| /* |
| Copyright (C) 1996 Digi International. |
| |
| For technical support please email digiLinux@dgii.com or |
| call Digi tech support at (612) 912-3456 |
| |
| ** This driver is no longer supported by Digi ** |
| |
| Much of this design and code came from epca.c which was |
| copyright (C) 1994, 1995 Troy De Jongh, and subsquently |
| modified by David Nugent, Christoph Lameter, Mike McLagan. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| /* See README.epca for change history --DAT*/ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/serial.h> |
| #include <linux/delay.h> |
| #include <linux/ctype.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/slab.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include "digiPCI.h" |
| |
| |
| #include "digi1.h" |
| #include "digiFep1.h" |
| #include "epca.h" |
| #include "epcaconfig.h" |
| |
| #define VERSION "1.3.0.1-LK2.6" |
| |
| /* This major needs to be submitted to Linux to join the majors list */ |
| #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */ |
| |
| |
| #define MAXCARDS 7 |
| #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg) |
| |
| #define PFX "epca: " |
| |
| static int nbdevs, num_cards, liloconfig; |
| static int digi_poller_inhibited = 1 ; |
| |
| static int setup_error_code; |
| static int invalid_lilo_config; |
| |
| /* |
| * The ISA boards do window flipping into the same spaces so its only sane with |
| * a single lock. It's still pretty efficient. |
| */ |
| static DEFINE_SPINLOCK(epca_lock); |
| |
| /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted to 7 below. */ |
| static struct board_info boards[MAXBOARDS]; |
| |
| static struct tty_driver *pc_driver; |
| static struct tty_driver *pc_info; |
| |
| /* ------------------ Begin Digi specific structures -------------------- */ |
| |
| /* |
| * digi_channels represents an array of structures that keep track of each |
| * channel of the Digi product. Information such as transmit and receive |
| * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored |
| * here. This structure is NOT used to overlay the cards physical channel |
| * structure. |
| */ |
| static struct channel digi_channels[MAX_ALLOC]; |
| |
| /* |
| * card_ptr is an array used to hold the address of the first channel structure |
| * of each card. This array will hold the addresses of various channels located |
| * in digi_channels. |
| */ |
| static struct channel *card_ptr[MAXCARDS]; |
| |
| static struct timer_list epca_timer; |
| |
| /* |
| * Begin generic memory functions. These functions will be alias (point at) |
| * more specific functions dependent on the board being configured. |
| */ |
| static void memwinon(struct board_info *b, unsigned int win); |
| static void memwinoff(struct board_info *b, unsigned int win); |
| static void globalwinon(struct channel *ch); |
| static void rxwinon(struct channel *ch); |
| static void txwinon(struct channel *ch); |
| static void memoff(struct channel *ch); |
| static void assertgwinon(struct channel *ch); |
| static void assertmemoff(struct channel *ch); |
| |
| /* ---- Begin more 'specific' memory functions for cx_like products --- */ |
| |
| static void pcxem_memwinon(struct board_info *b, unsigned int win); |
| static void pcxem_memwinoff(struct board_info *b, unsigned int win); |
| static void pcxem_globalwinon(struct channel *ch); |
| static void pcxem_rxwinon(struct channel *ch); |
| static void pcxem_txwinon(struct channel *ch); |
| static void pcxem_memoff(struct channel *ch); |
| |
| /* ------ Begin more 'specific' memory functions for the pcxe ------- */ |
| |
| static void pcxe_memwinon(struct board_info *b, unsigned int win); |
| static void pcxe_memwinoff(struct board_info *b, unsigned int win); |
| static void pcxe_globalwinon(struct channel *ch); |
| static void pcxe_rxwinon(struct channel *ch); |
| static void pcxe_txwinon(struct channel *ch); |
| static void pcxe_memoff(struct channel *ch); |
| |
| /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */ |
| /* Note : pc64xe and pcxi share the same windowing routines */ |
| |
| static void pcxi_memwinon(struct board_info *b, unsigned int win); |
| static void pcxi_memwinoff(struct board_info *b, unsigned int win); |
| static void pcxi_globalwinon(struct channel *ch); |
| static void pcxi_rxwinon(struct channel *ch); |
| static void pcxi_txwinon(struct channel *ch); |
| static void pcxi_memoff(struct channel *ch); |
| |
| /* - Begin 'specific' do nothing memory functions needed for some cards - */ |
| |
| static void dummy_memwinon(struct board_info *b, unsigned int win); |
| static void dummy_memwinoff(struct board_info *b, unsigned int win); |
| static void dummy_globalwinon(struct channel *ch); |
| static void dummy_rxwinon(struct channel *ch); |
| static void dummy_txwinon(struct channel *ch); |
| static void dummy_memoff(struct channel *ch); |
| static void dummy_assertgwinon(struct channel *ch); |
| static void dummy_assertmemoff(struct channel *ch); |
| |
| static struct channel *verifyChannel(struct tty_struct *); |
| static void pc_sched_event(struct channel *, int); |
| static void epca_error(int, char *); |
| static void pc_close(struct tty_struct *, struct file *); |
| static void shutdown(struct channel *); |
| static void pc_hangup(struct tty_struct *); |
| static void pc_put_char(struct tty_struct *, unsigned char); |
| static int pc_write_room(struct tty_struct *); |
| static int pc_chars_in_buffer(struct tty_struct *); |
| static void pc_flush_buffer(struct tty_struct *); |
| static void pc_flush_chars(struct tty_struct *); |
| static int block_til_ready(struct tty_struct *, struct file *, |
| struct channel *); |
| static int pc_open(struct tty_struct *, struct file *); |
| static void post_fep_init(unsigned int crd); |
| static void epcapoll(unsigned long); |
| static void doevent(int); |
| static void fepcmd(struct channel *, int, int, int, int, int); |
| static unsigned termios2digi_h(struct channel *ch, unsigned); |
| static unsigned termios2digi_i(struct channel *ch, unsigned); |
| static unsigned termios2digi_c(struct channel *ch, unsigned); |
| static void epcaparam(struct tty_struct *, struct channel *); |
| static void receive_data(struct channel *); |
| static int pc_ioctl(struct tty_struct *, struct file *, |
| unsigned int, unsigned long); |
| static int info_ioctl(struct tty_struct *, struct file *, |
| unsigned int, unsigned long); |
| static void pc_set_termios(struct tty_struct *, struct ktermios *); |
| static void do_softint(struct work_struct *work); |
| static void pc_stop(struct tty_struct *); |
| static void pc_start(struct tty_struct *); |
| static void pc_throttle(struct tty_struct * tty); |
| static void pc_unthrottle(struct tty_struct *tty); |
| static void digi_send_break(struct channel *ch, int msec); |
| static void setup_empty_event(struct tty_struct *tty, struct channel *ch); |
| void epca_setup(char *, int *); |
| |
| static int pc_write(struct tty_struct *, const unsigned char *, int); |
| static int pc_init(void); |
| static int init_PCI(void); |
| |
| /* |
| * Table of functions for each board to handle memory. Mantaining parallelism |
| * is a *very* good idea here. The idea is for the runtime code to blindly call |
| * these functions, not knowing/caring about the underlying hardware. This |
| * stuff should contain no conditionals; if more functionality is needed a |
| * different entry should be established. These calls are the interface calls |
| * and are the only functions that should be accessed. Anyone caught making |
| * direct calls deserves what they get. |
| */ |
| static void memwinon(struct board_info *b, unsigned int win) |
| { |
| b->memwinon(b, win); |
| } |
| |
| static void memwinoff(struct board_info *b, unsigned int win) |
| { |
| b->memwinoff(b, win); |
| } |
| |
| static void globalwinon(struct channel *ch) |
| { |
| ch->board->globalwinon(ch); |
| } |
| |
| static void rxwinon(struct channel *ch) |
| { |
| ch->board->rxwinon(ch); |
| } |
| |
| static void txwinon(struct channel *ch) |
| { |
| ch->board->txwinon(ch); |
| } |
| |
| static void memoff(struct channel *ch) |
| { |
| ch->board->memoff(ch); |
| } |
| static void assertgwinon(struct channel *ch) |
| { |
| ch->board->assertgwinon(ch); |
| } |
| |
| static void assertmemoff(struct channel *ch) |
| { |
| ch->board->assertmemoff(ch); |
| } |
| |
| /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */ |
| static void pcxem_memwinon(struct board_info *b, unsigned int win) |
| { |
| outb_p(FEPWIN|win, b->port + 1); |
| } |
| |
| static void pcxem_memwinoff(struct board_info *b, unsigned int win) |
| { |
| outb_p(0, b->port + 1); |
| } |
| |
| static void pcxem_globalwinon(struct channel *ch) |
| { |
| outb_p( FEPWIN, (int)ch->board->port + 1); |
| } |
| |
| static void pcxem_rxwinon(struct channel *ch) |
| { |
| outb_p(ch->rxwin, (int)ch->board->port + 1); |
| } |
| |
| static void pcxem_txwinon(struct channel *ch) |
| { |
| outb_p(ch->txwin, (int)ch->board->port + 1); |
| } |
| |
| static void pcxem_memoff(struct channel *ch) |
| { |
| outb_p(0, (int)ch->board->port + 1); |
| } |
| |
| /* ----------------- Begin pcxe memory window stuff ------------------ */ |
| static void pcxe_memwinon(struct board_info *b, unsigned int win) |
| { |
| outb_p(FEPWIN | win, b->port + 1); |
| } |
| |
| static void pcxe_memwinoff(struct board_info *b, unsigned int win) |
| { |
| outb_p(inb(b->port) & ~FEPMEM, b->port + 1); |
| outb_p(0, b->port + 1); |
| } |
| |
| static void pcxe_globalwinon(struct channel *ch) |
| { |
| outb_p(FEPWIN, (int)ch->board->port + 1); |
| } |
| |
| static void pcxe_rxwinon(struct channel *ch) |
| { |
| outb_p(ch->rxwin, (int)ch->board->port + 1); |
| } |
| |
| static void pcxe_txwinon(struct channel *ch) |
| { |
| outb_p(ch->txwin, (int)ch->board->port + 1); |
| } |
| |
| static void pcxe_memoff(struct channel *ch) |
| { |
| outb_p(0, (int)ch->board->port); |
| outb_p(0, (int)ch->board->port + 1); |
| } |
| |
| /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */ |
| static void pcxi_memwinon(struct board_info *b, unsigned int win) |
| { |
| outb_p(inb(b->port) | FEPMEM, b->port); |
| } |
| |
| static void pcxi_memwinoff(struct board_info *b, unsigned int win) |
| { |
| outb_p(inb(b->port) & ~FEPMEM, b->port); |
| } |
| |
| static void pcxi_globalwinon(struct channel *ch) |
| { |
| outb_p(FEPMEM, ch->board->port); |
| } |
| |
| static void pcxi_rxwinon(struct channel *ch) |
| { |
| outb_p(FEPMEM, ch->board->port); |
| } |
| |
| static void pcxi_txwinon(struct channel *ch) |
| { |
| outb_p(FEPMEM, ch->board->port); |
| } |
| |
| static void pcxi_memoff(struct channel *ch) |
| { |
| outb_p(0, ch->board->port); |
| } |
| |
| static void pcxi_assertgwinon(struct channel *ch) |
| { |
| epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off"); |
| } |
| |
| static void pcxi_assertmemoff(struct channel *ch) |
| { |
| epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on"); |
| } |
| |
| /* |
| * Not all of the cards need specific memory windowing routines. Some cards |
| * (Such as PCI) needs no windowing routines at all. We provide these do |
| * nothing routines so that the same code base can be used. The driver will |
| * ALWAYS call a windowing routine if it thinks it needs to; regardless of the |
| * card. However, dependent on the card the routine may or may not do anything. |
| */ |
| static void dummy_memwinon(struct board_info *b, unsigned int win) |
| { |
| } |
| |
| static void dummy_memwinoff(struct board_info *b, unsigned int win) |
| { |
| } |
| |
| static void dummy_globalwinon(struct channel *ch) |
| { |
| } |
| |
| static void dummy_rxwinon(struct channel *ch) |
| { |
| } |
| |
| static void dummy_txwinon(struct channel *ch) |
| { |
| } |
| |
| static void dummy_memoff(struct channel *ch) |
| { |
| } |
| |
| static void dummy_assertgwinon(struct channel *ch) |
| { |
| } |
| |
| static void dummy_assertmemoff(struct channel *ch) |
| { |
| } |
| |
| static struct channel *verifyChannel(struct tty_struct *tty) |
| { |
| /* |
| * This routine basically provides a sanity check. It insures that the |
| * channel returned is within the proper range of addresses as well as |
| * properly initialized. If some bogus info gets passed in |
| * through tty->driver_data this should catch it. |
| */ |
| if (tty) { |
| struct channel *ch = (struct channel *)tty->driver_data; |
| if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) { |
| if (ch->magic == EPCA_MAGIC) |
| return ch; |
| } |
| } |
| return NULL; |
| } |
| |
| static void pc_sched_event(struct channel *ch, int event) |
| { |
| /* |
| * We call this to schedule interrupt processing on some event. The |
| * kernel sees our request and calls the related routine in OUR driver. |
| */ |
| ch->event |= 1 << event; |
| schedule_work(&ch->tqueue); |
| } |
| |
| static void epca_error(int line, char *msg) |
| { |
| printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg); |
| } |
| |
| static void pc_close(struct tty_struct *tty, struct file *filp) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| spin_lock_irqsave(&epca_lock, flags); |
| if (tty_hung_up_p(filp)) { |
| spin_unlock_irqrestore(&epca_lock, flags); |
| return; |
| } |
| if (ch->count-- > 1) { |
| /* Begin channel is open more than once */ |
| /* |
| * Return without doing anything. Someone might still |
| * be using the channel. |
| */ |
| spin_unlock_irqrestore(&epca_lock, flags); |
| return; |
| } |
| |
| /* Port open only once go ahead with shutdown & reset */ |
| BUG_ON(ch->count < 0); |
| |
| /* |
| * Let the rest of the driver know the channel is being closed. |
| * This becomes important if an open is attempted before close |
| * is finished. |
| */ |
| ch->asyncflags |= ASYNC_CLOSING; |
| tty->closing = 1; |
| |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if (ch->asyncflags & ASYNC_INITIALIZED) { |
| /* Setup an event to indicate when the transmit buffer empties */ |
| setup_empty_event(tty, ch); |
| tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */ |
| } |
| if (tty->driver->flush_buffer) |
| tty->driver->flush_buffer(tty); |
| |
| tty_ldisc_flush(tty); |
| shutdown(ch); |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| tty->closing = 0; |
| ch->event = 0; |
| ch->tty = NULL; |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if (ch->blocked_open) { |
| if (ch->close_delay) |
| msleep_interruptible(jiffies_to_msecs(ch->close_delay)); |
| wake_up_interruptible(&ch->open_wait); |
| } |
| ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED | |
| ASYNC_CLOSING); |
| wake_up_interruptible(&ch->close_wait); |
| } |
| } |
| |
| static void shutdown(struct channel *ch) |
| { |
| unsigned long flags; |
| struct tty_struct *tty; |
| struct board_chan __iomem *bc; |
| |
| if (!(ch->asyncflags & ASYNC_INITIALIZED)) |
| return; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| |
| globalwinon(ch); |
| bc = ch->brdchan; |
| |
| /* |
| * In order for an event to be generated on the receipt of data the |
| * idata flag must be set. Since we are shutting down, this is not |
| * necessary clear this flag. |
| */ |
| if (bc) |
| writeb(0, &bc->idata); |
| tty = ch->tty; |
| |
| /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */ |
| if (tty->termios->c_cflag & HUPCL) { |
| ch->omodem &= ~(ch->m_rts | ch->m_dtr); |
| fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1); |
| } |
| memoff(ch); |
| |
| /* |
| * The channel has officialy been closed. The next time it is opened it |
| * will have to reinitialized. Set a flag to indicate this. |
| */ |
| /* Prevent future Digi programmed interrupts from coming active */ |
| ch->asyncflags &= ~ASYNC_INITIALIZED; |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| |
| static void pc_hangup(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| unsigned long flags; |
| |
| if (tty->driver->flush_buffer) |
| tty->driver->flush_buffer(tty); |
| tty_ldisc_flush(tty); |
| shutdown(ch); |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| ch->tty = NULL; |
| ch->event = 0; |
| ch->count = 0; |
| ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| wake_up_interruptible(&ch->open_wait); |
| } |
| } |
| |
| static int pc_write(struct tty_struct *tty, |
| const unsigned char *buf, int bytesAvailable) |
| { |
| unsigned int head, tail; |
| int dataLen; |
| int size; |
| int amountCopied; |
| struct channel *ch; |
| unsigned long flags; |
| int remain; |
| struct board_chan __iomem *bc; |
| |
| /* |
| * pc_write is primarily called directly by the kernel routine |
| * tty_write (Though it can also be called by put_char) found in |
| * tty_io.c. pc_write is passed a line discipline buffer where the data |
| * to be written out is stored. The line discipline implementation |
| * itself is done at the kernel level and is not brought into the |
| * driver. |
| */ |
| |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) == NULL) |
| return 0; |
| |
| /* Make a pointer to the channel data structure found on the board. */ |
| bc = ch->brdchan; |
| size = ch->txbufsize; |
| amountCopied = 0; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| |
| head = readw(&bc->tin) & (size - 1); |
| tail = readw(&bc->tout); |
| |
| if (tail != readw(&bc->tout)) |
| tail = readw(&bc->tout); |
| tail &= (size - 1); |
| |
| if (head >= tail) { |
| /* head has not wrapped */ |
| /* |
| * remain (much like dataLen above) represents the total amount |
| * of space available on the card for data. Here dataLen |
| * represents the space existing between the head pointer and |
| * the end of buffer. This is important because a memcpy cannot |
| * be told to automatically wrap around when it hits the buffer |
| * end. |
| */ |
| dataLen = size - head; |
| remain = size - (head - tail) - 1; |
| } else { |
| /* head has wrapped around */ |
| remain = tail - head - 1; |
| dataLen = remain; |
| } |
| /* |
| * Check the space on the card. If we have more data than space; reduce |
| * the amount of data to fit the space. |
| */ |
| bytesAvailable = min(remain, bytesAvailable); |
| txwinon(ch); |
| while (bytesAvailable > 0) { |
| /* there is data to copy onto card */ |
| |
| /* |
| * If head is not wrapped, the below will make sure the first |
| * data copy fills to the end of card buffer. |
| */ |
| dataLen = min(bytesAvailable, dataLen); |
| memcpy_toio(ch->txptr + head, buf, dataLen); |
| buf += dataLen; |
| head += dataLen; |
| amountCopied += dataLen; |
| bytesAvailable -= dataLen; |
| |
| if (head >= size) { |
| head = 0; |
| dataLen = tail; |
| } |
| } |
| ch->statusflags |= TXBUSY; |
| globalwinon(ch); |
| writew(head, &bc->tin); |
| |
| if ((ch->statusflags & LOWWAIT) == 0) { |
| ch->statusflags |= LOWWAIT; |
| writeb(1, &bc->ilow); |
| } |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| return amountCopied; |
| } |
| |
| static void pc_put_char(struct tty_struct *tty, unsigned char c) |
| { |
| pc_write(tty, &c, 1); |
| } |
| |
| static int pc_write_room(struct tty_struct *tty) |
| { |
| int remain; |
| struct channel *ch; |
| unsigned long flags; |
| unsigned int head, tail; |
| struct board_chan __iomem *bc; |
| |
| remain = 0; |
| |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| |
| bc = ch->brdchan; |
| head = readw(&bc->tin) & (ch->txbufsize - 1); |
| tail = readw(&bc->tout); |
| |
| if (tail != readw(&bc->tout)) |
| tail = readw(&bc->tout); |
| /* Wrap tail if necessary */ |
| tail &= (ch->txbufsize - 1); |
| |
| if ((remain = tail - head - 1) < 0 ) |
| remain += ch->txbufsize; |
| |
| if (remain && (ch->statusflags & LOWWAIT) == 0) { |
| ch->statusflags |= LOWWAIT; |
| writeb(1, &bc->ilow); |
| } |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| /* Return how much room is left on card */ |
| return remain; |
| } |
| |
| static int pc_chars_in_buffer(struct tty_struct *tty) |
| { |
| int chars; |
| unsigned int ctail, head, tail; |
| int remain; |
| unsigned long flags; |
| struct channel *ch; |
| struct board_chan __iomem *bc; |
| |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) == NULL) |
| return 0; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| |
| bc = ch->brdchan; |
| tail = readw(&bc->tout); |
| head = readw(&bc->tin); |
| ctail = readw(&ch->mailbox->cout); |
| |
| if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0) |
| chars = 0; |
| else { /* Begin if some space on the card has been used */ |
| head = readw(&bc->tin) & (ch->txbufsize - 1); |
| tail &= (ch->txbufsize - 1); |
| /* |
| * The logic here is basically opposite of the above |
| * pc_write_room here we are finding the amount of bytes in the |
| * buffer filled. Not the amount of bytes empty. |
| */ |
| if ((remain = tail - head - 1) < 0 ) |
| remain += ch->txbufsize; |
| chars = (int)(ch->txbufsize - remain); |
| /* |
| * Make it possible to wakeup anything waiting for output in |
| * tty_ioctl.c, etc. |
| * |
| * If not already set. Setup an event to indicate when the |
| * transmit buffer empties. |
| */ |
| if (!(ch->statusflags & EMPTYWAIT)) |
| setup_empty_event(tty,ch); |
| } /* End if some space on the card has been used */ |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| /* Return number of characters residing on card. */ |
| return chars; |
| } |
| |
| static void pc_flush_buffer(struct tty_struct *tty) |
| { |
| unsigned int tail; |
| unsigned long flags; |
| struct channel *ch; |
| struct board_chan __iomem *bc; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) == NULL) |
| return; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| bc = ch->brdchan; |
| tail = readw(&bc->tout); |
| /* Have FEP move tout pointer; effectively flushing transmit buffer */ |
| fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| tty_wakeup(tty); |
| } |
| |
| static void pc_flush_chars(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| unsigned long flags; |
| spin_lock_irqsave(&epca_lock, flags); |
| /* |
| * If not already set and the transmitter is busy setup an |
| * event to indicate when the transmit empties. |
| */ |
| if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT)) |
| setup_empty_event(tty,ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| } |
| |
| static int block_til_ready(struct tty_struct *tty, |
| struct file *filp, struct channel *ch) |
| { |
| DECLARE_WAITQUEUE(wait,current); |
| int retval, do_clocal = 0; |
| unsigned long flags; |
| |
| if (tty_hung_up_p(filp)) { |
| if (ch->asyncflags & ASYNC_HUP_NOTIFY) |
| retval = -EAGAIN; |
| else |
| retval = -ERESTARTSYS; |
| return retval; |
| } |
| |
| /* |
| * If the device is in the middle of being closed, then block until |
| * it's done, and then try again. |
| */ |
| if (ch->asyncflags & ASYNC_CLOSING) { |
| interruptible_sleep_on(&ch->close_wait); |
| |
| if (ch->asyncflags & ASYNC_HUP_NOTIFY) |
| return -EAGAIN; |
| else |
| return -ERESTARTSYS; |
| } |
| |
| if (filp->f_flags & O_NONBLOCK) { |
| /* |
| * If non-blocking mode is set, then make the check up front |
| * and then exit. |
| */ |
| ch->asyncflags |= ASYNC_NORMAL_ACTIVE; |
| return 0; |
| } |
| if (tty->termios->c_cflag & CLOCAL) |
| do_clocal = 1; |
| /* Block waiting for the carrier detect and the line to become free */ |
| |
| retval = 0; |
| add_wait_queue(&ch->open_wait, &wait); |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| /* We dec count so that pc_close will know when to free things */ |
| if (!tty_hung_up_p(filp)) |
| ch->count--; |
| ch->blocked_open++; |
| while (1) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (tty_hung_up_p(filp) || |
| !(ch->asyncflags & ASYNC_INITIALIZED)) |
| { |
| if (ch->asyncflags & ASYNC_HUP_NOTIFY) |
| retval = -EAGAIN; |
| else |
| retval = -ERESTARTSYS; |
| break; |
| } |
| if (!(ch->asyncflags & ASYNC_CLOSING) && |
| (do_clocal || (ch->imodem & ch->dcd))) |
| break; |
| if (signal_pending(current)) { |
| retval = -ERESTARTSYS; |
| break; |
| } |
| spin_unlock_irqrestore(&epca_lock, flags); |
| /* |
| * Allow someone else to be scheduled. We will occasionally go |
| * through this loop until one of the above conditions change. |
| * The below schedule call will allow other processes to enter |
| * and prevent this loop from hogging the cpu. |
| */ |
| schedule(); |
| spin_lock_irqsave(&epca_lock, flags); |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| remove_wait_queue(&ch->open_wait, &wait); |
| if (!tty_hung_up_p(filp)) |
| ch->count++; |
| ch->blocked_open--; |
| |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if (retval) |
| return retval; |
| |
| ch->asyncflags |= ASYNC_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| static int pc_open(struct tty_struct *tty, struct file * filp) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| int line, retval, boardnum; |
| struct board_chan __iomem *bc; |
| unsigned int head; |
| |
| line = tty->index; |
| if (line < 0 || line >= nbdevs) |
| return -ENODEV; |
| |
| ch = &digi_channels[line]; |
| boardnum = ch->boardnum; |
| |
| /* Check status of board configured in system. */ |
| |
| /* |
| * I check to see if the epca_setup routine detected an user error. It |
| * might be better to put this in pc_init, but for the moment it goes |
| * here. |
| */ |
| if (invalid_lilo_config) { |
| if (setup_error_code & INVALID_BOARD_TYPE) |
| printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n"); |
| if (setup_error_code & INVALID_NUM_PORTS) |
| printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n"); |
| if (setup_error_code & INVALID_MEM_BASE) |
| printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n"); |
| if (setup_error_code & INVALID_PORT_BASE) |
| printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n"); |
| if (setup_error_code & INVALID_BOARD_STATUS) |
| printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n"); |
| if (setup_error_code & INVALID_ALTPIN) |
| printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n"); |
| tty->driver_data = NULL; /* Mark this device as 'down' */ |
| return -ENODEV; |
| } |
| if (boardnum >= num_cards || boards[boardnum].status == DISABLED) { |
| tty->driver_data = NULL; /* Mark this device as 'down' */ |
| return(-ENODEV); |
| } |
| |
| if ((bc = ch->brdchan) == 0) { |
| tty->driver_data = NULL; |
| return -ENODEV; |
| } |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| /* |
| * Every time a channel is opened, increment a counter. This is |
| * necessary because we do not wish to flush and shutdown the channel |
| * until the last app holding the channel open, closes it. |
| */ |
| ch->count++; |
| /* |
| * Set a kernel structures pointer to our local channel structure. This |
| * way we can get to it when passed only a tty struct. |
| */ |
| tty->driver_data = ch; |
| /* |
| * If this is the first time the channel has been opened, initialize |
| * the tty->termios struct otherwise let pc_close handle it. |
| */ |
| globalwinon(ch); |
| ch->statusflags = 0; |
| |
| /* Save boards current modem status */ |
| ch->imodem = readb(&bc->mstat); |
| |
| /* |
| * Set receive head and tail ptrs to each other. This indicates no data |
| * available to read. |
| */ |
| head = readw(&bc->rin); |
| writew(head, &bc->rout); |
| |
| /* Set the channels associated tty structure */ |
| ch->tty = tty; |
| |
| /* |
| * The below routine generally sets up parity, baud, flow control |
| * issues, etc.... It effect both control flags and input flags. |
| */ |
| epcaparam(tty,ch); |
| ch->asyncflags |= ASYNC_INITIALIZED; |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| retval = block_til_ready(tty, filp, ch); |
| if (retval) |
| return retval; |
| /* |
| * Set this again in case a hangup set it to zero while this open() was |
| * waiting for the line... |
| */ |
| spin_lock_irqsave(&epca_lock, flags); |
| ch->tty = tty; |
| globalwinon(ch); |
| /* Enable Digi Data events */ |
| writeb(1, &bc->idata); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| return 0; |
| } |
| |
| static int __init epca_module_init(void) |
| { |
| return pc_init(); |
| } |
| module_init(epca_module_init); |
| |
| static struct pci_driver epca_driver; |
| |
| static void __exit epca_module_exit(void) |
| { |
| int count, crd; |
| struct board_info *bd; |
| struct channel *ch; |
| |
| del_timer_sync(&epca_timer); |
| |
| if (tty_unregister_driver(pc_driver) || tty_unregister_driver(pc_info)) |
| { |
| printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n"); |
| return; |
| } |
| put_tty_driver(pc_driver); |
| put_tty_driver(pc_info); |
| |
| for (crd = 0; crd < num_cards; crd++) { |
| bd = &boards[crd]; |
| if (!bd) { /* sanity check */ |
| printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n"); |
| return; |
| } |
| ch = card_ptr[crd]; |
| for (count = 0; count < bd->numports; count++, ch++) { |
| if (ch && ch->tty) |
| tty_hangup(ch->tty); |
| } |
| } |
| pci_unregister_driver(&epca_driver); |
| } |
| module_exit(epca_module_exit); |
| |
| static const struct tty_operations pc_ops = { |
| .open = pc_open, |
| .close = pc_close, |
| .write = pc_write, |
| .write_room = pc_write_room, |
| .flush_buffer = pc_flush_buffer, |
| .chars_in_buffer = pc_chars_in_buffer, |
| .flush_chars = pc_flush_chars, |
| .put_char = pc_put_char, |
| .ioctl = pc_ioctl, |
| .set_termios = pc_set_termios, |
| .stop = pc_stop, |
| .start = pc_start, |
| .throttle = pc_throttle, |
| .unthrottle = pc_unthrottle, |
| .hangup = pc_hangup, |
| }; |
| |
| static int info_open(struct tty_struct *tty, struct file * filp) |
| { |
| return 0; |
| } |
| |
| static struct tty_operations info_ops = { |
| .open = info_open, |
| .ioctl = info_ioctl, |
| }; |
| |
| static int __init pc_init(void) |
| { |
| int crd; |
| struct board_info *bd; |
| unsigned char board_id = 0; |
| int err = -ENOMEM; |
| |
| int pci_boards_found, pci_count; |
| |
| pci_count = 0; |
| |
| pc_driver = alloc_tty_driver(MAX_ALLOC); |
| if (!pc_driver) |
| goto out1; |
| |
| pc_info = alloc_tty_driver(MAX_ALLOC); |
| if (!pc_info) |
| goto out2; |
| |
| /* |
| * If epca_setup has not been ran by LILO set num_cards to defaults; |
| * copy board structure defined by digiConfig into drivers board |
| * structure. Note : If LILO has ran epca_setup then epca_setup will |
| * handle defining num_cards as well as copying the data into the board |
| * structure. |
| */ |
| if (!liloconfig) { |
| /* driver has been configured via. epcaconfig */ |
| nbdevs = NBDEVS; |
| num_cards = NUMCARDS; |
| memcpy(&boards, &static_boards, |
| sizeof(struct board_info) * NUMCARDS); |
| } |
| |
| /* |
| * Note : If lilo was used to configure the driver and the ignore |
| * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards |
| * will equal 0 at this point. This is okay; PCI cards will still be |
| * picked up if detected. |
| */ |
| |
| /* |
| * Set up interrupt, we will worry about memory allocation in |
| * post_fep_init. |
| */ |
| printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION); |
| |
| /* |
| * NOTE : This code assumes that the number of ports found in the |
| * boards array is correct. This could be wrong if the card in question |
| * is PCI (And therefore has no ports entry in the boards structure.) |
| * The rest of the information will be valid for PCI because the |
| * beginning of pc_init scans for PCI and determines i/o and base |
| * memory addresses. I am not sure if it is possible to read the number |
| * of ports supported by the card prior to it being booted (Since that |
| * is the state it is in when pc_init is run). Because it is not |
| * possible to query the number of supported ports until after the card |
| * has booted; we are required to calculate the card_ptrs as the card |
| * is initialized (Inside post_fep_init). The negative thing about this |
| * approach is that digiDload's call to GET_INFO will have a bad port |
| * value. (Since this is called prior to post_fep_init.) |
| */ |
| pci_boards_found = 0; |
| if (num_cards < MAXBOARDS) |
| pci_boards_found += init_PCI(); |
| num_cards += pci_boards_found; |
| |
| pc_driver->owner = THIS_MODULE; |
| pc_driver->name = "ttyD"; |
| pc_driver->major = DIGI_MAJOR; |
| pc_driver->minor_start = 0; |
| pc_driver->type = TTY_DRIVER_TYPE_SERIAL; |
| pc_driver->subtype = SERIAL_TYPE_NORMAL; |
| pc_driver->init_termios = tty_std_termios; |
| pc_driver->init_termios.c_iflag = 0; |
| pc_driver->init_termios.c_oflag = 0; |
| pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL; |
| pc_driver->init_termios.c_lflag = 0; |
| pc_driver->init_termios.c_ispeed = 9600; |
| pc_driver->init_termios.c_ospeed = 9600; |
| pc_driver->flags = TTY_DRIVER_REAL_RAW; |
| tty_set_operations(pc_driver, &pc_ops); |
| |
| pc_info->owner = THIS_MODULE; |
| pc_info->name = "digi_ctl"; |
| pc_info->major = DIGIINFOMAJOR; |
| pc_info->minor_start = 0; |
| pc_info->type = TTY_DRIVER_TYPE_SERIAL; |
| pc_info->subtype = SERIAL_TYPE_INFO; |
| pc_info->init_termios = tty_std_termios; |
| pc_info->init_termios.c_iflag = 0; |
| pc_info->init_termios.c_oflag = 0; |
| pc_info->init_termios.c_lflag = 0; |
| pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL; |
| pc_info->init_termios.c_ispeed = 9600; |
| pc_info->init_termios.c_ospeed = 9600; |
| pc_info->flags = TTY_DRIVER_REAL_RAW; |
| tty_set_operations(pc_info, &info_ops); |
| |
| |
| for (crd = 0; crd < num_cards; crd++) { |
| /* |
| * This is where the appropriate memory handlers for the |
| * hardware is set. Everything at runtime blindly jumps through |
| * these vectors. |
| */ |
| |
| /* defined in epcaconfig.h */ |
| bd = &boards[crd]; |
| |
| switch (bd->type) { |
| case PCXEM: |
| case EISAXEM: |
| bd->memwinon = pcxem_memwinon; |
| bd->memwinoff = pcxem_memwinoff; |
| bd->globalwinon = pcxem_globalwinon; |
| bd->txwinon = pcxem_txwinon; |
| bd->rxwinon = pcxem_rxwinon; |
| bd->memoff = pcxem_memoff; |
| bd->assertgwinon = dummy_assertgwinon; |
| bd->assertmemoff = dummy_assertmemoff; |
| break; |
| |
| case PCIXEM: |
| case PCIXRJ: |
| case PCIXR: |
| bd->memwinon = dummy_memwinon; |
| bd->memwinoff = dummy_memwinoff; |
| bd->globalwinon = dummy_globalwinon; |
| bd->txwinon = dummy_txwinon; |
| bd->rxwinon = dummy_rxwinon; |
| bd->memoff = dummy_memoff; |
| bd->assertgwinon = dummy_assertgwinon; |
| bd->assertmemoff = dummy_assertmemoff; |
| break; |
| |
| case PCXE: |
| case PCXEVE: |
| bd->memwinon = pcxe_memwinon; |
| bd->memwinoff = pcxe_memwinoff; |
| bd->globalwinon = pcxe_globalwinon; |
| bd->txwinon = pcxe_txwinon; |
| bd->rxwinon = pcxe_rxwinon; |
| bd->memoff = pcxe_memoff; |
| bd->assertgwinon = dummy_assertgwinon; |
| bd->assertmemoff = dummy_assertmemoff; |
| break; |
| |
| case PCXI: |
| case PC64XE: |
| bd->memwinon = pcxi_memwinon; |
| bd->memwinoff = pcxi_memwinoff; |
| bd->globalwinon = pcxi_globalwinon; |
| bd->txwinon = pcxi_txwinon; |
| bd->rxwinon = pcxi_rxwinon; |
| bd->memoff = pcxi_memoff; |
| bd->assertgwinon = pcxi_assertgwinon; |
| bd->assertmemoff = pcxi_assertmemoff; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* |
| * Some cards need a memory segment to be defined for use in |
| * transmit and receive windowing operations. These boards are |
| * listed in the below switch. In the case of the XI the amount |
| * of memory on the board is variable so the memory_seg is also |
| * variable. This code determines what they segment should be. |
| */ |
| switch (bd->type) { |
| case PCXE: |
| case PCXEVE: |
| case PC64XE: |
| bd->memory_seg = 0xf000; |
| break; |
| |
| case PCXI: |
| board_id = inb((int)bd->port); |
| if ((board_id & 0x1) == 0x1) { |
| /* it's an XI card */ |
| /* Is it a 64K board */ |
| if ((board_id & 0x30) == 0) |
| bd->memory_seg = 0xf000; |
| |
| /* Is it a 128K board */ |
| if ((board_id & 0x30) == 0x10) |
| bd->memory_seg = 0xe000; |
| |
| /* Is is a 256K board */ |
| if ((board_id & 0x30) == 0x20) |
| bd->memory_seg = 0xc000; |
| |
| /* Is it a 512K board */ |
| if ((board_id & 0x30) == 0x30) |
| bd->memory_seg = 0x8000; |
| } else |
| printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port); |
| break; |
| } |
| } |
| |
| err = tty_register_driver(pc_driver); |
| if (err) { |
| printk(KERN_ERR "Couldn't register Digi PC/ driver"); |
| goto out3; |
| } |
| |
| err = tty_register_driver(pc_info); |
| if (err) { |
| printk(KERN_ERR "Couldn't register Digi PC/ info "); |
| goto out4; |
| } |
| |
| /* Start up the poller to check for events on all enabled boards */ |
| init_timer(&epca_timer); |
| epca_timer.function = epcapoll; |
| mod_timer(&epca_timer, jiffies + HZ/25); |
| return 0; |
| |
| out4: |
| tty_unregister_driver(pc_driver); |
| out3: |
| put_tty_driver(pc_info); |
| out2: |
| put_tty_driver(pc_driver); |
| out1: |
| return err; |
| } |
| |
| static void post_fep_init(unsigned int crd) |
| { |
| int i; |
| void __iomem *memaddr; |
| struct global_data __iomem *gd; |
| struct board_info *bd; |
| struct board_chan __iomem *bc; |
| struct channel *ch; |
| int shrinkmem = 0, lowwater; |
| |
| /* |
| * This call is made by the user via. the ioctl call DIGI_INIT. It is |
| * responsible for setting up all the card specific stuff. |
| */ |
| bd = &boards[crd]; |
| |
| /* |
| * If this is a PCI board, get the port info. Remember PCI cards do not |
| * have entries into the epcaconfig.h file, so we can't get the number |
| * of ports from it. Unfortunetly, this means that anyone doing a |
| * DIGI_GETINFO before the board has booted will get an invalid number |
| * of ports returned (It should return 0). Calls to DIGI_GETINFO after |
| * DIGI_INIT has been called will return the proper values. |
| */ |
| if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */ |
| /* |
| * Below we use XEMPORTS as a memory offset regardless of which |
| * PCI card it is. This is because all of the supported PCI |
| * cards have the same memory offset for the channel data. This |
| * will have to be changed if we ever develop a PCI/XE card. |
| * NOTE : The FEP manual states that the port offset is 0xC22 |
| * as opposed to 0xC02. This is only true for PC/XE, and PC/XI |
| * cards; not for the XEM, or CX series. On the PCI cards the |
| * number of ports is determined by reading a ID PROM located |
| * in the box attached to the card. The card can then determine |
| * the index the id to determine the number of ports available. |
| * (FYI - The id should be located at 0x1ac (And may use up to |
| * 4 bytes if the box in question is a XEM or CX)). |
| */ |
| /* PCI cards are already remapped at this point ISA are not */ |
| bd->numports = readw(bd->re_map_membase + XEMPORTS); |
| epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports"); |
| nbdevs += (bd->numports); |
| } else { |
| /* Fix up the mappings for ISA/EISA etc */ |
| /* FIXME: 64K - can we be smarter ? */ |
| bd->re_map_membase = ioremap(bd->membase, 0x10000); |
| } |
| |
| if (crd != 0) |
| card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports; |
| else |
| card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */ |
| |
| ch = card_ptr[crd]; |
| epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range"); |
| |
| memaddr = bd->re_map_membase; |
| |
| /* |
| * The below assignment will set bc to point at the BEGINING of the |
| * cards channel structures. For 1 card there will be between 8 and 64 |
| * of these structures. |
| */ |
| bc = memaddr + CHANSTRUCT; |
| |
| /* |
| * The below assignment will set gd to point at the BEGINING of global |
| * memory address 0xc00. The first data in that global memory actually |
| * starts at address 0xc1a. The command in pointer begins at 0xd10. |
| */ |
| gd = memaddr + GLOBAL; |
| |
| /* |
| * XEPORTS (address 0xc22) points at the number of channels the card |
| * supports. (For 64XE, XI, XEM, and XR use 0xc02) |
| */ |
| if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3)) |
| shrinkmem = 1; |
| if (bd->type < PCIXEM) |
| if (!request_region((int)bd->port, 4, board_desc[bd->type])) |
| return; |
| memwinon(bd, 0); |
| |
| /* |
| * Remember ch is the main drivers channels structure, while bc is the |
| * cards channel structure. |
| */ |
| for (i = 0; i < bd->numports; i++, ch++, bc++) { |
| unsigned long flags; |
| u16 tseg, rseg; |
| |
| ch->brdchan = bc; |
| ch->mailbox = gd; |
| INIT_WORK(&ch->tqueue, do_softint); |
| ch->board = &boards[crd]; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| switch (bd->type) { |
| /* |
| * Since some of the boards use different bitmaps for |
| * their control signals we cannot hard code these |
| * values and retain portability. We virtualize this |
| * data here. |
| */ |
| case EISAXEM: |
| case PCXEM: |
| case PCIXEM: |
| case PCIXRJ: |
| case PCIXR: |
| ch->m_rts = 0x02; |
| ch->m_dcd = 0x80; |
| ch->m_dsr = 0x20; |
| ch->m_cts = 0x10; |
| ch->m_ri = 0x40; |
| ch->m_dtr = 0x01; |
| break; |
| |
| case PCXE: |
| case PCXEVE: |
| case PCXI: |
| case PC64XE: |
| ch->m_rts = 0x02; |
| ch->m_dcd = 0x08; |
| ch->m_dsr = 0x10; |
| ch->m_cts = 0x20; |
| ch->m_ri = 0x40; |
| ch->m_dtr = 0x80; |
| break; |
| } |
| |
| if (boards[crd].altpin) { |
| ch->dsr = ch->m_dcd; |
| ch->dcd = ch->m_dsr; |
| ch->digiext.digi_flags |= DIGI_ALTPIN; |
| } else { |
| ch->dcd = ch->m_dcd; |
| ch->dsr = ch->m_dsr; |
| } |
| |
| ch->boardnum = crd; |
| ch->channelnum = i; |
| ch->magic = EPCA_MAGIC; |
| ch->tty = NULL; |
| |
| if (shrinkmem) { |
| fepcmd(ch, SETBUFFER, 32, 0, 0, 0); |
| shrinkmem = 0; |
| } |
| |
| tseg = readw(&bc->tseg); |
| rseg = readw(&bc->rseg); |
| |
| switch (bd->type) { |
| case PCIXEM: |
| case PCIXRJ: |
| case PCIXR: |
| /* Cover all the 2MEG cards */ |
| ch->txptr = memaddr + ((tseg << 4) & 0x1fffff); |
| ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff); |
| ch->txwin = FEPWIN | (tseg >> 11); |
| ch->rxwin = FEPWIN | (rseg >> 11); |
| break; |
| |
| case PCXEM: |
| case EISAXEM: |
| /* Cover all the 32K windowed cards */ |
| /* Mask equal to window size - 1 */ |
| ch->txptr = memaddr + ((tseg << 4) & 0x7fff); |
| ch->rxptr = memaddr + ((rseg << 4) & 0x7fff); |
| ch->txwin = FEPWIN | (tseg >> 11); |
| ch->rxwin = FEPWIN | (rseg >> 11); |
| break; |
| |
| case PCXEVE: |
| case PCXE: |
| ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff); |
| ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9); |
| ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff); |
| ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 ); |
| break; |
| |
| case PCXI: |
| case PC64XE: |
| ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4); |
| ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4); |
| ch->txwin = ch->rxwin = 0; |
| break; |
| } |
| |
| ch->txbufhead = 0; |
| ch->txbufsize = readw(&bc->tmax) + 1; |
| |
| ch->rxbufhead = 0; |
| ch->rxbufsize = readw(&bc->rmax) + 1; |
| |
| lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2); |
| |
| /* Set transmitter low water mark */ |
| fepcmd(ch, STXLWATER, lowwater, 0, 10, 0); |
| |
| /* Set receiver low water mark */ |
| fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0); |
| |
| /* Set receiver high water mark */ |
| fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0); |
| |
| writew(100, &bc->edelay); |
| writeb(1, &bc->idata); |
| |
| ch->startc = readb(&bc->startc); |
| ch->stopc = readb(&bc->stopc); |
| ch->startca = readb(&bc->startca); |
| ch->stopca = readb(&bc->stopca); |
| |
| ch->fepcflag = 0; |
| ch->fepiflag = 0; |
| ch->fepoflag = 0; |
| ch->fepstartc = 0; |
| ch->fepstopc = 0; |
| ch->fepstartca = 0; |
| ch->fepstopca = 0; |
| |
| ch->close_delay = 50; |
| ch->count = 0; |
| ch->blocked_open = 0; |
| init_waitqueue_head(&ch->open_wait); |
| init_waitqueue_head(&ch->close_wait); |
| |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| |
| printk(KERN_INFO |
| "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n", |
| VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports); |
| memwinoff(bd, 0); |
| } |
| |
| static void epcapoll(unsigned long ignored) |
| { |
| unsigned long flags; |
| int crd; |
| volatile unsigned int head, tail; |
| struct channel *ch; |
| struct board_info *bd; |
| |
| /* |
| * This routine is called upon every timer interrupt. Even though the |
| * Digi series cards are capable of generating interrupts this method |
| * of non-looping polling is more efficient. This routine checks for |
| * card generated events (Such as receive data, are transmit buffer |
| * empty) and acts on those events. |
| */ |
| for (crd = 0; crd < num_cards; crd++) { |
| bd = &boards[crd]; |
| ch = card_ptr[crd]; |
| |
| if ((bd->status == DISABLED) || digi_poller_inhibited) |
| continue; |
| |
| /* |
| * assertmemoff is not needed here; indeed it is an empty |
| * subroutine. It is being kept because future boards may need |
| * this as well as some legacy boards. |
| */ |
| spin_lock_irqsave(&epca_lock, flags); |
| |
| assertmemoff(ch); |
| |
| globalwinon(ch); |
| |
| /* |
| * In this case head and tail actually refer to the event queue |
| * not the transmit or receive queue. |
| */ |
| head = readw(&ch->mailbox->ein); |
| tail = readw(&ch->mailbox->eout); |
| |
| /* If head isn't equal to tail we have an event */ |
| if (head != tail) |
| doevent(crd); |
| memoff(ch); |
| |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } /* End for each card */ |
| mod_timer(&epca_timer, jiffies + (HZ / 25)); |
| } |
| |
| static void doevent(int crd) |
| { |
| void __iomem *eventbuf; |
| struct channel *ch, *chan0; |
| static struct tty_struct *tty; |
| struct board_info *bd; |
| struct board_chan __iomem *bc; |
| unsigned int tail, head; |
| int event, channel; |
| int mstat, lstat; |
| |
| /* |
| * This subroutine is called by epcapoll when an event is detected |
| * in the event queue. This routine responds to those events. |
| */ |
| bd = &boards[crd]; |
| |
| chan0 = card_ptr[crd]; |
| epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range"); |
| assertgwinon(chan0); |
| while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein))) { /* Begin while something in event queue */ |
| assertgwinon(chan0); |
| eventbuf = bd->re_map_membase + tail + ISTART; |
| /* Get the channel the event occurred on */ |
| channel = readb(eventbuf); |
| /* Get the actual event code that occurred */ |
| event = readb(eventbuf + 1); |
| /* |
| * The two assignments below get the current modem status |
| * (mstat) and the previous modem status (lstat). These are |
| * useful becuase an event could signal a change in modem |
| * signals itself. |
| */ |
| mstat = readb(eventbuf + 2); |
| lstat = readb(eventbuf + 3); |
| |
| ch = chan0 + channel; |
| if ((unsigned)channel >= bd->numports || !ch) { |
| if (channel >= bd->numports) |
| ch = chan0; |
| bc = ch->brdchan; |
| goto next; |
| } |
| |
| if ((bc = ch->brdchan) == NULL) |
| goto next; |
| |
| if (event & DATA_IND) { /* Begin DATA_IND */ |
| receive_data(ch); |
| assertgwinon(ch); |
| } /* End DATA_IND */ |
| /* else *//* Fix for DCD transition missed bug */ |
| if (event & MODEMCHG_IND) { |
| /* A modem signal change has been indicated */ |
| ch->imodem = mstat; |
| if (ch->asyncflags & ASYNC_CHECK_CD) { |
| if (mstat & ch->dcd) /* We are now receiving dcd */ |
| wake_up_interruptible(&ch->open_wait); |
| else |
| pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */ |
| } |
| } |
| tty = ch->tty; |
| if (tty) { |
| if (event & BREAK_IND) { |
| /* A break has been indicated */ |
| tty_insert_flip_char(tty, 0, TTY_BREAK); |
| tty_schedule_flip(tty); |
| } else if (event & LOWTX_IND) { |
| if (ch->statusflags & LOWWAIT) { |
| ch->statusflags &= ~LOWWAIT; |
| tty_wakeup(tty); |
| } |
| } else if (event & EMPTYTX_IND) { |
| /* This event is generated by setup_empty_event */ |
| ch->statusflags &= ~TXBUSY; |
| if (ch->statusflags & EMPTYWAIT) { |
| ch->statusflags &= ~EMPTYWAIT; |
| tty_wakeup(tty); |
| } |
| } |
| } |
| next: |
| globalwinon(ch); |
| BUG_ON(!bc); |
| writew(1, &bc->idata); |
| writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout); |
| globalwinon(chan0); |
| } /* End while something in event queue */ |
| } |
| |
| static void fepcmd(struct channel *ch, int cmd, int word_or_byte, |
| int byte2, int ncmds, int bytecmd) |
| { |
| unchar __iomem *memaddr; |
| unsigned int head, cmdTail, cmdStart, cmdMax; |
| long count; |
| int n; |
| |
| /* This is the routine in which commands may be passed to the card. */ |
| |
| if (ch->board->status == DISABLED) |
| return; |
| assertgwinon(ch); |
| /* Remember head (As well as max) is just an offset not a base addr */ |
| head = readw(&ch->mailbox->cin); |
| /* cmdStart is a base address */ |
| cmdStart = readw(&ch->mailbox->cstart); |
| /* |
| * We do the addition below because we do not want a max pointer |
| * relative to cmdStart. We want a max pointer that points at the |
| * physical end of the command queue. |
| */ |
| cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax)); |
| memaddr = ch->board->re_map_membase; |
| |
| if (head >= (cmdMax - cmdStart) || (head & 03)) { |
| printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head); |
| printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart); |
| return; |
| } |
| if (bytecmd) { |
| writeb(cmd, memaddr + head + cmdStart + 0); |
| writeb(ch->channelnum, memaddr + head + cmdStart + 1); |
| /* Below word_or_byte is bits to set */ |
| writeb(word_or_byte, memaddr + head + cmdStart + 2); |
| /* Below byte2 is bits to reset */ |
| writeb(byte2, memaddr + head + cmdStart + 3); |
| } else { |
| writeb(cmd, memaddr + head + cmdStart + 0); |
| writeb(ch->channelnum, memaddr + head + cmdStart + 1); |
| writeb(word_or_byte, memaddr + head + cmdStart + 2); |
| } |
| head = (head + 4) & (cmdMax - cmdStart - 4); |
| writew(head, &ch->mailbox->cin); |
| count = FEPTIMEOUT; |
| |
| for (;;) { |
| count--; |
| if (count == 0) { |
| printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n"); |
| return; |
| } |
| head = readw(&ch->mailbox->cin); |
| cmdTail = readw(&ch->mailbox->cout); |
| n = (head - cmdTail) & (cmdMax - cmdStart - 4); |
| /* |
| * Basically this will break when the FEP acknowledges the |
| * command by incrementing cmdTail (Making it equal to head). |
| */ |
| if (n <= ncmds * (sizeof(short) * 4)) |
| break; |
| } |
| } |
| |
| /* |
| * Digi products use fields in their channels structures that are very similar |
| * to the c_cflag and c_iflag fields typically found in UNIX termios |
| * structures. The below three routines allow mappings between these hardware |
| * "flags" and their respective Linux flags. |
| */ |
| static unsigned termios2digi_h(struct channel *ch, unsigned cflag) |
| { |
| unsigned res = 0; |
| |
| if (cflag & CRTSCTS) { |
| ch->digiext.digi_flags |= (RTSPACE | CTSPACE); |
| res |= ((ch->m_cts) | (ch->m_rts)); |
| } |
| |
| if (ch->digiext.digi_flags & RTSPACE) |
| res |= ch->m_rts; |
| |
| if (ch->digiext.digi_flags & DTRPACE) |
| res |= ch->m_dtr; |
| |
| if (ch->digiext.digi_flags & CTSPACE) |
| res |= ch->m_cts; |
| |
| if (ch->digiext.digi_flags & DSRPACE) |
| res |= ch->dsr; |
| |
| if (ch->digiext.digi_flags & DCDPACE) |
| res |= ch->dcd; |
| |
| if (res & (ch->m_rts)) |
| ch->digiext.digi_flags |= RTSPACE; |
| |
| if (res & (ch->m_cts)) |
| ch->digiext.digi_flags |= CTSPACE; |
| |
| return res; |
| } |
| |
| static unsigned termios2digi_i(struct channel *ch, unsigned iflag) |
| { |
| unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK | |
| INPCK | ISTRIP|IXON|IXANY|IXOFF); |
| if (ch->digiext.digi_flags & DIGI_AIXON) |
| res |= IAIXON; |
| return res; |
| } |
| |
| static unsigned termios2digi_c(struct channel *ch, unsigned cflag) |
| { |
| unsigned res = 0; |
| if (cflag & CBAUDEX) { |
| ch->digiext.digi_flags |= DIGI_FAST; |
| /* |
| * HUPCL bit is used by FEP to indicate fast baud table is to |
| * be used. |
| */ |
| res |= FEP_HUPCL; |
| } else |
| ch->digiext.digi_flags &= ~DIGI_FAST; |
| /* |
| * CBAUD has bit position 0x1000 set these days to indicate Linux |
| * baud rate remap. Digi hardware can't handle the bit assignment. |
| * (We use a different bit assignment for high speed.). Clear this |
| * bit out. |
| */ |
| res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE); |
| /* |
| * This gets a little confusing. The Digi cards have their own |
| * representation of c_cflags controlling baud rate. For the most part |
| * this is identical to the Linux implementation. However; Digi |
| * supports one rate (76800) that Linux doesn't. This means that the |
| * c_cflag entry that would normally mean 76800 for Digi actually means |
| * 115200 under Linux. Without the below mapping, a stty 115200 would |
| * only drive the board at 76800. Since the rate 230400 is also found |
| * after 76800, the same problem afflicts us when we choose a rate of |
| * 230400. Without the below modificiation stty 230400 would actually |
| * give us 115200. |
| * |
| * There are two additional differences. The Linux value for CLOCAL |
| * (0x800; 0004000) has no meaning to the Digi hardware. Also in later |
| * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000) |
| * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be |
| * checked for a screened out prior to termios2digi_c returning. Since |
| * CLOCAL isn't used by the board this can be ignored as long as the |
| * returned value is used only by Digi hardware. |
| */ |
| if (cflag & CBAUDEX) { |
| /* |
| * The below code is trying to guarantee that only baud rates |
| * 115200 and 230400 are remapped. We use exclusive or because |
| * the various baud rates share common bit positions and |
| * therefore can't be tested for easily. |
| */ |
| if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) || |
| (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX)))) |
| res += 1; |
| } |
| return res; |
| } |
| |
| /* Caller must hold the locks */ |
| static void epcaparam(struct tty_struct *tty, struct channel *ch) |
| { |
| unsigned int cmdHead; |
| struct ktermios *ts; |
| struct board_chan __iomem *bc; |
| unsigned mval, hflow, cflag, iflag; |
| |
| bc = ch->brdchan; |
| epcaassert(bc !=0, "bc out of range"); |
| |
| assertgwinon(ch); |
| ts = tty->termios; |
| if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */ |
| cmdHead = readw(&bc->rin); |
| writew(cmdHead, &bc->rout); |
| cmdHead = readw(&bc->tin); |
| /* Changing baud in mid-stream transmission can be wonderful */ |
| /* |
| * Flush current transmit buffer by setting cmdTail pointer |
| * (tout) to cmdHead pointer (tin). Hopefully the transmit |
| * buffer is empty. |
| */ |
| fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0); |
| mval = 0; |
| } else { /* Begin CBAUD not detected */ |
| /* |
| * c_cflags have changed but that change had nothing to do with |
| * BAUD. Propagate the change to the card. |
| */ |
| cflag = termios2digi_c(ch, ts->c_cflag); |
| if (cflag != ch->fepcflag) { |
| ch->fepcflag = cflag; |
| /* Set baud rate, char size, stop bits, parity */ |
| fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0); |
| } |
| /* |
| * If the user has not forced CLOCAL and if the device is not a |
| * CALLOUT device (Which is always CLOCAL) we set flags such |
| * that the driver will wait on carrier detect. |
| */ |
| if (ts->c_cflag & CLOCAL) |
| ch->asyncflags &= ~ASYNC_CHECK_CD; |
| else |
| ch->asyncflags |= ASYNC_CHECK_CD; |
| mval = ch->m_dtr | ch->m_rts; |
| } /* End CBAUD not detected */ |
| iflag = termios2digi_i(ch, ts->c_iflag); |
| /* Check input mode flags */ |
| if (iflag != ch->fepiflag) { |
| ch->fepiflag = iflag; |
| /* |
| * Command sets channels iflag structure on the board. Such |
| * things as input soft flow control, handling of parity |
| * errors, and break handling are all set here. |
| */ |
| /* break handling, parity handling, input stripping, flow control chars */ |
| fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0); |
| } |
| /* |
| * Set the board mint value for this channel. This will cause hardware |
| * events to be generated each time the DCD signal (Described in mint) |
| * changes. |
| */ |
| writeb(ch->dcd, &bc->mint); |
| if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD)) |
| if (ch->digiext.digi_flags & DIGI_FORCEDCD) |
| writeb(0, &bc->mint); |
| ch->imodem = readb(&bc->mstat); |
| hflow = termios2digi_h(ch, ts->c_cflag); |
| if (hflow != ch->hflow) { |
| ch->hflow = hflow; |
| /* |
| * Hard flow control has been selected but the board is not |
| * using it. Activate hard flow control now. |
| */ |
| fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1); |
| } |
| mval ^= ch->modemfake & (mval ^ ch->modem); |
| |
| if (ch->omodem ^ mval) { |
| ch->omodem = mval; |
| /* |
| * The below command sets the DTR and RTS mstat structure. If |
| * hard flow control is NOT active these changes will drive the |
| * output of the actual DTR and RTS lines. If hard flow control |
| * is active, the changes will be saved in the mstat structure |
| * and only asserted when hard flow control is turned off. |
| */ |
| |
| /* First reset DTR & RTS; then set them */ |
| fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1); |
| fepcmd(ch, SETMODEM, mval, 0, 0, 1); |
| } |
| if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) { |
| ch->fepstartc = ch->startc; |
| ch->fepstopc = ch->stopc; |
| /* |
| * The XON / XOFF characters have changed; propagate these |
| * changes to the card. |
| */ |
| fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); |
| } |
| if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) { |
| ch->fepstartca = ch->startca; |
| ch->fepstopca = ch->stopca; |
| /* |
| * Similar to the above, this time the auxilarly XON / XOFF |
| * characters have changed; propagate these changes to the card. |
| */ |
| fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); |
| } |
| } |
| |
| /* Caller holds lock */ |
| static void receive_data(struct channel *ch) |
| { |
| unchar *rptr; |
| struct ktermios *ts = NULL; |
| struct tty_struct *tty; |
| struct board_chan __iomem *bc; |
| int dataToRead, wrapgap, bytesAvailable; |
| unsigned int tail, head; |
| unsigned int wrapmask; |
| |
| /* |
| * This routine is called by doint when a receive data event has taken |
| * place. |
| */ |
| globalwinon(ch); |
| if (ch->statusflags & RXSTOPPED) |
| return; |
| tty = ch->tty; |
| if (tty) |
| ts = tty->termios; |
| bc = ch->brdchan; |
| BUG_ON(!bc); |
| wrapmask = ch->rxbufsize - 1; |
| |
| /* |
| * Get the head and tail pointers to the receiver queue. Wrap the head |
| * pointer if it has reached the end of the buffer. |
| */ |
| head = readw(&bc->rin); |
| head &= wrapmask; |
| tail = readw(&bc->rout) & wrapmask; |
| |
| bytesAvailable = (head - tail) & wrapmask; |
| if (bytesAvailable == 0) |
| return; |
| |
| /* If CREAD bit is off or device not open, set TX tail to head */ |
| if (!tty || !ts || !(ts->c_cflag & CREAD)) { |
| writew(head, &bc->rout); |
| return; |
| } |
| |
| if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0) |
| return; |
| |
| if (readb(&bc->orun)) { |
| writeb(0, &bc->orun); |
| printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name); |
| tty_insert_flip_char(tty, 0, TTY_OVERRUN); |
| } |
| rxwinon(ch); |
| while (bytesAvailable > 0) { /* Begin while there is data on the card */ |
| wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail; |
| /* |
| * Even if head has wrapped around only report the amount of |
| * data to be equal to the size - tail. Remember memcpy can't |
| * automaticly wrap around the receive buffer. |
| */ |
| dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable; |
| /* Make sure we don't overflow the buffer */ |
| dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead); |
| if (dataToRead == 0) |
| break; |
| /* |
| * Move data read from our card into the line disciplines |
| * buffer for translation if necessary. |
| */ |
| memcpy_fromio(rptr, ch->rxptr + tail, dataToRead); |
| tail = (tail + dataToRead) & wrapmask; |
| bytesAvailable -= dataToRead; |
| } /* End while there is data on the card */ |
| globalwinon(ch); |
| writew(tail, &bc->rout); |
| /* Must be called with global data */ |
| tty_schedule_flip(ch->tty); |
| } |
| |
| static int info_ioctl(struct tty_struct *tty, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case DIGI_GETINFO: |
| { |
| struct digi_info di; |
| int brd; |
| |
| if (get_user(brd, (unsigned int __user *)arg)) |
| return -EFAULT; |
| if (brd < 0 || brd >= num_cards || num_cards == 0) |
| return -ENODEV; |
| |
| memset(&di, 0, sizeof(di)); |
| |
| di.board = brd; |
| di.status = boards[brd].status; |
| di.type = boards[brd].type ; |
| di.numports = boards[brd].numports ; |
| /* Legacy fixups - just move along nothing to see */ |
| di.port = (unsigned char *)boards[brd].port ; |
| di.membase = (unsigned char *)boards[brd].membase ; |
| |
| if (copy_to_user((void __user *)arg, &di, sizeof(di))) |
| return -EFAULT; |
| break; |
| |
| } |
| |
| case DIGI_POLLER: |
| { |
| int brd = arg & 0xff000000 >> 16; |
| unsigned char state = arg & 0xff; |
| |
| if (brd < 0 || brd >= num_cards) { |
| printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n"); |
| return -ENODEV; |
| } |
| digi_poller_inhibited = state; |
| break; |
| } |
| |
| case DIGI_INIT: |
| { |
| /* |
| * This call is made by the apps to complete the |
| * initialization of the board(s). This routine is |
| * responsible for setting the card to its initial |
| * state and setting the drivers control fields to the |
| * sutianle settings for the card in question. |
| */ |
| int crd; |
| for (crd = 0; crd < num_cards; crd++) |
| post_fep_init(crd); |
| break; |
| } |
| default: |
| return -ENOTTY; |
| } |
| return 0; |
| } |
| |
| static int pc_tiocmget(struct tty_struct *tty, struct file *file) |
| { |
| struct channel *ch = (struct channel *) tty->driver_data; |
| struct board_chan __iomem *bc; |
| unsigned int mstat, mflag = 0; |
| unsigned long flags; |
| |
| if (ch) |
| bc = ch->brdchan; |
| else |
| return -EINVAL; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| mstat = readb(&bc->mstat); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if (mstat & ch->m_dtr) |
| mflag |= TIOCM_DTR; |
| if (mstat & ch->m_rts) |
| mflag |= TIOCM_RTS; |
| if (mstat & ch->m_cts) |
| mflag |= TIOCM_CTS; |
| if (mstat & ch->dsr) |
| mflag |= TIOCM_DSR; |
| if (mstat & ch->m_ri) |
| mflag |= TIOCM_RI; |
| if (mstat & ch->dcd) |
| mflag |= TIOCM_CD; |
| return mflag; |
| } |
| |
| static int pc_tiocmset(struct tty_struct *tty, struct file *file, |
| unsigned int set, unsigned int clear) |
| { |
| struct channel *ch = (struct channel *) tty->driver_data; |
| unsigned long flags; |
| |
| if (!ch) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| /* |
| * I think this modemfake stuff is broken. It doesn't correctly reflect |
| * the behaviour desired by the TIOCM* ioctls. Therefore this is |
| * probably broken. |
| */ |
| if (set & TIOCM_RTS) { |
| ch->modemfake |= ch->m_rts; |
| ch->modem |= ch->m_rts; |
| } |
| if (set & TIOCM_DTR) { |
| ch->modemfake |= ch->m_dtr; |
| ch->modem |= ch->m_dtr; |
| } |
| if (clear & TIOCM_RTS) { |
| ch->modemfake |= ch->m_rts; |
| ch->modem &= ~ch->m_rts; |
| } |
| if (clear & TIOCM_DTR) { |
| ch->modemfake |= ch->m_dtr; |
| ch->modem &= ~ch->m_dtr; |
| } |
| globalwinon(ch); |
| /* |
| * The below routine generally sets up parity, baud, flow control |
| * issues, etc.... It effect both control flags and input flags. |
| */ |
| epcaparam(tty,ch); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| return 0; |
| } |
| |
| static int pc_ioctl(struct tty_struct *tty, struct file * file, |
| unsigned int cmd, unsigned long arg) |
| { |
| digiflow_t dflow; |
| int retval; |
| unsigned long flags; |
| unsigned int mflag, mstat; |
| unsigned char startc, stopc; |
| struct board_chan __iomem *bc; |
| struct channel *ch = (struct channel *) tty->driver_data; |
| void __user *argp = (void __user *)arg; |
| |
| if (ch) |
| bc = ch->brdchan; |
| else |
| return -EINVAL; |
| |
| /* |
| * For POSIX compliance we need to add more ioctls. See tty_ioctl.c in |
| * /usr/src/linux/drivers/char for a good example. In particular think |
| * about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS. |
| */ |
| switch (cmd) { |
| case TCSBRK: /* SVID version: non-zero arg --> no break */ |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| /* Setup an event to indicate when the transmit buffer empties */ |
| spin_lock_irqsave(&epca_lock, flags); |
| setup_empty_event(tty,ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| tty_wait_until_sent(tty, 0); |
| if (!arg) |
| digi_send_break(ch, HZ / 4); /* 1/4 second */ |
| return 0; |
| case TCSBRKP: /* support for POSIX tcsendbreak() */ |
| retval = tty_check_change(tty); |
| if (retval) |
| return retval; |
| |
| /* Setup an event to indicate when the transmit buffer empties */ |
| spin_lock_irqsave(&epca_lock, flags); |
| setup_empty_event(tty,ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| tty_wait_until_sent(tty, 0); |
| digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4); |
| return 0; |
| case TIOCMODG: |
| mflag = pc_tiocmget(tty, file); |
| if (put_user(mflag, (unsigned long __user *)argp)) |
| return -EFAULT; |
| break; |
| case TIOCMODS: |
| if (get_user(mstat, (unsigned __user *)argp)) |
| return -EFAULT; |
| return pc_tiocmset(tty, file, mstat, ~mstat); |
| case TIOCSDTR: |
| spin_lock_irqsave(&epca_lock, flags); |
| ch->omodem |= ch->m_dtr; |
| globalwinon(ch); |
| fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| break; |
| |
| case TIOCCDTR: |
| spin_lock_irqsave(&epca_lock, flags); |
| ch->omodem &= ~ch->m_dtr; |
| globalwinon(ch); |
| fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| break; |
| case DIGI_GETA: |
| if (copy_to_user(argp, &ch->digiext, sizeof(digi_t))) |
| return -EFAULT; |
| break; |
| case DIGI_SETAW: |
| case DIGI_SETAF: |
| lock_kernel(); |
| if (cmd == DIGI_SETAW) { |
| /* Setup an event to indicate when the transmit buffer empties */ |
| spin_lock_irqsave(&epca_lock, flags); |
| setup_empty_event(tty,ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| tty_wait_until_sent(tty, 0); |
| } else { |
| /* ldisc lock already held in ioctl */ |
| if (tty->ldisc.flush_buffer) |
| tty->ldisc.flush_buffer(tty); |
| } |
| unlock_kernel(); |
| /* Fall Thru */ |
| case DIGI_SETA: |
| if (copy_from_user(&ch->digiext, argp, sizeof(digi_t))) |
| return -EFAULT; |
| |
| if (ch->digiext.digi_flags & DIGI_ALTPIN) { |
| ch->dcd = ch->m_dsr; |
| ch->dsr = ch->m_dcd; |
| } else { |
| ch->dcd = ch->m_dcd; |
| ch->dsr = ch->m_dsr; |
| } |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| |
| /* |
| * The below routine generally sets up parity, baud, flow |
| * control issues, etc.... It effect both control flags and |
| * input flags. |
| */ |
| epcaparam(tty,ch); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| break; |
| |
| case DIGI_GETFLOW: |
| case DIGI_GETAFLOW: |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| if (cmd == DIGI_GETFLOW) { |
| dflow.startc = readb(&bc->startc); |
| dflow.stopc = readb(&bc->stopc); |
| } else { |
| dflow.startc = readb(&bc->startca); |
| dflow.stopc = readb(&bc->stopca); |
| } |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if (copy_to_user(argp, &dflow, sizeof(dflow))) |
| return -EFAULT; |
| break; |
| |
| case DIGI_SETAFLOW: |
| case DIGI_SETFLOW: |
| if (cmd == DIGI_SETFLOW) { |
| startc = ch->startc; |
| stopc = ch->stopc; |
| } else { |
| startc = ch->startca; |
| stopc = ch->stopca; |
| } |
| |
| if (copy_from_user(&dflow, argp, sizeof(dflow))) |
| return -EFAULT; |
| |
| if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */ |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| |
| if (cmd == DIGI_SETFLOW) { |
| ch->fepstartc = ch->startc = dflow.startc; |
| ch->fepstopc = ch->stopc = dflow.stopc; |
| fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); |
| } else { |
| ch->fepstartca = ch->startca = dflow.startc; |
| ch->fepstopca = ch->stopca = dflow.stopc; |
| fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); |
| } |
| |
| if (ch->statusflags & TXSTOPPED) |
| pc_start(tty); |
| |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } /* End if setflow toggled */ |
| break; |
| default: |
| return -ENOIOCTLCMD; |
| } |
| return 0; |
| } |
| |
| static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */ |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| epcaparam(tty, ch); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| |
| if ((old_termios->c_cflag & CRTSCTS) && |
| ((tty->termios->c_cflag & CRTSCTS) == 0)) |
| tty->hw_stopped = 0; |
| |
| if (!(old_termios->c_cflag & CLOCAL) && |
| (tty->termios->c_cflag & CLOCAL)) |
| wake_up_interruptible(&ch->open_wait); |
| |
| } /* End if channel valid */ |
| } |
| |
| static void do_softint(struct work_struct *work) |
| { |
| struct channel *ch = container_of(work, struct channel, tqueue); |
| /* Called in response to a modem change event */ |
| if (ch && ch->magic == EPCA_MAGIC) { |
| struct tty_struct *tty = ch->tty; |
| |
| if (tty && tty->driver_data) { |
| if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { |
| tty_hangup(tty); /* FIXME: module removal race here - AKPM */ |
| wake_up_interruptible(&ch->open_wait); |
| ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE; |
| } |
| } |
| } |
| } |
| |
| /* |
| * pc_stop and pc_start provide software flow control to the routine and the |
| * pc_ioctl routine. |
| */ |
| static void pc_stop(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| spin_lock_irqsave(&epca_lock, flags); |
| if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */ |
| globalwinon(ch); |
| /* STOP transmitting now !! */ |
| fepcmd(ch, PAUSETX, 0, 0, 0, 0); |
| ch->statusflags |= TXSTOPPED; |
| memoff(ch); |
| } /* End if transmit stop requested */ |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| } |
| |
| static void pc_start(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| unsigned long flags; |
| spin_lock_irqsave(&epca_lock, flags); |
| /* Just in case output was resumed because of a change in Digi-flow */ |
| if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */ |
| struct board_chan __iomem *bc; |
| globalwinon(ch); |
| bc = ch->brdchan; |
| if (ch->statusflags & LOWWAIT) |
| writeb(1, &bc->ilow); |
| /* Okay, you can start transmitting again... */ |
| fepcmd(ch, RESUMETX, 0, 0, 0, 0); |
| ch->statusflags &= ~TXSTOPPED; |
| memoff(ch); |
| } /* End transmit resume requested */ |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| } |
| |
| /* |
| * The below routines pc_throttle and pc_unthrottle are used to slow (And |
| * resume) the receipt of data into the kernels receive buffers. The exact |
| * occurrence of this depends on the size of the kernels receive buffer and |
| * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for |
| * more details. |
| */ |
| static void pc_throttle(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| spin_lock_irqsave(&epca_lock, flags); |
| if ((ch->statusflags & RXSTOPPED) == 0) { |
| globalwinon(ch); |
| fepcmd(ch, PAUSERX, 0, 0, 0, 0); |
| ch->statusflags |= RXSTOPPED; |
| memoff(ch); |
| } |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| } |
| |
| static void pc_unthrottle(struct tty_struct *tty) |
| { |
| struct channel *ch; |
| unsigned long flags; |
| /* |
| * verifyChannel returns the channel from the tty struct if it is |
| * valid. This serves as a sanity check. |
| */ |
| if ((ch = verifyChannel(tty)) != NULL) { |
| /* Just in case output was resumed because of a change in Digi-flow */ |
| spin_lock_irqsave(&epca_lock, flags); |
| if (ch->statusflags & RXSTOPPED) { |
| globalwinon(ch); |
| fepcmd(ch, RESUMERX, 0, 0, 0, 0); |
| ch->statusflags &= ~RXSTOPPED; |
| memoff(ch); |
| } |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| } |
| |
| void digi_send_break(struct channel *ch, int msec) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&epca_lock, flags); |
| globalwinon(ch); |
| /* |
| * Maybe I should send an infinite break here, schedule() for msec |
| * amount of time, and then stop the break. This way, the user can't |
| * screw up the FEP by causing digi_send_break() to be called (i.e. via |
| * an ioctl()) more than once in msec amount of time. |
| * Try this for now... |
| */ |
| fepcmd(ch, SENDBREAK, msec, 0, 10, 0); |
| memoff(ch); |
| spin_unlock_irqrestore(&epca_lock, flags); |
| } |
| |
| /* Caller MUST hold the lock */ |
| static void setup_empty_event(struct tty_struct *tty, struct channel *ch) |
| { |
| struct board_chan __iomem *bc = ch->brdchan; |
| |
| globalwinon(ch); |
| ch->statusflags |= EMPTYWAIT; |
| /* |
| * When set the iempty flag request a event to be generated when the |
| * transmit buffer is empty (If there is no BREAK in progress). |
| */ |
| writeb(1, &bc->iempty); |
| memoff(ch); |
| } |
| |
| void epca_setup(char *str, int *ints) |
| { |
| struct board_info board; |
| int index, loop, last; |
| char *temp, *t2; |
| unsigned len; |
| |
| /* |
| * If this routine looks a little strange it is because it is only |
| * called if a LILO append command is given to boot the kernel with |
| * parameters. In this way, we can provide the user a method of |
| * changing his board configuration without rebuilding the kernel. |
| */ |
| if (!liloconfig) |
| liloconfig = 1; |
| |
| memset(&board, 0, sizeof(board)); |
| |
| /* Assume the data is int first, later we can change it */ |
| /* I think that array position 0 of ints holds the number of args */ |
| for (last = 0, index = 1; index <= ints[0]; index++) |
| switch (index) { /* Begin parse switch */ |
| case 1: |
| board.status = ints[index]; |
| /* |
| * We check for 2 (As opposed to 1; because 2 is a flag |
| * instructing the driver to ignore epcaconfig.) For |
| * this reason we check for 2. |
| */ |
| if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */ |
| nbdevs = 0; |
| num_cards = 0; |
| return; |
| } /* End ignore epcaconfig as well as lilo cmd line */ |
| |
| if (board.status > 2) { |
| printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_BOARD_STATUS; |
| return; |
| } |
| last = index; |
| break; |
| case 2: |
| board.type = ints[index]; |
| if (board.type >= PCIXEM) { |
| printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_BOARD_TYPE; |
| return; |
| } |
| last = index; |
| break; |
| case 3: |
| board.altpin = ints[index]; |
| if (board.altpin > 1) { |
| printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_ALTPIN; |
| return; |
| } |
| last = index; |
| break; |
| |
| case 4: |
| board.numports = ints[index]; |
| if (board.numports < 2 || board.numports > 256) { |
| printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_NUM_PORTS; |
| return; |
| } |
| nbdevs += board.numports; |
| last = index; |
| break; |
| |
| case 5: |
| board.port = ints[index]; |
| if (ints[index] <= 0) { |
| printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_PORT_BASE; |
| return; |
| } |
| last = index; |
| break; |
| |
| case 6: |
| board.membase = ints[index]; |
| if (ints[index] <= 0) { |
| printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_MEM_BASE; |
| return; |
| } |
| last = index; |
| break; |
| |
| default: |
| printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n"); |
| return; |
| |
| } /* End parse switch */ |
| |
| while (str && *str) { /* Begin while there is a string arg */ |
| /* find the next comma or terminator */ |
| temp = str; |
| /* While string is not null, and a comma hasn't been found */ |
| while (*temp && (*temp != ',')) |
| temp++; |
| if (!*temp) |
| temp = NULL; |
| else |
| *temp++ = 0; |
| /* Set index to the number of args + 1 */ |
| index = last + 1; |
| |
| switch (index) { |
| case 1: |
| len = strlen(str); |
| if (strncmp("Disable", str, len) == 0) |
| board.status = 0; |
| else if (strncmp("Enable", str, len) == 0) |
| board.status = 1; |
| else { |
| printk(KERN_ERR "epca_setup: Invalid status %s\n", str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_BOARD_STATUS; |
| return; |
| } |
| last = index; |
| break; |
| |
| case 2: |
| for (loop = 0; loop < EPCA_NUM_TYPES; loop++) |
| if (strcmp(board_desc[loop], str) == 0) |
| break; |
| /* |
| * If the index incremented above refers to a |
| * legitamate board type set it here. |
| */ |
| if (index < EPCA_NUM_TYPES) |
| board.type = loop; |
| else { |
| printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_BOARD_TYPE; |
| return; |
| } |
| last = index; |
| break; |
| |
| case 3: |
| len = strlen(str); |
| if (strncmp("Disable", str, len) == 0) |
| board.altpin = 0; |
| else if (strncmp("Enable", str, len) == 0) |
| board.altpin = 1; |
| else { |
| printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_ALTPIN; |
| return; |
| } |
| last = index; |
| break; |
| |
| case 4: |
| t2 = str; |
| while (isdigit(*t2)) |
| t2++; |
| |
| if (*t2) { |
| printk(KERN_ERR "epca_setup: Invalid port count %s\n", str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_NUM_PORTS; |
| return; |
| } |
| |
| /* |
| * There is not a man page for simple_strtoul but the |
| * code can be found in vsprintf.c. The first argument |
| * is the string to translate (To an unsigned long |
| * obviously), the second argument can be the address |
| * of any character variable or a NULL. If a variable |
| * is given, the end pointer of the string will be |
| * stored in that variable; if a NULL is given the end |
| * pointer will not be returned. The last argument is |
| * the base to use. If a 0 is indicated, the routine |
| * will attempt to determine the proper base by looking |
| * at the values prefix (A '0' for octal, a 'x' for |
| * hex, etc ... If a value is given it will use that |
| * value as the base. |
| */ |
| board.numports = simple_strtoul(str, NULL, 0); |
| nbdevs += board.numports; |
| last = index; |
| break; |
| |
| case 5: |
| t2 = str; |
| while (isxdigit(*t2)) |
| t2++; |
| |
| if (*t2) { |
| printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_PORT_BASE; |
| return; |
| } |
| |
| board.port = simple_strtoul(str, NULL, 16); |
| last = index; |
| break; |
| |
| case 6: |
| t2 = str; |
| while (isxdigit(*t2)) |
| t2++; |
| |
| if (*t2) { |
| printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str); |
| invalid_lilo_config = 1; |
| setup_error_code |= INVALID_MEM_BASE; |
| return; |
| } |
| board.membase = simple_strtoul(str, NULL, 16); |
| last = index; |
| break; |
| default: |
| printk(KERN_ERR "epca: Too many string parms\n"); |
| return; |
| } |
| str = temp; |
| } /* End while there is a string arg */ |
| |
| if (last < 6) { |
| printk(KERN_ERR "epca: Insufficient parms specified\n"); |
| return; |
| } |
| |
| /* I should REALLY validate the stuff here */ |
| /* Copies our local copy of board into boards */ |
| memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board)); |
| /* Does this get called once per lilo arg are what ? */ |
| printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n", |
| num_cards, board_desc[board.type], |
| board.numports, (int)board.port, (unsigned int) board.membase); |
| num_cards++; |
| } |
| |
| enum epic_board_types { |
| brd_xr = 0, |
| brd_xem, |
| brd_cx, |
| brd_xrj, |
| }; |
| |
| /* indexed directly by epic_board_types enum */ |
| static struct { |
| unsigned char board_type; |
| unsigned bar_idx; /* PCI base address region */ |
| } epca_info_tbl[] = { |
| { PCIXR, 0, }, |
| { PCIXEM, 0, }, |
| { PCICX, 0, }, |
| { PCIXRJ, 2, }, |
| }; |
| |
| static int __devinit epca_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| static int board_num = -1; |
| int board_idx, info_idx = ent->driver_data; |
| unsigned long addr; |
| |
| if (pci_enable_device(pdev)) |
| return -EIO; |
| |
| board_num++; |
| board_idx = board_num + num_cards; |
| if (board_idx >= MAXBOARDS) |
| goto err_out; |
| |
| addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx); |
| if (!addr) { |
| printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n", |
| epca_info_tbl[info_idx].bar_idx); |
| goto err_out; |
| } |
| |
| boards[board_idx].status = ENABLED; |
| boards[board_idx].type = epca_info_tbl[info_idx].board_type; |
| boards[board_idx].numports = 0x0; |
| boards[board_idx].port = addr + PCI_IO_OFFSET; |
| boards[board_idx].membase = addr; |
| |
| if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) { |
| printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", |
| 0x200000, addr + PCI_IO_OFFSET); |
| goto err_out; |
| } |
| |
| boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000); |
| if (!boards[board_idx].re_map_port) { |
| printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", |
| 0x200000, addr + PCI_IO_OFFSET); |
| goto err_out_free_pciio; |
| } |
| |
| if (!request_mem_region (addr, 0x200000, "epca")) { |
| printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", |
| 0x200000, addr); |
| goto err_out_free_iounmap; |
| } |
| |
| boards[board_idx].re_map_membase = ioremap(addr, 0x200000); |
| if (!boards[board_idx].re_map_membase) { |
| printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", |
| 0x200000, addr + PCI_IO_OFFSET); |
| goto err_out_free_memregion; |
| } |
| |
| /* |
| * I don't know what the below does, but the hardware guys say its |
| * required on everything except PLX (In this case XRJ). |
| */ |
| if (info_idx != brd_xrj) { |
| pci_write_config_byte(pdev, 0x40, 0); |
| pci_write_config_byte(pdev, 0x46, 0); |
| } |
| |
| return 0; |
| |
| err_out_free_memregion: |
| release_mem_region (addr, 0x200000); |
| err_out_free_iounmap: |
| iounmap (boards[board_idx].re_map_port); |
| err_out_free_pciio: |
| release_mem_region (addr + PCI_IO_OFFSET, 0x200000); |
| err_out: |
| return -ENODEV; |
| } |
| |
| |
| static struct pci_device_id epca_pci_tbl[] = { |
| { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr }, |
| { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem }, |
| { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx }, |
| { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, epca_pci_tbl); |
| |
| int __init init_PCI (void) |
| { |
| memset (&epca_driver, 0, sizeof (epca_driver)); |
| epca_driver.name = "epca"; |
| epca_driver.id_table = epca_pci_tbl; |
| epca_driver.probe = epca_init_one; |
| |
| return pci_register_driver(&epca_driver); |
| } |
| |
| MODULE_LICENSE("GPL"); |