or bootmem allocator is setup. |
| */ |
| void add_gpage(unsigned long addr, unsigned long page_size, |
| unsigned long number_of_pages) |
| { |
| if (!addr) |
| return; |
| while (number_of_pages > 0) { |
| gpage_freearray[nr_gpages] = addr; |
| nr_gpages++; |
| number_of_pages--; |
| addr += page_size; |
| } |
| } |
| |
| /* Moves the gigantic page addresses from the temporary list to the |
| * huge_boot_pages list. |
| */ |
| int alloc_bootmem_huge_page(struct hstate *hstate) |
| { |
| struct huge_bootmem_page *m; |
| if (nr_gpages == 0) |
| return 0; |
| m = phys_to_virt(gpage_freearray[--nr_gpages]); |
| gpage_freearray[nr_gpages] = 0; |
| list_add(&m->list, &huge_boot_pages); |
| m->hstate = hstate; |
| return 1; |
| } |
| |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) |
| { |
| return 0; |
| } |
| |
| static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, |
| unsigned long start, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pte_t *hugepte = hugepd_page(*hpdp); |
| unsigned shift = hugepd_shift(*hpdp); |
| unsigned long pdmask = ~((1UL << pdshift) - 1); |
| |
| start &= pdmask; |
| if (start < floor) |
| return; |
| if (ceiling) { |
| ceiling &= pdmask; |
| if (! ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| return; |
| |
| hpdp->pd = 0; |
| tlb->need_flush = 1; |
| pgtable_free_tlb(tlb, hugepte, pdshift - shift); |
| } |
| |
| static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| unsigned long start; |
| |
| start = addr; |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (pmd_none(*pmd)) |
| continue; |
| free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, |
| addr, next, floor, ceiling); |
| } while (pmd++, addr = next, addr != end); |
| |
| start &= PUD_MASK; |
| if (start < floor) |
| return; |
| if (ceiling) { |
| ceiling &= PUD_MASK; |
| if (!ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| return; |
| |
| pmd = pmd_offset(pud, start); |
| pud_clear(pud); |
| pmd_free_tlb(tlb, pmd, start); |
| } |
| |
| static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pud_t *pud; |
| unsigned long next; |
| unsigned long start; |
| |
| start = addr; |
| pud = pud_offset(pgd, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (!is_hugepd(pud)) { |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| hugetlb_free_pmd_range(tlb, pud, addr, next, floor, |
| ceiling); |
| } else { |
| free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, |
| addr, next, floor, ceiling); |
| } |
| } while (pud++, addr = next, addr != end); |
| |
| start &= PGDIR_MASK; |
| if (start < floor) |
| return; |
| if (ceiling) { |
| ceiling &= PGDIR_MASK; |
| if (!ceiling) |
| return; |
| } |
| if (end - 1 > ceiling - 1) |
| return; |
| |
| pud = pud_offset(pgd, start); |
| pgd_clear(pgd); |
| pud_free_tlb(tlb, pud, start); |
| } |
| |
| /* |
| * This function frees user-level page tables of a process. |
| * |
| * Must be called with pagetable lock held. |
| */ |
| void hugetlb_free_pgd_range(struct mmu_gather *tlb, |
| unsigned long addr, unsigned long end, |
| unsigned long floor, unsigned long ceiling) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| |
| /* |
| * Because there are a number of different possible pagetable |
| * layouts for hugepage ranges, we limit knowledge of how |
| * things should be laid out to the allocation path |
| * (huge_pte_alloc(), above). Everything else works out the |
| * structure as it goes from information in the hugepd |
| * pointers. That means that we can't here use the |
| * optimization used in the normal page free_pgd_range(), of |
| * checking whether we're actually covering a large enough |
| * range to have to do anything at the top level of the walk |
| * instead of at the bottom. |
| * |
| * To make sense of this, you should probably go read the big |
| * block comment at the top of the normal free_pgd_range(), |
| * too. |
| */ |
| |
| pgd = pgd_offset(tlb->mm, addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (!is_hugepd(pgd)) { |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
| } else { |
| free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, |
| addr, next, floor, ceiling); |
| } |
| } while (pgd++, addr = next, addr != end); |
| } |
| |
| struct page * |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) |
| { |
| pte_t *ptep; |
| struct page *page; |
| unsigned shift; |
| unsigned long mask; |
| |
| ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); |
| |
| /* Verify it is a huge page else bail. */ |
| if (!ptep || !shift) |
| return ERR_PTR(-EINVAL); |
| |
| mask = (1UL << shift) - 1; |
| page = pte_page(*ptep); |
| if (page) |
| page += (address & mask) / PAGE_SIZE; |
| |
| return page; |
| } |
| |
| int pmd_huge(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| int pud_huge(pud_t pud) |
| { |
| return 0; |
| } |
| |
| struct page * |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
| pmd_t *pmd, int write) |
| { |
| BUG(); |
| return NULL; |
| } |
| |
| static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, |
| unsigned long end, int write, struct page **pages, int *nr) |
| { |
| unsigned long mask; |
| unsigned long pte_end; |
| struct page *head, *page; |
| pte_t pte; |
| int refs; |
| |
| pte_end = (addr + sz) & ~(sz-1); |
| if (pte_end < end) |
| end = pte_end; |
| |
| pte = *ptep; |
| mask = _PAGE_PRESENT | _PAGE_USER; |
| if (write) |
| mask |= _PAGE_RW; |
| |
| if ((pte_val(pte) & mask) != mask) |
| return 0; |
| |
| /* hugepages are never "special" */ |
| VM_BUG_ON(!pfn_valid(pte_pfn(pte))); |
| |
| refs = 0; |
| head = pte_page(pte); |
| |
| page = head + ((addr & (sz-1)) >> PAGE_SHIFT); |
| do { |
| VM_BUG_ON(compound_head(page) != head); |
| pages[*nr] = page; |
| (*nr)++; |
| page++; |
| refs++; |
| } while (addr += PAGE_SIZE, addr != end); |
| |
| if (!page_cache_add_speculative(head, refs)) { |
| *nr -= refs; |
| return 0; |
| } |
| |
| if (unlikely(pte_val(pte) != pte_val(*ptep))) { |
| /* Could be optimized better */ |
| while (*nr) { |
| put_page(page); |
| (*nr)--; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, |
| unsigned long sz) |
| { |
| unsigned long __boundary = (addr + sz) & ~(sz-1); |
| return (__boundary - 1 < end - 1) ? __boundary : end; |
| } |
| |
| int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, |
| unsigned long addr, unsigned long end, |
| int write, struct page **pages, int *nr) |
| { |
| pte_t *ptep; |
| unsigned long sz = 1UL << hugepd_shift(*hugepd); |
| unsigned long next; |
| |
| ptep = hugepte_offset(hugepd, addr, pdshift); |
| do { |
| next = hugepte_addr_end(addr, end, sz); |
| if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) |
| return 0; |
| } while (ptep++, addr = next, addr != end); |
| |
| return 1; |
| } |
| |
| unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags) |
| { |
| struct hstate *hstate = hstate_file(file); |
| int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); |
| |
| return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); |
| } |
| |
| unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) |
| { |
| unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); |
| |
| return 1UL << mmu_psize_to_shift(psize); |
| } |
| |
| static int __init add_huge_page_size(unsigned long long size) |
| { |
| int shift = __ffs(size); |
| int mmu_psize; |
| |
| /* Check that it is a page size supported by the hardware and |
| * that it fits within pagetable and slice limits. */ |
| if (!is_power_of_2(size) |
| || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) |
| return -EINVAL; |
| |
| if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) |
| return -EINVAL; |
| |
| #ifdef CONFIG_SPU_FS_64K_LS |
| /* Disable support for 64K huge pages when 64K SPU local store |
| * support is enabled as the current implementation conflicts. |
| */ |
| if (shift == PAGE_SHIFT_64K) |
| return -EINVAL; |
| #endif /* CONFIG_SPU_FS_64K_LS */ |
| |
| BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); |
| |
| /* Return if huge page size has already been setup */ |
| if (size_to_hstate(size)) |
| return 0; |
| |
| hugetlb_add_hstate(shift - PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| static int __init hugepage_setup_sz(char *str) |
| { |
| unsigned long long size; |
| |
| size = memparse(str, &str); |
| |
| if (add_huge_page_size(size) != 0) |
| printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); |
| |
| return 1; |
| } |
| __setup("hugepagesz=", hugepage_setup_sz); |
| |
| static int __init hugetlbpage_init(void) |
| { |
| int psize; |
| |
| if (!cpu_has_feature(CPU_FTR_16M_PAGE)) |
| return -ENODEV; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| unsigned shift; |
| unsigned pdshift; |
| |
| if (!mmu_psize_defs[psize].shift) |
| continue; |
| |
| shift = mmu_psize_to_shift(psize); |
| |
| if (add_huge_page_size(1ULL << shift) < 0) |
| continue; |
| |
| if (shift < PMD_SHIFT) |
| pdshift = PMD_SHIFT; |
| else if (shift < PUD_SHIFT) |
| pdshift = PUD_SHIFT; |
| else |
| pdshift = PGDIR_SHIFT; |
| |
| pgtable_cache_add(pdshift - shift, NULL); |
| if (!PGT_CACHE(pdshift - shift)) |
| panic("hugetlbpage_init(): could not create " |
| "pgtable cache for %d bit pagesize\n", shift); |
| } |
| |
| /* Set default large page size. Currently, we pick 16M or 1M |
| * depending on what is available |
| */ |
| if (mmu_psize_defs[MMU_PAGE_16M].shift) |
| HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; |
| else if (mmu_psize_defs[MMU_PAGE_1M].shift) |
| HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; |
| |
| return 0; |
| } |
| |
| module_init(hugetlbpage_init); |
| |
| void flush_dcache_icache_hugepage(struct page *page) |
| { |
| int i; |
| |
| BUG_ON(!PageCompound(page)); |
| |
| for (i = 0; i < (1UL << compound_order(page)); i++) |
| __flush_dcache_icache(page_address(page+i)); |
| } |