| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Dave Engebretsen <engebret@us.ibm.com> |
| * Rework for PPC64 port. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/stddef.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/idr.h> |
| #include <linux/nodemask.h> |
| #include <linux/module.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/page.h> |
| #include <asm/abs_addr.h> |
| #include <asm/prom.h> |
| #include <asm/lmb.h> |
| #include <asm/rtas.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/uaccess.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/tlb.h> |
| #include <asm/eeh.h> |
| #include <asm/processor.h> |
| #include <asm/mmzone.h> |
| #include <asm/cputable.h> |
| #include <asm/ppcdebug.h> |
| #include <asm/sections.h> |
| #include <asm/system.h> |
| #include <asm/iommu.h> |
| #include <asm/abs_addr.h> |
| #include <asm/vdso.h> |
| |
| int mem_init_done; |
| unsigned long ioremap_bot = IMALLOC_BASE; |
| static unsigned long phbs_io_bot = PHBS_IO_BASE; |
| |
| extern pgd_t swapper_pg_dir[]; |
| extern struct task_struct *current_set[NR_CPUS]; |
| |
| extern pgd_t ioremap_dir[]; |
| pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir; |
| |
| unsigned long klimit = (unsigned long)_end; |
| |
| unsigned long _SDR1=0; |
| unsigned long _ASR=0; |
| |
| /* max amount of RAM to use */ |
| unsigned long __max_memory; |
| |
| /* info on what we think the IO hole is */ |
| unsigned long io_hole_start; |
| unsigned long io_hole_size; |
| |
| void show_mem(void) |
| { |
| unsigned long total = 0, reserved = 0; |
| unsigned long shared = 0, cached = 0; |
| struct page *page; |
| pg_data_t *pgdat; |
| unsigned long i; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| page = pgdat->node_mem_map + i; |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| } |
| printk("%ld pages of RAM\n", total); |
| printk("%ld reserved pages\n", reserved); |
| printk("%ld pages shared\n", shared); |
| printk("%ld pages swap cached\n", cached); |
| } |
| |
| #ifdef CONFIG_PPC_ISERIES |
| |
| void __iomem *ioremap(unsigned long addr, unsigned long size) |
| { |
| return (void __iomem *)addr; |
| } |
| |
| extern void __iomem *__ioremap(unsigned long addr, unsigned long size, |
| unsigned long flags) |
| { |
| return (void __iomem *)addr; |
| } |
| |
| void iounmap(volatile void __iomem *addr) |
| { |
| return; |
| } |
| |
| #else |
| |
| static void unmap_im_area_pte(pmd_t *pmd, unsigned long addr, |
| unsigned long end) |
| { |
| pte_t *pte; |
| |
| pte = pte_offset_kernel(pmd, addr); |
| do { |
| pte_t ptent = ptep_get_and_clear(&ioremap_mm, addr, pte); |
| WARN_ON(!pte_none(ptent) && !pte_present(ptent)); |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| } |
| |
| static inline void unmap_im_area_pmd(pud_t *pud, unsigned long addr, |
| unsigned long end) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (pmd_none_or_clear_bad(pmd)) |
| continue; |
| unmap_im_area_pte(pmd, addr, next); |
| } while (pmd++, addr = next, addr != end); |
| } |
| |
| static inline void unmap_im_area_pud(pgd_t *pgd, unsigned long addr, |
| unsigned long end) |
| { |
| pud_t *pud; |
| unsigned long next; |
| |
| pud = pud_offset(pgd, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| unmap_im_area_pmd(pud, addr, next); |
| } while (pud++, addr = next, addr != end); |
| } |
| |
| static void unmap_im_area(unsigned long addr, unsigned long end) |
| { |
| struct mm_struct *mm = &ioremap_mm; |
| unsigned long next; |
| pgd_t *pgd; |
| |
| spin_lock(&mm->page_table_lock); |
| |
| pgd = pgd_offset_i(addr); |
| flush_cache_vunmap(addr, end); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| unmap_im_area_pud(pgd, addr, next); |
| } while (pgd++, addr = next, addr != end); |
| flush_tlb_kernel_range(start, end); |
| |
| spin_unlock(&mm->page_table_lock); |
| } |
| |
| /* |
| * map_io_page currently only called by __ioremap |
| * map_io_page adds an entry to the ioremap page table |
| * and adds an entry to the HPT, possibly bolting it |
| */ |
| static int map_io_page(unsigned long ea, unsigned long pa, int flags) |
| { |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| unsigned long vsid; |
| |
| if (mem_init_done) { |
| spin_lock(&ioremap_mm.page_table_lock); |
| pgdp = pgd_offset_i(ea); |
| pudp = pud_alloc(&ioremap_mm, pgdp, ea); |
| if (!pudp) |
| return -ENOMEM; |
| pmdp = pmd_alloc(&ioremap_mm, pudp, ea); |
| if (!pmdp) |
| return -ENOMEM; |
| ptep = pte_alloc_kernel(&ioremap_mm, pmdp, ea); |
| if (!ptep) |
| return -ENOMEM; |
| pa = abs_to_phys(pa); |
| set_pte_at(&ioremap_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, |
| __pgprot(flags))); |
| spin_unlock(&ioremap_mm.page_table_lock); |
| } else { |
| unsigned long va, vpn, hash, hpteg; |
| |
| /* |
| * If the mm subsystem is not fully up, we cannot create a |
| * linux page table entry for this mapping. Simply bolt an |
| * entry in the hardware page table. |
| */ |
| vsid = get_kernel_vsid(ea); |
| va = (vsid << 28) | (ea & 0xFFFFFFF); |
| vpn = va >> PAGE_SHIFT; |
| |
| hash = hpt_hash(vpn, 0); |
| |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| |
| /* Panic if a pte grpup is full */ |
| if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0, |
| _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX, |
| 1, 0) == -1) { |
| panic("map_io_page: could not insert mapping"); |
| } |
| } |
| return 0; |
| } |
| |
| |
| static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa, |
| unsigned long ea, unsigned long size, |
| unsigned long flags) |
| { |
| unsigned long i; |
| |
| if ((flags & _PAGE_PRESENT) == 0) |
| flags |= pgprot_val(PAGE_KERNEL); |
| |
| for (i = 0; i < size; i += PAGE_SIZE) |
| if (map_io_page(ea+i, pa+i, flags)) |
| goto failure; |
| |
| return (void __iomem *) (ea + (addr & ~PAGE_MASK)); |
| failure: |
| if (mem_init_done) |
| unmap_im_area(ea, ea + size); |
| return NULL; |
| } |
| |
| |
| void __iomem * |
| ioremap(unsigned long addr, unsigned long size) |
| { |
| return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED); |
| } |
| |
| void __iomem * __ioremap(unsigned long addr, unsigned long size, |
| unsigned long flags) |
| { |
| unsigned long pa, ea; |
| void __iomem *ret; |
| |
| /* |
| * Choose an address to map it to. |
| * Once the imalloc system is running, we use it. |
| * Before that, we map using addresses going |
| * up from ioremap_bot. imalloc will use |
| * the addresses from ioremap_bot through |
| * IMALLOC_END (0xE000001fffffffff) |
| * |
| */ |
| pa = addr & PAGE_MASK; |
| size = PAGE_ALIGN(addr + size) - pa; |
| |
| if (size == 0) |
| return NULL; |
| |
| if (mem_init_done) { |
| struct vm_struct *area; |
| area = im_get_free_area(size); |
| if (area == NULL) |
| return NULL; |
| ea = (unsigned long)(area->addr); |
| ret = __ioremap_com(addr, pa, ea, size, flags); |
| if (!ret) |
| im_free(area->addr); |
| } else { |
| ea = ioremap_bot; |
| ret = __ioremap_com(addr, pa, ea, size, flags); |
| if (ret) |
| ioremap_bot += size; |
| } |
| return ret; |
| } |
| |
| #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK)) |
| |
| int __ioremap_explicit(unsigned long pa, unsigned long ea, |
| unsigned long size, unsigned long flags) |
| { |
| struct vm_struct *area; |
| void __iomem *ret; |
| |
| /* For now, require page-aligned values for pa, ea, and size */ |
| if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) || |
| !IS_PAGE_ALIGNED(size)) { |
| printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__); |
| return 1; |
| } |
| |
| if (!mem_init_done) { |
| /* Two things to consider in this case: |
| * 1) No records will be kept (imalloc, etc) that the region |
| * has been remapped |
| * 2) It won't be easy to iounmap() the region later (because |
| * of 1) |
| */ |
| ; |
| } else { |
| area = im_get_area(ea, size, |
| IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS); |
| if (area == NULL) { |
| /* Expected when PHB-dlpar is in play */ |
| return 1; |
| } |
| if (ea != (unsigned long) area->addr) { |
| printk(KERN_ERR "unexpected addr return from " |
| "im_get_area\n"); |
| return 1; |
| } |
| } |
| |
| ret = __ioremap_com(pa, pa, ea, size, flags); |
| if (ret == NULL) { |
| printk(KERN_ERR "ioremap_explicit() allocation failure !\n"); |
| return 1; |
| } |
| if (ret != (void *) ea) { |
| printk(KERN_ERR "__ioremap_com() returned unexpected addr\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unmap an IO region and remove it from imalloc'd list. |
| * Access to IO memory should be serialized by driver. |
| * This code is modeled after vmalloc code - unmap_vm_area() |
| * |
| * XXX what about calls before mem_init_done (ie python_countermeasures()) |
| */ |
| void iounmap(volatile void __iomem *token) |
| { |
| unsigned long address, size; |
| void *addr; |
| |
| if (!mem_init_done) |
| return; |
| |
| addr = (void *) ((unsigned long __force) token & PAGE_MASK); |
| |
| if ((size = im_free(addr)) == 0) |
| return; |
| |
| address = (unsigned long)addr; |
| unmap_im_area(address, address + size); |
| } |
| |
| static int iounmap_subset_regions(unsigned long addr, unsigned long size) |
| { |
| struct vm_struct *area; |
| |
| /* Check whether subsets of this region exist */ |
| area = im_get_area(addr, size, IM_REGION_SUPERSET); |
| if (area == NULL) |
| return 1; |
| |
| while (area) { |
| iounmap((void __iomem *) area->addr); |
| area = im_get_area(addr, size, |
| IM_REGION_SUPERSET); |
| } |
| |
| return 0; |
| } |
| |
| int iounmap_explicit(volatile void __iomem *start, unsigned long size) |
| { |
| struct vm_struct *area; |
| unsigned long addr; |
| int rc; |
| |
| addr = (unsigned long __force) start & PAGE_MASK; |
| |
| /* Verify that the region either exists or is a subset of an existing |
| * region. In the latter case, split the parent region to create |
| * the exact region |
| */ |
| area = im_get_area(addr, size, |
| IM_REGION_EXISTS | IM_REGION_SUBSET); |
| if (area == NULL) { |
| /* Determine whether subset regions exist. If so, unmap */ |
| rc = iounmap_subset_regions(addr, size); |
| if (rc) { |
| printk(KERN_ERR |
| "%s() cannot unmap nonexistent range 0x%lx\n", |
| __FUNCTION__, addr); |
| return 1; |
| } |
| } else { |
| iounmap((void __iomem *) area->addr); |
| } |
| /* |
| * FIXME! This can't be right: |
| iounmap(area->addr); |
| * Maybe it should be "iounmap(area);" |
| */ |
| return 0; |
| } |
| |
| #endif |
| |
| EXPORT_SYMBOL(ioremap); |
| EXPORT_SYMBOL(__ioremap); |
| EXPORT_SYMBOL(iounmap); |
| |
| void free_initmem(void) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long)__init_begin; |
| for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(addr)); |
| set_page_count(virt_to_page(addr), 1); |
| free_page(addr); |
| totalram_pages++; |
| } |
| printk ("Freeing unused kernel memory: %luk freed\n", |
| ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (start < end) |
| printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); |
| for (; start < end; start += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(start)); |
| set_page_count(virt_to_page(start), 1); |
| free_page(start); |
| totalram_pages++; |
| } |
| } |
| #endif |
| |
| static DEFINE_SPINLOCK(mmu_context_lock); |
| static DEFINE_IDR(mmu_context_idr); |
| |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| int index; |
| int err; |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* We leave htlb_segs as it was, but for a fork, we need to |
| * clear the huge_pgdir. */ |
| mm->context.huge_pgdir = NULL; |
| #endif |
| |
| again: |
| if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| spin_lock(&mmu_context_lock); |
| err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index); |
| spin_unlock(&mmu_context_lock); |
| |
| if (err == -EAGAIN) |
| goto again; |
| else if (err) |
| return err; |
| |
| if (index > MAX_CONTEXT) { |
| idr_remove(&mmu_context_idr, index); |
| return -ENOMEM; |
| } |
| |
| mm->context.id = index; |
| |
| return 0; |
| } |
| |
| void destroy_context(struct mm_struct *mm) |
| { |
| spin_lock(&mmu_context_lock); |
| idr_remove(&mmu_context_idr, mm->context.id); |
| spin_unlock(&mmu_context_lock); |
| |
| mm->context.id = NO_CONTEXT; |
| |
| hugetlb_mm_free_pgd(mm); |
| } |
| |
| /* |
| * Do very early mm setup. |
| */ |
| void __init mm_init_ppc64(void) |
| { |
| #ifndef CONFIG_PPC_ISERIES |
| unsigned long i; |
| #endif |
| |
| ppc64_boot_msg(0x100, "MM Init"); |
| |
| /* This is the story of the IO hole... please, keep seated, |
| * unfortunately, we are out of oxygen masks at the moment. |
| * So we need some rough way to tell where your big IO hole |
| * is. On pmac, it's between 2G and 4G, on POWER3, it's around |
| * that area as well, on POWER4 we don't have one, etc... |
| * We need that as a "hint" when sizing the TCE table on POWER3 |
| * So far, the simplest way that seem work well enough for us it |
| * to just assume that the first discontinuity in our physical |
| * RAM layout is the IO hole. That may not be correct in the future |
| * (and isn't on iSeries but then we don't care ;) |
| */ |
| |
| #ifndef CONFIG_PPC_ISERIES |
| for (i = 1; i < lmb.memory.cnt; i++) { |
| unsigned long base, prevbase, prevsize; |
| |
| prevbase = lmb.memory.region[i-1].physbase; |
| prevsize = lmb.memory.region[i-1].size; |
| base = lmb.memory.region[i].physbase; |
| if (base > (prevbase + prevsize)) { |
| io_hole_start = prevbase + prevsize; |
| io_hole_size = base - (prevbase + prevsize); |
| break; |
| } |
| } |
| #endif /* CONFIG_PPC_ISERIES */ |
| if (io_hole_start) |
| printk("IO Hole assumed to be %lx -> %lx\n", |
| io_hole_start, io_hole_start + io_hole_size - 1); |
| |
| ppc64_boot_msg(0x100, "MM Init Done"); |
| } |
| |
| /* |
| * This is called by /dev/mem to know if a given address has to |
| * be mapped non-cacheable or not |
| */ |
| int page_is_ram(unsigned long pfn) |
| { |
| int i; |
| unsigned long paddr = (pfn << PAGE_SHIFT); |
| |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long base; |
| |
| #ifdef CONFIG_MSCHUNKS |
| base = lmb.memory.region[i].physbase; |
| #else |
| base = lmb.memory.region[i].base; |
| #endif |
| if ((paddr >= base) && |
| (paddr < (base + lmb.memory.region[i].size))) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(page_is_ram); |
| |
| /* |
| * Initialize the bootmem system and give it all the memory we |
| * have available. |
| */ |
| #ifndef CONFIG_DISCONTIGMEM |
| void __init do_init_bootmem(void) |
| { |
| unsigned long i; |
| unsigned long start, bootmap_pages; |
| unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| int boot_mapsize; |
| |
| /* |
| * Find an area to use for the bootmem bitmap. Calculate the size of |
| * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. |
| * Add 1 additional page in case the address isn't page-aligned. |
| */ |
| bootmap_pages = bootmem_bootmap_pages(total_pages); |
| |
| start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE)); |
| BUG_ON(!start); |
| |
| boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); |
| |
| max_pfn = max_low_pfn; |
| |
| /* add all physical memory to the bootmem map. Also find the first */ |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long physbase, size; |
| |
| physbase = lmb.memory.region[i].physbase; |
| size = lmb.memory.region[i].size; |
| free_bootmem(physbase, size); |
| } |
| |
| /* reserve the sections we're already using */ |
| for (i=0; i < lmb.reserved.cnt; i++) { |
| unsigned long physbase = lmb.reserved.region[i].physbase; |
| unsigned long size = lmb.reserved.region[i].size; |
| |
| reserve_bootmem(physbase, size); |
| } |
| } |
| |
| /* |
| * paging_init() sets up the page tables - in fact we've already done this. |
| */ |
| void __init paging_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long total_ram = lmb_phys_mem_size(); |
| unsigned long top_of_ram = lmb_end_of_DRAM(); |
| |
| printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_INFO "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| /* |
| * All pages are DMA-able so we put them all in the DMA zone. |
| */ |
| memset(zones_size, 0, sizeof(zones_size)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| |
| zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; |
| zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; |
| |
| free_area_init_node(0, &contig_page_data, zones_size, |
| __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); |
| } |
| #endif /* CONFIG_DISCONTIGMEM */ |
| |
| static struct kcore_list kcore_vmem; |
| |
| static int __init setup_kcore(void) |
| { |
| int i; |
| |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long physbase, size; |
| struct kcore_list *kcore_mem; |
| |
| physbase = lmb.memory.region[i].physbase; |
| size = lmb.memory.region[i].size; |
| |
| /* GFP_ATOMIC to avoid might_sleep warnings during boot */ |
| kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); |
| if (!kcore_mem) |
| panic("mem_init: kmalloc failed\n"); |
| |
| kclist_add(kcore_mem, __va(physbase), size); |
| } |
| |
| kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); |
| |
| return 0; |
| } |
| module_init(setup_kcore); |
| |
| void __init mem_init(void) |
| { |
| #ifdef CONFIG_DISCONTIGMEM |
| int nid; |
| #endif |
| pg_data_t *pgdat; |
| unsigned long i; |
| struct page *page; |
| unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; |
| |
| num_physpages = max_low_pfn; /* RAM is assumed contiguous */ |
| high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); |
| |
| #ifdef CONFIG_DISCONTIGMEM |
| for_each_online_node(nid) { |
| if (NODE_DATA(nid)->node_spanned_pages != 0) { |
| printk("freeing bootmem node %x\n", nid); |
| totalram_pages += |
| free_all_bootmem_node(NODE_DATA(nid)); |
| } |
| } |
| #else |
| max_mapnr = num_physpages; |
| totalram_pages += free_all_bootmem(); |
| #endif |
| |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| page = pgdat->node_mem_map + i; |
| if (PageReserved(page)) |
| reservedpages++; |
| } |
| } |
| |
| codesize = (unsigned long)&_etext - (unsigned long)&_stext; |
| initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; |
| datasize = (unsigned long)&_edata - (unsigned long)&__init_end; |
| bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " |
| "%luk reserved, %luk data, %luk bss, %luk init)\n", |
| (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), |
| num_physpages << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| bsssize >> 10, |
| initsize >> 10); |
| |
| mem_init_done = 1; |
| |
| #ifdef CONFIG_PPC_ISERIES |
| iommu_vio_init(); |
| #endif |
| /* Initialize the vDSO */ |
| vdso_init(); |
| } |
| |
| /* |
| * This is called when a page has been modified by the kernel. |
| * It just marks the page as not i-cache clean. We do the i-cache |
| * flush later when the page is given to a user process, if necessary. |
| */ |
| void flush_dcache_page(struct page *page) |
| { |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &page->flags)) |
| clear_bit(PG_arch_1, &page->flags); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| |
| void clear_user_page(void *page, unsigned long vaddr, struct page *pg) |
| { |
| clear_page(page); |
| |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| /* |
| * We shouldnt have to do this, but some versions of glibc |
| * require it (ld.so assumes zero filled pages are icache clean) |
| * - Anton |
| */ |
| |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| clear_bit(PG_arch_1, &pg->flags); |
| } |
| EXPORT_SYMBOL(clear_user_page); |
| |
| void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, |
| struct page *pg) |
| { |
| copy_page(vto, vfrom); |
| |
| /* |
| * We should be able to use the following optimisation, however |
| * there are two problems. |
| * Firstly a bug in some versions of binutils meant PLT sections |
| * were not marked executable. |
| * Secondly the first word in the GOT section is blrl, used |
| * to establish the GOT address. Until recently the GOT was |
| * not marked executable. |
| * - Anton |
| */ |
| #if 0 |
| if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) |
| return; |
| #endif |
| |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| clear_bit(PG_arch_1, &pg->flags); |
| } |
| |
| void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, |
| unsigned long addr, int len) |
| { |
| unsigned long maddr; |
| |
| maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK); |
| flush_icache_range(maddr, maddr + len); |
| } |
| EXPORT_SYMBOL(flush_icache_user_range); |
| |
| /* |
| * This is called at the end of handling a user page fault, when the |
| * fault has been handled by updating a PTE in the linux page tables. |
| * We use it to preload an HPTE into the hash table corresponding to |
| * the updated linux PTE. |
| * |
| * This must always be called with the mm->page_table_lock held |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea, |
| pte_t pte) |
| { |
| unsigned long vsid; |
| void *pgdir; |
| pte_t *ptep; |
| int local = 0; |
| cpumask_t tmp; |
| unsigned long flags; |
| |
| /* handle i-cache coherency */ |
| if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && |
| !cpu_has_feature(CPU_FTR_NOEXECUTE)) { |
| unsigned long pfn = pte_pfn(pte); |
| if (pfn_valid(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| if (!PageReserved(page) |
| && !test_bit(PG_arch_1, &page->flags)) { |
| __flush_dcache_icache(page_address(page)); |
| set_bit(PG_arch_1, &page->flags); |
| } |
| } |
| } |
| |
| /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ |
| if (!pte_young(pte)) |
| return; |
| |
| pgdir = vma->vm_mm->pgd; |
| if (pgdir == NULL) |
| return; |
| |
| ptep = find_linux_pte(pgdir, ea); |
| if (!ptep) |
| return; |
| |
| vsid = get_vsid(vma->vm_mm->context.id, ea); |
| |
| local_irq_save(flags); |
| tmp = cpumask_of_cpu(smp_processor_id()); |
| if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) |
| local = 1; |
| |
| __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep, |
| 0x300, local); |
| local_irq_restore(flags); |
| } |
| |
| void __iomem * reserve_phb_iospace(unsigned long size) |
| { |
| void __iomem *virt_addr; |
| |
| if (phbs_io_bot >= IMALLOC_BASE) |
| panic("reserve_phb_iospace(): phb io space overflow\n"); |
| |
| virt_addr = (void __iomem *) phbs_io_bot; |
| phbs_io_bot += size; |
| |
| return virt_addr; |
| } |
| |
| kmem_cache_t *zero_cache; |
| |
| static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags) |
| { |
| memset(pte, 0, PAGE_SIZE); |
| } |
| |
| void pgtable_cache_init(void) |
| { |
| zero_cache = kmem_cache_create("zero", |
| PAGE_SIZE, |
| 0, |
| SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, |
| zero_ctor, |
| NULL); |
| if (!zero_cache) |
| panic("pgtable_cache_init(): could not create zero_cache!\n"); |
| } |
| |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| if (ppc_md.phys_mem_access_prot) |
| return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot); |
| |
| if (!page_is_ram(addr >> PAGE_SHIFT)) |
| vma_prot = __pgprot(pgprot_val(vma_prot) |
| | _PAGE_GUARDED | _PAGE_NO_CACHE); |
| return vma_prot; |
| } |
| EXPORT_SYMBOL(phys_mem_access_prot); |