| /* |
| * Copyright 2005-2006 Erik Waling |
| * Copyright 2006 Stephane Marchesin |
| * Copyright 2007-2009 Stuart Bennett |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF |
| * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include "drmP.h" |
| #define NV_DEBUG_NOTRACE |
| #include "nouveau_drv.h" |
| #include "nouveau_hw.h" |
| #include "nouveau_encoder.h" |
| #include "nouveau_gpio.h" |
| |
| #include <linux/io-mapping.h> |
| |
| /* these defines are made up */ |
| #define NV_CIO_CRE_44_HEADA 0x0 |
| #define NV_CIO_CRE_44_HEADB 0x3 |
| #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */ |
| |
| #define EDID1_LEN 128 |
| |
| #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg) |
| #define LOG_OLD_VALUE(x) |
| |
| struct init_exec { |
| bool execute; |
| bool repeat; |
| }; |
| |
| static bool nv_cksum(const uint8_t *data, unsigned int length) |
| { |
| /* |
| * There's a few checksums in the BIOS, so here's a generic checking |
| * function. |
| */ |
| int i; |
| uint8_t sum = 0; |
| |
| for (i = 0; i < length; i++) |
| sum += data[i]; |
| |
| if (sum) |
| return true; |
| |
| return false; |
| } |
| |
| static int |
| score_vbios(struct nvbios *bios, const bool writeable) |
| { |
| if (!bios->data || bios->data[0] != 0x55 || bios->data[1] != 0xAA) { |
| NV_TRACEWARN(bios->dev, "... BIOS signature not found\n"); |
| return 0; |
| } |
| |
| if (nv_cksum(bios->data, bios->data[2] * 512)) { |
| NV_TRACEWARN(bios->dev, "... BIOS checksum invalid\n"); |
| /* if a ro image is somewhat bad, it's probably all rubbish */ |
| return writeable ? 2 : 1; |
| } |
| |
| NV_TRACE(bios->dev, "... appears to be valid\n"); |
| return 3; |
| } |
| |
| static void |
| bios_shadow_prom(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| u32 pcireg, access; |
| u16 pcir; |
| int i; |
| |
| /* enable access to rom */ |
| if (dev_priv->card_type >= NV_50) |
| pcireg = 0x088050; |
| else |
| pcireg = NV_PBUS_PCI_NV_20; |
| access = nv_mask(dev, pcireg, 0x00000001, 0x00000000); |
| |
| /* bail if no rom signature, with a workaround for a PROM reading |
| * issue on some chipsets. the first read after a period of |
| * inactivity returns the wrong result, so retry the first header |
| * byte a few times before giving up as a workaround |
| */ |
| i = 16; |
| do { |
| if (nv_rd08(dev, NV_PROM_OFFSET + 0) == 0x55) |
| break; |
| } while (i--); |
| |
| if (!i || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa) |
| goto out; |
| |
| /* additional check (see note below) - read PCI record header */ |
| pcir = nv_rd08(dev, NV_PROM_OFFSET + 0x18) | |
| nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8; |
| if (nv_rd08(dev, NV_PROM_OFFSET + pcir + 0) != 'P' || |
| nv_rd08(dev, NV_PROM_OFFSET + pcir + 1) != 'C' || |
| nv_rd08(dev, NV_PROM_OFFSET + pcir + 2) != 'I' || |
| nv_rd08(dev, NV_PROM_OFFSET + pcir + 3) != 'R') |
| goto out; |
| |
| /* read entire bios image to system memory */ |
| bios->length = nv_rd08(dev, NV_PROM_OFFSET + 2) * 512; |
| bios->data = kmalloc(bios->length, GFP_KERNEL); |
| if (bios->data) { |
| for (i = 0; i < bios->length; i++) |
| bios->data[i] = nv_rd08(dev, NV_PROM_OFFSET + i); |
| } |
| |
| out: |
| /* disable access to rom */ |
| nv_wr32(dev, pcireg, access); |
| } |
| |
| static void |
| bios_shadow_pramin(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| u32 bar0 = 0; |
| int i; |
| |
| if (dev_priv->card_type >= NV_50) { |
| u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8; |
| if (!addr) { |
| addr = (u64)nv_rd32(dev, 0x001700) << 16; |
| addr += 0xf0000; |
| } |
| |
| bar0 = nv_mask(dev, 0x001700, 0xffffffff, addr >> 16); |
| } |
| |
| /* bail if no rom signature */ |
| if (nv_rd08(dev, NV_PRAMIN_OFFSET + 0) != 0x55 || |
| nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa) |
| goto out; |
| |
| bios->length = nv_rd08(dev, NV_PRAMIN_OFFSET + 2) * 512; |
| bios->data = kmalloc(bios->length, GFP_KERNEL); |
| if (bios->data) { |
| for (i = 0; i < bios->length; i++) |
| bios->data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i); |
| } |
| |
| out: |
| if (dev_priv->card_type >= NV_50) |
| nv_wr32(dev, 0x001700, bar0); |
| } |
| |
| static void |
| bios_shadow_pci(struct nvbios *bios) |
| { |
| struct pci_dev *pdev = bios->dev->pdev; |
| size_t length; |
| |
| if (!pci_enable_rom(pdev)) { |
| void __iomem *rom = pci_map_rom(pdev, &length); |
| if (rom && length) { |
| bios->data = kmalloc(length, GFP_KERNEL); |
| if (bios->data) { |
| memcpy_fromio(bios->data, rom, length); |
| bios->length = length; |
| } |
| } |
| if (rom) |
| pci_unmap_rom(pdev, rom); |
| |
| pci_disable_rom(pdev); |
| } |
| } |
| |
| static void |
| bios_shadow_acpi(struct nvbios *bios) |
| { |
| struct pci_dev *pdev = bios->dev->pdev; |
| int ptr, len, ret; |
| u8 data[3]; |
| |
| if (!nouveau_acpi_rom_supported(pdev)) |
| return; |
| |
| ret = nouveau_acpi_get_bios_chunk(data, 0, sizeof(data)); |
| if (ret != sizeof(data)) |
| return; |
| |
| bios->length = min(data[2] * 512, 65536); |
| bios->data = kmalloc(bios->length, GFP_KERNEL); |
| if (!bios->data) |
| return; |
| |
| len = bios->length; |
| ptr = 0; |
| while (len) { |
| int size = (len > ROM_BIOS_PAGE) ? ROM_BIOS_PAGE : len; |
| |
| ret = nouveau_acpi_get_bios_chunk(bios->data, ptr, size); |
| if (ret != size) { |
| kfree(bios->data); |
| bios->data = NULL; |
| return; |
| } |
| |
| len -= size; |
| ptr += size; |
| } |
| } |
| |
| struct methods { |
| const char desc[8]; |
| void (*shadow)(struct nvbios *); |
| const bool rw; |
| int score; |
| u32 size; |
| u8 *data; |
| }; |
| |
| static bool |
| bios_shadow(struct drm_device *dev) |
| { |
| struct methods shadow_methods[] = { |
| { "PRAMIN", bios_shadow_pramin, true, 0, 0, NULL }, |
| { "PROM", bios_shadow_prom, false, 0, 0, NULL }, |
| { "ACPI", bios_shadow_acpi, true, 0, 0, NULL }, |
| { "PCIROM", bios_shadow_pci, true, 0, 0, NULL }, |
| {} |
| }; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| struct methods *mthd, *best; |
| |
| if (nouveau_vbios) { |
| mthd = shadow_methods; |
| do { |
| if (strcasecmp(nouveau_vbios, mthd->desc)) |
| continue; |
| NV_INFO(dev, "VBIOS source: %s\n", mthd->desc); |
| |
| mthd->shadow(bios); |
| mthd->score = score_vbios(bios, mthd->rw); |
| if (mthd->score) |
| return true; |
| } while ((++mthd)->shadow); |
| |
| NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios); |
| } |
| |
| mthd = shadow_methods; |
| do { |
| NV_TRACE(dev, "Checking %s for VBIOS\n", mthd->desc); |
| mthd->shadow(bios); |
| mthd->score = score_vbios(bios, mthd->rw); |
| mthd->size = bios->length; |
| mthd->data = bios->data; |
| } while (mthd->score != 3 && (++mthd)->shadow); |
| |
| mthd = shadow_methods; |
| best = mthd; |
| do { |
| if (mthd->score > best->score) { |
| kfree(best->data); |
| best = mthd; |
| } |
| } while ((++mthd)->shadow); |
| |
| if (best->score) { |
| NV_TRACE(dev, "Using VBIOS from %s\n", best->desc); |
| bios->length = best->size; |
| bios->data = best->data; |
| return true; |
| } |
| |
| NV_ERROR(dev, "No valid VBIOS image found\n"); |
| return false; |
| } |
| |
| struct init_tbl_entry { |
| char *name; |
| uint8_t id; |
| /* Return: |
| * > 0: success, length of opcode |
| * 0: success, but abort further parsing of table (INIT_DONE etc) |
| * < 0: failure, table parsing will be aborted |
| */ |
| int (*handler)(struct nvbios *, uint16_t, struct init_exec *); |
| }; |
| |
| static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *); |
| |
| #define MACRO_INDEX_SIZE 2 |
| #define MACRO_SIZE 8 |
| #define CONDITION_SIZE 12 |
| #define IO_FLAG_CONDITION_SIZE 9 |
| #define IO_CONDITION_SIZE 5 |
| #define MEM_INIT_SIZE 66 |
| |
| static void still_alive(void) |
| { |
| #if 0 |
| sync(); |
| mdelay(2); |
| #endif |
| } |
| |
| static uint32_t |
| munge_reg(struct nvbios *bios, uint32_t reg) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| struct dcb_entry *dcbent = bios->display.output; |
| |
| if (dev_priv->card_type < NV_50) |
| return reg; |
| |
| if (reg & 0x80000000) { |
| BUG_ON(bios->display.crtc < 0); |
| reg += bios->display.crtc * 0x800; |
| } |
| |
| if (reg & 0x40000000) { |
| BUG_ON(!dcbent); |
| |
| reg += (ffs(dcbent->or) - 1) * 0x800; |
| if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1)) |
| reg += 0x00000080; |
| } |
| |
| reg &= ~0xe0000000; |
| return reg; |
| } |
| |
| static int |
| valid_reg(struct nvbios *bios, uint32_t reg) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| struct drm_device *dev = bios->dev; |
| |
| /* C51 has misaligned regs on purpose. Marvellous */ |
| if (reg & 0x2 || |
| (reg & 0x1 && dev_priv->vbios.chip_version != 0x51)) |
| NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg); |
| |
| /* warn on C51 regs that haven't been verified accessible in tracing */ |
| if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 && |
| reg != 0x130d && reg != 0x1311 && reg != 0x60081d) |
| NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n", |
| reg); |
| |
| if (reg >= (8*1024*1024)) { |
| NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool |
| valid_idx_port(struct nvbios *bios, uint16_t port) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| struct drm_device *dev = bios->dev; |
| |
| /* |
| * If adding more ports here, the read/write functions below will need |
| * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is |
| * used for the port in question |
| */ |
| if (dev_priv->card_type < NV_50) { |
| if (port == NV_CIO_CRX__COLOR) |
| return true; |
| if (port == NV_VIO_SRX) |
| return true; |
| } else { |
| if (port == NV_CIO_CRX__COLOR) |
| return true; |
| } |
| |
| NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n", |
| port); |
| |
| return false; |
| } |
| |
| static bool |
| valid_port(struct nvbios *bios, uint16_t port) |
| { |
| struct drm_device *dev = bios->dev; |
| |
| /* |
| * If adding more ports here, the read/write functions below will need |
| * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is |
| * used for the port in question |
| */ |
| if (port == NV_VIO_VSE2) |
| return true; |
| |
| NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port); |
| |
| return false; |
| } |
| |
| static uint32_t |
| bios_rd32(struct nvbios *bios, uint32_t reg) |
| { |
| uint32_t data; |
| |
| reg = munge_reg(bios, reg); |
| if (!valid_reg(bios, reg)) |
| return 0; |
| |
| /* |
| * C51 sometimes uses regs with bit0 set in the address. For these |
| * cases there should exist a translation in a BIOS table to an IO |
| * port address which the BIOS uses for accessing the reg |
| * |
| * These only seem to appear for the power control regs to a flat panel, |
| * and the GPIO regs at 0x60081*. In C51 mmio traces the normal regs |
| * for 0x1308 and 0x1310 are used - hence the mask below. An S3 |
| * suspend-resume mmio trace from a C51 will be required to see if this |
| * is true for the power microcode in 0x14.., or whether the direct IO |
| * port access method is needed |
| */ |
| if (reg & 0x1) |
| reg &= ~0x1; |
| |
| data = nv_rd32(bios->dev, reg); |
| |
| BIOSLOG(bios, " Read: Reg: 0x%08X, Data: 0x%08X\n", reg, data); |
| |
| return data; |
| } |
| |
| static void |
| bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| |
| reg = munge_reg(bios, reg); |
| if (!valid_reg(bios, reg)) |
| return; |
| |
| /* see note in bios_rd32 */ |
| if (reg & 0x1) |
| reg &= 0xfffffffe; |
| |
| LOG_OLD_VALUE(bios_rd32(bios, reg)); |
| BIOSLOG(bios, " Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data); |
| |
| if (dev_priv->vbios.execute) { |
| still_alive(); |
| nv_wr32(bios->dev, reg, data); |
| } |
| } |
| |
| static uint8_t |
| bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| struct drm_device *dev = bios->dev; |
| uint8_t data; |
| |
| if (!valid_idx_port(bios, port)) |
| return 0; |
| |
| if (dev_priv->card_type < NV_50) { |
| if (port == NV_VIO_SRX) |
| data = NVReadVgaSeq(dev, bios->state.crtchead, index); |
| else /* assume NV_CIO_CRX__COLOR */ |
| data = NVReadVgaCrtc(dev, bios->state.crtchead, index); |
| } else { |
| uint32_t data32; |
| |
| data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); |
| data = (data32 >> ((index & 3) << 3)) & 0xff; |
| } |
| |
| BIOSLOG(bios, " Indexed IO read: Port: 0x%04X, Index: 0x%02X, " |
| "Head: 0x%02X, Data: 0x%02X\n", |
| port, index, bios->state.crtchead, data); |
| return data; |
| } |
| |
| static void |
| bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data) |
| { |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| struct drm_device *dev = bios->dev; |
| |
| if (!valid_idx_port(bios, port)) |
| return; |
| |
| /* |
| * The current head is maintained in the nvbios member state.crtchead. |
| * We trap changes to CR44 and update the head variable and hence the |
| * register set written. |
| * As CR44 only exists on CRTC0, we update crtchead to head0 in advance |
| * of the write, and to head1 after the write |
| */ |
| if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 && |
| data != NV_CIO_CRE_44_HEADB) |
| bios->state.crtchead = 0; |
| |
| LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index)); |
| BIOSLOG(bios, " Indexed IO write: Port: 0x%04X, Index: 0x%02X, " |
| "Head: 0x%02X, Data: 0x%02X\n", |
| port, index, bios->state.crtchead, data); |
| |
| if (bios->execute && dev_priv->card_type < NV_50) { |
| still_alive(); |
| if (port == NV_VIO_SRX) |
| NVWriteVgaSeq(dev, bios->state.crtchead, index, data); |
| else /* assume NV_CIO_CRX__COLOR */ |
| NVWriteVgaCrtc(dev, bios->state.crtchead, index, data); |
| } else |
| if (bios->execute) { |
| uint32_t data32, shift = (index & 3) << 3; |
| |
| still_alive(); |
| |
| data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3)); |
| data32 &= ~(0xff << shift); |
| data32 |= (data << shift); |
| bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32); |
| } |
| |
| if (port == NV_CIO_CRX__COLOR && |
| index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB) |
| bios->state.crtchead = 1; |
| } |
| |
| static uint8_t |
| bios_port_rd(struct nvbios *bios, uint16_t port) |
| { |
| uint8_t data, head = bios->state.crtchead; |
| |
| if (!valid_port(bios, port)) |
| return 0; |
| |
| data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port); |
| |
| BIOSLOG(bios, " IO read: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", |
| port, head, data); |
| |
| return data; |
| } |
| |
| static void |
| bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data) |
| { |
| int head = bios->state.crtchead; |
| |
| if (!valid_port(bios, port)) |
| return; |
| |
| LOG_OLD_VALUE(bios_port_rd(bios, port)); |
| BIOSLOG(bios, " IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n", |
| port, head, data); |
| |
| if (!bios->execute) |
| return; |
| |
| still_alive(); |
| NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data); |
| } |
| |
| static bool |
| io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) |
| { |
| /* |
| * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte |
| * for the CRTC index; 1 byte for the mask to apply to the value |
| * retrieved from the CRTC; 1 byte for the shift right to apply to the |
| * masked CRTC value; 2 bytes for the offset to the flag array, to |
| * which the shifted value is added; 1 byte for the mask applied to the |
| * value read from the flag array; and 1 byte for the value to compare |
| * against the masked byte from the flag table. |
| */ |
| |
| uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE; |
| uint16_t crtcport = ROM16(bios->data[condptr]); |
| uint8_t crtcindex = bios->data[condptr + 2]; |
| uint8_t mask = bios->data[condptr + 3]; |
| uint8_t shift = bios->data[condptr + 4]; |
| uint16_t flagarray = ROM16(bios->data[condptr + 5]); |
| uint8_t flagarraymask = bios->data[condptr + 7]; |
| uint8_t cmpval = bios->data[condptr + 8]; |
| uint8_t data; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " |
| "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, " |
| "Cmpval: 0x%02X\n", |
| offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval); |
| |
| data = bios_idxprt_rd(bios, crtcport, crtcindex); |
| |
| data = bios->data[flagarray + ((data & mask) >> shift)]; |
| data &= flagarraymask; |
| |
| BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", |
| offset, data, cmpval); |
| |
| return (data == cmpval); |
| } |
| |
| static bool |
| bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) |
| { |
| /* |
| * The condition table entry has 4 bytes for the address of the |
| * register to check, 4 bytes for a mask to apply to the register and |
| * 4 for a test comparison value |
| */ |
| |
| uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE; |
| uint32_t reg = ROM32(bios->data[condptr]); |
| uint32_t mask = ROM32(bios->data[condptr + 4]); |
| uint32_t cmpval = ROM32(bios->data[condptr + 8]); |
| uint32_t data; |
| |
| BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n", |
| offset, cond, reg, mask); |
| |
| data = bios_rd32(bios, reg) & mask; |
| |
| BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", |
| offset, data, cmpval); |
| |
| return (data == cmpval); |
| } |
| |
| static bool |
| io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond) |
| { |
| /* |
| * The IO condition entry has 2 bytes for the IO port address; 1 byte |
| * for the index to write to io_port; 1 byte for the mask to apply to |
| * the byte read from io_port+1; and 1 byte for the value to compare |
| * against the masked byte. |
| */ |
| |
| uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE; |
| uint16_t io_port = ROM16(bios->data[condptr]); |
| uint8_t port_index = bios->data[condptr + 2]; |
| uint8_t mask = bios->data[condptr + 3]; |
| uint8_t cmpval = bios->data[condptr + 4]; |
| |
| uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask; |
| |
| BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n", |
| offset, data, cmpval); |
| |
| return (data == cmpval); |
| } |
| |
| static int |
| nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_pll_vals pll; |
| struct pll_lims pll_limits; |
| u32 ctrl, mask, coef; |
| int ret; |
| |
| ret = get_pll_limits(dev, reg, &pll_limits); |
| if (ret) |
| return ret; |
| |
| clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll); |
| if (!clk) |
| return -ERANGE; |
| |
| coef = pll.N1 << 8 | pll.M1; |
| ctrl = pll.log2P << 16; |
| mask = 0x00070000; |
| if (reg == 0x004008) { |
| mask |= 0x01f80000; |
| ctrl |= (pll_limits.log2p_bias << 19); |
| ctrl |= (pll.log2P << 22); |
| } |
| |
| if (!dev_priv->vbios.execute) |
| return 0; |
| |
| nv_mask(dev, reg + 0, mask, ctrl); |
| nv_wr32(dev, reg + 4, coef); |
| return 0; |
| } |
| |
| static int |
| setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk) |
| { |
| struct drm_device *dev = bios->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| /* clk in kHz */ |
| struct pll_lims pll_lim; |
| struct nouveau_pll_vals pllvals; |
| int ret; |
| |
| if (dev_priv->card_type >= NV_50) |
| return nv50_pll_set(dev, reg, clk); |
| |
| /* high regs (such as in the mac g5 table) are not -= 4 */ |
| ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim); |
| if (ret) |
| return ret; |
| |
| clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals); |
| if (!clk) |
| return -ERANGE; |
| |
| if (bios->execute) { |
| still_alive(); |
| nouveau_hw_setpll(dev, reg, &pllvals); |
| } |
| |
| return 0; |
| } |
| |
| static int dcb_entry_idx_from_crtchead(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| |
| /* |
| * For the results of this function to be correct, CR44 must have been |
| * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0, |
| * and the DCB table parsed, before the script calling the function is |
| * run. run_digital_op_script is example of how to do such setup |
| */ |
| |
| uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0); |
| |
| if (dcb_entry > bios->dcb.entries) { |
| NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently " |
| "(%02X)\n", dcb_entry); |
| dcb_entry = 0x7f; /* unused / invalid marker */ |
| } |
| |
| return dcb_entry; |
| } |
| |
| static struct nouveau_i2c_chan * |
| init_i2c_device_find(struct drm_device *dev, int i2c_index) |
| { |
| if (i2c_index == 0xff) { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct dcb_table *dcb = &dev_priv->vbios.dcb; |
| /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ |
| int idx = dcb_entry_idx_from_crtchead(dev); |
| |
| i2c_index = NV_I2C_DEFAULT(0); |
| if (idx != 0x7f && dcb->entry[idx].i2c_upper_default) |
| i2c_index = NV_I2C_DEFAULT(1); |
| } |
| |
| return nouveau_i2c_find(dev, i2c_index); |
| } |
| |
| static uint32_t |
| get_tmds_index_reg(struct drm_device *dev, uint8_t mlv) |
| { |
| /* |
| * For mlv < 0x80, it is an index into a table of TMDS base addresses. |
| * For mlv == 0x80 use the "or" value of the dcb_entry indexed by |
| * CR58 for CR57 = 0 to index a table of offsets to the basic |
| * 0x6808b0 address. |
| * For mlv == 0x81 use the "or" value of the dcb_entry indexed by |
| * CR58 for CR57 = 0 to index a table of offsets to the basic |
| * 0x6808b0 address, and then flip the offset by 8. |
| */ |
| |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| const int pramdac_offset[13] = { |
| 0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 }; |
| const uint32_t pramdac_table[4] = { |
| 0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 }; |
| |
| if (mlv >= 0x80) { |
| int dcb_entry, dacoffset; |
| |
| /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */ |
| dcb_entry = dcb_entry_idx_from_crtchead(dev); |
| if (dcb_entry == 0x7f) |
| return 0; |
| dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or]; |
| if (mlv == 0x81) |
| dacoffset ^= 8; |
| return 0x6808b0 + dacoffset; |
| } else { |
| if (mlv >= ARRAY_SIZE(pramdac_table)) { |
| NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n", |
| mlv); |
| return 0; |
| } |
| return pramdac_table[mlv]; |
| } |
| } |
| |
| static int |
| init_io_restrict_prog(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO_RESTRICT_PROG opcode: 0x32 ('2') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): CRTC index |
| * offset + 4 (8 bit): mask |
| * offset + 5 (8 bit): shift |
| * offset + 6 (8 bit): count |
| * offset + 7 (32 bit): register |
| * offset + 11 (32 bit): configuration 1 |
| * ... |
| * |
| * Starting at offset + 11 there are "count" 32 bit values. |
| * To find out which value to use read index "CRTC index" on "CRTC |
| * port", AND this value with "mask" and then bit shift right "shift" |
| * bits. Read the appropriate value using this index and write to |
| * "register" |
| */ |
| |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t crtcindex = bios->data[offset + 3]; |
| uint8_t mask = bios->data[offset + 4]; |
| uint8_t shift = bios->data[offset + 5]; |
| uint8_t count = bios->data[offset + 6]; |
| uint32_t reg = ROM32(bios->data[offset + 7]); |
| uint8_t config; |
| uint32_t configval; |
| int len = 11 + count * 4; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " |
| "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", |
| offset, crtcport, crtcindex, mask, shift, count, reg); |
| |
| config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; |
| if (config > count) { |
| NV_ERROR(bios->dev, |
| "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", |
| offset, config, count); |
| return len; |
| } |
| |
| configval = ROM32(bios->data[offset + 11 + config * 4]); |
| |
| BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config); |
| |
| bios_wr32(bios, reg, configval); |
| |
| return len; |
| } |
| |
| static int |
| init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_REPEAT opcode: 0x33 ('3') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): count |
| * |
| * Execute script following this opcode up to INIT_REPEAT_END |
| * "count" times |
| */ |
| |
| uint8_t count = bios->data[offset + 1]; |
| uint8_t i; |
| |
| /* no iexec->execute check by design */ |
| |
| BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n", |
| offset, count); |
| |
| iexec->repeat = true; |
| |
| /* |
| * count - 1, as the script block will execute once when we leave this |
| * opcode -- this is compatible with bios behaviour as: |
| * a) the block is always executed at least once, even if count == 0 |
| * b) the bios interpreter skips to the op following INIT_END_REPEAT, |
| * while we don't |
| */ |
| for (i = 0; i < count - 1; i++) |
| parse_init_table(bios, offset + 2, iexec); |
| |
| iexec->repeat = false; |
| |
| return 2; |
| } |
| |
| static int |
| init_io_restrict_pll(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO_RESTRICT_PLL opcode: 0x34 ('4') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): CRTC index |
| * offset + 4 (8 bit): mask |
| * offset + 5 (8 bit): shift |
| * offset + 6 (8 bit): IO flag condition index |
| * offset + 7 (8 bit): count |
| * offset + 8 (32 bit): register |
| * offset + 12 (16 bit): frequency 1 |
| * ... |
| * |
| * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz). |
| * Set PLL register "register" to coefficients for frequency n, |
| * selected by reading index "CRTC index" of "CRTC port" ANDed with |
| * "mask" and shifted right by "shift". |
| * |
| * If "IO flag condition index" > 0, and condition met, double |
| * frequency before setting it. |
| */ |
| |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t crtcindex = bios->data[offset + 3]; |
| uint8_t mask = bios->data[offset + 4]; |
| uint8_t shift = bios->data[offset + 5]; |
| int8_t io_flag_condition_idx = bios->data[offset + 6]; |
| uint8_t count = bios->data[offset + 7]; |
| uint32_t reg = ROM32(bios->data[offset + 8]); |
| uint8_t config; |
| uint16_t freq; |
| int len = 12 + count * 2; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " |
| "Shift: 0x%02X, IO Flag Condition: 0x%02X, " |
| "Count: 0x%02X, Reg: 0x%08X\n", |
| offset, crtcport, crtcindex, mask, shift, |
| io_flag_condition_idx, count, reg); |
| |
| config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; |
| if (config > count) { |
| NV_ERROR(bios->dev, |
| "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", |
| offset, config, count); |
| return len; |
| } |
| |
| freq = ROM16(bios->data[offset + 12 + config * 2]); |
| |
| if (io_flag_condition_idx > 0) { |
| if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) { |
| BIOSLOG(bios, "0x%04X: Condition fulfilled -- " |
| "frequency doubled\n", offset); |
| freq *= 2; |
| } else |
| BIOSLOG(bios, "0x%04X: Condition not fulfilled -- " |
| "frequency unchanged\n", offset); |
| } |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n", |
| offset, reg, config, freq); |
| |
| setPLL(bios, reg, freq * 10); |
| |
| return len; |
| } |
| |
| static int |
| init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_END_REPEAT opcode: 0x36 ('6') |
| * |
| * offset (8 bit): opcode |
| * |
| * Marks the end of the block for INIT_REPEAT to repeat |
| */ |
| |
| /* no iexec->execute check by design */ |
| |
| /* |
| * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when |
| * we're not in repeat mode |
| */ |
| if (iexec->repeat) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_COPY opcode: 0x37 ('7') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (8 bit): shift |
| * offset + 6 (8 bit): srcmask |
| * offset + 7 (16 bit): CRTC port |
| * offset + 9 (8 bit): CRTC index |
| * offset + 10 (8 bit): mask |
| * |
| * Read index "CRTC index" on "CRTC port", AND with "mask", OR with |
| * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC |
| * port |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint8_t shift = bios->data[offset + 5]; |
| uint8_t srcmask = bios->data[offset + 6]; |
| uint16_t crtcport = ROM16(bios->data[offset + 7]); |
| uint8_t crtcindex = bios->data[offset + 9]; |
| uint8_t mask = bios->data[offset + 10]; |
| uint32_t data; |
| uint8_t crtcdata; |
| |
| if (!iexec->execute) |
| return 11; |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, " |
| "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n", |
| offset, reg, shift, srcmask, crtcport, crtcindex, mask); |
| |
| data = bios_rd32(bios, reg); |
| |
| if (shift < 0x80) |
| data >>= shift; |
| else |
| data <<= (0x100 - shift); |
| |
| data &= srcmask; |
| |
| crtcdata = bios_idxprt_rd(bios, crtcport, crtcindex) & mask; |
| crtcdata |= (uint8_t)data; |
| bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata); |
| |
| return 11; |
| } |
| |
| static int |
| init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_NOT opcode: 0x38 ('8') |
| * |
| * offset (8 bit): opcode |
| * |
| * Invert the current execute / no-execute condition (i.e. "else") |
| */ |
| if (iexec->execute) |
| BIOSLOG(bios, "0x%04X: ------ Skipping following commands ------\n", offset); |
| else |
| BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset); |
| |
| iexec->execute = !iexec->execute; |
| return 1; |
| } |
| |
| static int |
| init_io_flag_condition(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO_FLAG_CONDITION opcode: 0x39 ('9') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): condition number |
| * |
| * Check condition "condition number" in the IO flag condition table. |
| * If condition not met skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t cond = bios->data[offset + 1]; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| if (io_flag_condition_met(bios, offset, cond)) |
| BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); |
| else { |
| BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); |
| iexec->execute = false; |
| } |
| |
| return 2; |
| } |
| |
| static int |
| init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_DP_CONDITION opcode: 0x3A ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): "sub" opcode |
| * offset + 2 (8 bit): unknown |
| * |
| */ |
| |
| struct dcb_entry *dcb = bios->display.output; |
| struct drm_device *dev = bios->dev; |
| uint8_t cond = bios->data[offset + 1]; |
| uint8_t *table, *entry; |
| |
| BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond); |
| |
| if (!iexec->execute) |
| return 3; |
| |
| table = nouveau_dp_bios_data(dev, dcb, &entry); |
| if (!table) |
| return 3; |
| |
| switch (cond) { |
| case 0: |
| entry = dcb_conn(dev, dcb->connector); |
| if (!entry || entry[0] != DCB_CONNECTOR_eDP) |
| iexec->execute = false; |
| break; |
| case 1: |
| case 2: |
| if ((table[0] < 0x40 && !(entry[5] & cond)) || |
| (table[0] == 0x40 && !(entry[4] & cond))) |
| iexec->execute = false; |
| break; |
| case 5: |
| { |
| struct nouveau_i2c_chan *auxch; |
| int ret; |
| |
| auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index); |
| if (!auxch) { |
| NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset); |
| return 3; |
| } |
| |
| ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1); |
| if (ret) { |
| NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret); |
| return 3; |
| } |
| |
| if (!(cond & 1)) |
| iexec->execute = false; |
| } |
| break; |
| default: |
| NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond); |
| break; |
| } |
| |
| if (iexec->execute) |
| BIOSLOG(bios, "0x%04X: continuing to execute\n", offset); |
| else |
| BIOSLOG(bios, "0x%04X: skipping following commands\n", offset); |
| |
| return 3; |
| } |
| |
| static int |
| init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_3B opcode: 0x3B ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): crtc index |
| * |
| */ |
| |
| uint8_t or = ffs(bios->display.output->or) - 1; |
| uint8_t index = bios->data[offset + 1]; |
| uint8_t data; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| data = bios_idxprt_rd(bios, 0x3d4, index); |
| bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or)); |
| return 2; |
| } |
| |
| static int |
| init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_3C opcode: 0x3C ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): crtc index |
| * |
| */ |
| |
| uint8_t or = ffs(bios->display.output->or) - 1; |
| uint8_t index = bios->data[offset + 1]; |
| uint8_t data; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| data = bios_idxprt_rd(bios, 0x3d4, index); |
| bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or)); |
| return 2; |
| } |
| |
| static int |
| init_idx_addr_latched(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_INDEX_ADDRESS_LATCHED opcode: 0x49 ('I') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): control register |
| * offset + 5 (32 bit): data register |
| * offset + 9 (32 bit): mask |
| * offset + 13 (32 bit): data |
| * offset + 17 (8 bit): count |
| * offset + 18 (8 bit): address 1 |
| * offset + 19 (8 bit): data 1 |
| * ... |
| * |
| * For each of "count" address and data pairs, write "data n" to |
| * "data register", read the current value of "control register", |
| * and write it back once ANDed with "mask", ORed with "data", |
| * and ORed with "address n" |
| */ |
| |
| uint32_t controlreg = ROM32(bios->data[offset + 1]); |
| uint32_t datareg = ROM32(bios->data[offset + 5]); |
| uint32_t mask = ROM32(bios->data[offset + 9]); |
| uint32_t data = ROM32(bios->data[offset + 13]); |
| uint8_t count = bios->data[offset + 17]; |
| int len = 18 + count * 2; |
| uint32_t value; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, " |
| "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n", |
| offset, controlreg, datareg, mask, data, count); |
| |
| for (i = 0; i < count; i++) { |
| uint8_t instaddress = bios->data[offset + 18 + i * 2]; |
| uint8_t instdata = bios->data[offset + 19 + i * 2]; |
| |
| BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n", |
| offset, instaddress, instdata); |
| |
| bios_wr32(bios, datareg, instdata); |
| value = bios_rd32(bios, controlreg) & mask; |
| value |= data; |
| value |= instaddress; |
| bios_wr32(bios, controlreg, value); |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_io_restrict_pll2(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO_RESTRICT_PLL2 opcode: 0x4A ('J') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): CRTC index |
| * offset + 4 (8 bit): mask |
| * offset + 5 (8 bit): shift |
| * offset + 6 (8 bit): count |
| * offset + 7 (32 bit): register |
| * offset + 11 (32 bit): frequency 1 |
| * ... |
| * |
| * Starting at offset + 11 there are "count" 32 bit frequencies (kHz). |
| * Set PLL register "register" to coefficients for frequency n, |
| * selected by reading index "CRTC index" of "CRTC port" ANDed with |
| * "mask" and shifted right by "shift". |
| */ |
| |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t crtcindex = bios->data[offset + 3]; |
| uint8_t mask = bios->data[offset + 4]; |
| uint8_t shift = bios->data[offset + 5]; |
| uint8_t count = bios->data[offset + 6]; |
| uint32_t reg = ROM32(bios->data[offset + 7]); |
| int len = 11 + count * 4; |
| uint8_t config; |
| uint32_t freq; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " |
| "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n", |
| offset, crtcport, crtcindex, mask, shift, count, reg); |
| |
| if (!reg) |
| return len; |
| |
| config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift; |
| if (config > count) { |
| NV_ERROR(bios->dev, |
| "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n", |
| offset, config, count); |
| return len; |
| } |
| |
| freq = ROM32(bios->data[offset + 11 + config * 4]); |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n", |
| offset, reg, config, freq); |
| |
| setPLL(bios, reg, freq); |
| |
| return len; |
| } |
| |
| static int |
| init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_PLL2 opcode: 0x4B ('K') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (32 bit): freq |
| * |
| * Set PLL register "register" to coefficients for frequency "freq" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint32_t freq = ROM32(bios->data[offset + 5]); |
| |
| if (!iexec->execute) |
| return 9; |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n", |
| offset, reg, freq); |
| |
| setPLL(bios, reg, freq); |
| return 9; |
| } |
| |
| static int |
| init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_I2C_BYTE opcode: 0x4C ('L') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): DCB I2C table entry index |
| * offset + 2 (8 bit): I2C slave address |
| * offset + 3 (8 bit): count |
| * offset + 4 (8 bit): I2C register 1 |
| * offset + 5 (8 bit): mask 1 |
| * offset + 6 (8 bit): data 1 |
| * ... |
| * |
| * For each of "count" registers given by "I2C register n" on the device |
| * addressed by "I2C slave address" on the I2C bus given by |
| * "DCB I2C table entry index", read the register, AND the result with |
| * "mask n" and OR it with "data n" before writing it back to the device |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint8_t i2c_index = bios->data[offset + 1]; |
| uint8_t i2c_address = bios->data[offset + 2] >> 1; |
| uint8_t count = bios->data[offset + 3]; |
| struct nouveau_i2c_chan *chan; |
| int len = 4 + count * 3; |
| int ret, i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " |
| "Count: 0x%02X\n", |
| offset, i2c_index, i2c_address, count); |
| |
| chan = init_i2c_device_find(dev, i2c_index); |
| if (!chan) { |
| NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); |
| return len; |
| } |
| |
| for (i = 0; i < count; i++) { |
| uint8_t reg = bios->data[offset + 4 + i * 3]; |
| uint8_t mask = bios->data[offset + 5 + i * 3]; |
| uint8_t data = bios->data[offset + 6 + i * 3]; |
| union i2c_smbus_data val; |
| |
| ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, |
| I2C_SMBUS_READ, reg, |
| I2C_SMBUS_BYTE_DATA, &val); |
| if (ret < 0) { |
| NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret); |
| return len; |
| } |
| |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, reg, val.byte, mask, data); |
| |
| if (!bios->execute) |
| continue; |
| |
| val.byte &= mask; |
| val.byte |= data; |
| ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, |
| I2C_SMBUS_WRITE, reg, |
| I2C_SMBUS_BYTE_DATA, &val); |
| if (ret < 0) { |
| NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); |
| return len; |
| } |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_I2C_BYTE opcode: 0x4D ('M') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): DCB I2C table entry index |
| * offset + 2 (8 bit): I2C slave address |
| * offset + 3 (8 bit): count |
| * offset + 4 (8 bit): I2C register 1 |
| * offset + 5 (8 bit): data 1 |
| * ... |
| * |
| * For each of "count" registers given by "I2C register n" on the device |
| * addressed by "I2C slave address" on the I2C bus given by |
| * "DCB I2C table entry index", set the register to "data n" |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint8_t i2c_index = bios->data[offset + 1]; |
| uint8_t i2c_address = bios->data[offset + 2] >> 1; |
| uint8_t count = bios->data[offset + 3]; |
| struct nouveau_i2c_chan *chan; |
| int len = 4 + count * 2; |
| int ret, i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " |
| "Count: 0x%02X\n", |
| offset, i2c_index, i2c_address, count); |
| |
| chan = init_i2c_device_find(dev, i2c_index); |
| if (!chan) { |
| NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); |
| return len; |
| } |
| |
| for (i = 0; i < count; i++) { |
| uint8_t reg = bios->data[offset + 4 + i * 2]; |
| union i2c_smbus_data val; |
| |
| val.byte = bios->data[offset + 5 + i * 2]; |
| |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n", |
| offset, reg, val.byte); |
| |
| if (!bios->execute) |
| continue; |
| |
| ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, |
| I2C_SMBUS_WRITE, reg, |
| I2C_SMBUS_BYTE_DATA, &val); |
| if (ret < 0) { |
| NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); |
| return len; |
| } |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_I2C opcode: 0x4E ('N') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): DCB I2C table entry index |
| * offset + 2 (8 bit): I2C slave address |
| * offset + 3 (8 bit): count |
| * offset + 4 (8 bit): data 1 |
| * ... |
| * |
| * Send "count" bytes ("data n") to the device addressed by "I2C slave |
| * address" on the I2C bus given by "DCB I2C table entry index" |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint8_t i2c_index = bios->data[offset + 1]; |
| uint8_t i2c_address = bios->data[offset + 2] >> 1; |
| uint8_t count = bios->data[offset + 3]; |
| int len = 4 + count; |
| struct nouveau_i2c_chan *chan; |
| struct i2c_msg msg; |
| uint8_t data[256]; |
| int ret, i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, " |
| "Count: 0x%02X\n", |
| offset, i2c_index, i2c_address, count); |
| |
| chan = init_i2c_device_find(dev, i2c_index); |
| if (!chan) { |
| NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset); |
| return len; |
| } |
| |
| for (i = 0; i < count; i++) { |
| data[i] = bios->data[offset + 4 + i]; |
| |
| BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]); |
| } |
| |
| if (bios->execute) { |
| msg.addr = i2c_address; |
| msg.flags = 0; |
| msg.len = count; |
| msg.buf = data; |
| ret = i2c_transfer(&chan->adapter, &msg, 1); |
| if (ret != 1) { |
| NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret); |
| return len; |
| } |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_TMDS opcode: 0x4F ('O') (non-canon name) |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): magic lookup value |
| * offset + 2 (8 bit): TMDS address |
| * offset + 3 (8 bit): mask |
| * offset + 4 (8 bit): data |
| * |
| * Read the data reg for TMDS address "TMDS address", AND it with mask |
| * and OR it with data, then write it back |
| * "magic lookup value" determines which TMDS base address register is |
| * used -- see get_tmds_index_reg() |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint8_t mlv = bios->data[offset + 1]; |
| uint32_t tmdsaddr = bios->data[offset + 2]; |
| uint8_t mask = bios->data[offset + 3]; |
| uint8_t data = bios->data[offset + 4]; |
| uint32_t reg, value; |
| |
| if (!iexec->execute) |
| return 5; |
| |
| BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, mlv, tmdsaddr, mask, data); |
| |
| reg = get_tmds_index_reg(bios->dev, mlv); |
| if (!reg) { |
| NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); |
| return 5; |
| } |
| |
| bios_wr32(bios, reg, |
| tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE); |
| value = (bios_rd32(bios, reg + 4) & mask) | data; |
| bios_wr32(bios, reg + 4, value); |
| bios_wr32(bios, reg, tmdsaddr); |
| |
| return 5; |
| } |
| |
| static int |
| init_zm_tmds_group(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_TMDS_GROUP opcode: 0x50 ('P') (non-canon name) |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): magic lookup value |
| * offset + 2 (8 bit): count |
| * offset + 3 (8 bit): addr 1 |
| * offset + 4 (8 bit): data 1 |
| * ... |
| * |
| * For each of "count" TMDS address and data pairs write "data n" to |
| * "addr n". "magic lookup value" determines which TMDS base address |
| * register is used -- see get_tmds_index_reg() |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint8_t mlv = bios->data[offset + 1]; |
| uint8_t count = bios->data[offset + 2]; |
| int len = 3 + count * 2; |
| uint32_t reg; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n", |
| offset, mlv, count); |
| |
| reg = get_tmds_index_reg(bios->dev, mlv); |
| if (!reg) { |
| NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset); |
| return len; |
| } |
| |
| for (i = 0; i < count; i++) { |
| uint8_t tmdsaddr = bios->data[offset + 3 + i * 2]; |
| uint8_t tmdsdata = bios->data[offset + 4 + i * 2]; |
| |
| bios_wr32(bios, reg + 4, tmdsdata); |
| bios_wr32(bios, reg, tmdsaddr); |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_CR_INDEX_ADDRESS_LATCHED opcode: 0x51 ('Q') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): CRTC index1 |
| * offset + 2 (8 bit): CRTC index2 |
| * offset + 3 (8 bit): baseaddr |
| * offset + 4 (8 bit): count |
| * offset + 5 (8 bit): data 1 |
| * ... |
| * |
| * For each of "count" address and data pairs, write "baseaddr + n" to |
| * "CRTC index1" and "data n" to "CRTC index2" |
| * Once complete, restore initial value read from "CRTC index1" |
| */ |
| uint8_t crtcindex1 = bios->data[offset + 1]; |
| uint8_t crtcindex2 = bios->data[offset + 2]; |
| uint8_t baseaddr = bios->data[offset + 3]; |
| uint8_t count = bios->data[offset + 4]; |
| int len = 5 + count; |
| uint8_t oldaddr, data; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, " |
| "BaseAddr: 0x%02X, Count: 0x%02X\n", |
| offset, crtcindex1, crtcindex2, baseaddr, count); |
| |
| oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1); |
| |
| for (i = 0; i < count; i++) { |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, |
| baseaddr + i); |
| data = bios->data[offset + 5 + i]; |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data); |
| } |
| |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr); |
| |
| return len; |
| } |
| |
| static int |
| init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_CR opcode: 0x52 ('R') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): CRTC index |
| * offset + 2 (8 bit): mask |
| * offset + 3 (8 bit): data |
| * |
| * Assign the value of at "CRTC index" ANDed with mask and ORed with |
| * data back to "CRTC index" |
| */ |
| |
| uint8_t crtcindex = bios->data[offset + 1]; |
| uint8_t mask = bios->data[offset + 2]; |
| uint8_t data = bios->data[offset + 3]; |
| uint8_t value; |
| |
| if (!iexec->execute) |
| return 4; |
| |
| BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n", |
| offset, crtcindex, mask, data); |
| |
| value = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask; |
| value |= data; |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value); |
| |
| return 4; |
| } |
| |
| static int |
| init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_CR opcode: 0x53 ('S') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): CRTC index |
| * offset + 2 (8 bit): value |
| * |
| * Assign "value" to CRTC register with index "CRTC index". |
| */ |
| |
| uint8_t crtcindex = ROM32(bios->data[offset + 1]); |
| uint8_t data = bios->data[offset + 2]; |
| |
| if (!iexec->execute) |
| return 3; |
| |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data); |
| |
| return 3; |
| } |
| |
| static int |
| init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_CR_GROUP opcode: 0x54 ('T') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): count |
| * offset + 2 (8 bit): CRTC index 1 |
| * offset + 3 (8 bit): value 1 |
| * ... |
| * |
| * For "count", assign "value n" to CRTC register with index |
| * "CRTC index n". |
| */ |
| |
| uint8_t count = bios->data[offset + 1]; |
| int len = 2 + count * 2; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| for (i = 0; i < count; i++) |
| init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec); |
| |
| return len; |
| } |
| |
| static int |
| init_condition_time(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_CONDITION_TIME opcode: 0x56 ('V') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): condition number |
| * offset + 2 (8 bit): retries / 50 |
| * |
| * Check condition "condition number" in the condition table. |
| * Bios code then sleeps for 2ms if the condition is not met, and |
| * repeats up to "retries" times, but on one C51 this has proved |
| * insufficient. In mmiotraces the driver sleeps for 20ms, so we do |
| * this, and bail after "retries" times, or 2s, whichever is less. |
| * If still not met after retries, clear execution flag for this table. |
| */ |
| |
| uint8_t cond = bios->data[offset + 1]; |
| uint16_t retries = bios->data[offset + 2] * 50; |
| unsigned cnt; |
| |
| if (!iexec->execute) |
| return 3; |
| |
| if (retries > 100) |
| retries = 100; |
| |
| BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n", |
| offset, cond, retries); |
| |
| if (!bios->execute) /* avoid 2s delays when "faking" execution */ |
| retries = 1; |
| |
| for (cnt = 0; cnt < retries; cnt++) { |
| if (bios_condition_met(bios, offset, cond)) { |
| BIOSLOG(bios, "0x%04X: Condition met, continuing\n", |
| offset); |
| break; |
| } else { |
| BIOSLOG(bios, "0x%04X: " |
| "Condition not met, sleeping for 20ms\n", |
| offset); |
| mdelay(20); |
| } |
| } |
| |
| if (!bios_condition_met(bios, offset, cond)) { |
| NV_WARN(bios->dev, |
| "0x%04X: Condition still not met after %dms, " |
| "skipping following opcodes\n", offset, 20 * retries); |
| iexec->execute = false; |
| } |
| |
| return 3; |
| } |
| |
| static int |
| init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_LTIME opcode: 0x57 ('V') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): time |
| * |
| * Sleep for "time" milliseconds. |
| */ |
| |
| unsigned time = ROM16(bios->data[offset + 1]); |
| |
| if (!iexec->execute) |
| return 3; |
| |
| BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n", |
| offset, time); |
| |
| mdelay(time); |
| |
| return 3; |
| } |
| |
| static int |
| init_zm_reg_sequence(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_REG_SEQUENCE opcode: 0x58 ('X') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): base register |
| * offset + 5 (8 bit): count |
| * offset + 6 (32 bit): value 1 |
| * ... |
| * |
| * Starting at offset + 6 there are "count" 32 bit values. |
| * For "count" iterations set "base register" + 4 * current_iteration |
| * to "value current_iteration" |
| */ |
| |
| uint32_t basereg = ROM32(bios->data[offset + 1]); |
| uint32_t count = bios->data[offset + 5]; |
| int len = 6 + count * 4; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n", |
| offset, basereg, count); |
| |
| for (i = 0; i < count; i++) { |
| uint32_t reg = basereg + i * 4; |
| uint32_t data = ROM32(bios->data[offset + 6 + i * 4]); |
| |
| bios_wr32(bios, reg, data); |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_SUB_DIRECT opcode: 0x5B ('[') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): subroutine offset (in bios) |
| * |
| * Calls a subroutine that will execute commands until INIT_DONE |
| * is found. |
| */ |
| |
| uint16_t sub_offset = ROM16(bios->data[offset + 1]); |
| |
| if (!iexec->execute) |
| return 3; |
| |
| BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n", |
| offset, sub_offset); |
| |
| parse_init_table(bios, sub_offset, iexec); |
| |
| BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset); |
| |
| return 3; |
| } |
| |
| static int |
| init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_JUMP opcode: 0x5C ('\') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): offset (in bios) |
| * |
| * Continue execution of init table from 'offset' |
| */ |
| |
| uint16_t jmp_offset = ROM16(bios->data[offset + 1]); |
| |
| if (!iexec->execute) |
| return 3; |
| |
| BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset); |
| return jmp_offset - offset; |
| } |
| |
| static int |
| init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_I2C_IF opcode: 0x5E ('^') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): DCB I2C table entry index |
| * offset + 2 (8 bit): I2C slave address |
| * offset + 3 (8 bit): I2C register |
| * offset + 4 (8 bit): mask |
| * offset + 5 (8 bit): data |
| * |
| * Read the register given by "I2C register" on the device addressed |
| * by "I2C slave address" on the I2C bus given by "DCB I2C table |
| * entry index". Compare the result AND "mask" to "data". |
| * If they're not equal, skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t i2c_index = bios->data[offset + 1]; |
| uint8_t i2c_address = bios->data[offset + 2] >> 1; |
| uint8_t reg = bios->data[offset + 3]; |
| uint8_t mask = bios->data[offset + 4]; |
| uint8_t data = bios->data[offset + 5]; |
| struct nouveau_i2c_chan *chan; |
| union i2c_smbus_data val; |
| int ret; |
| |
| /* no execute check by design */ |
| |
| BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", |
| offset, i2c_index, i2c_address); |
| |
| chan = init_i2c_device_find(bios->dev, i2c_index); |
| if (!chan) |
| return -ENODEV; |
| |
| ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0, |
| I2C_SMBUS_READ, reg, |
| I2C_SMBUS_BYTE_DATA, &val); |
| if (ret < 0) { |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, reg, mask, data); |
| iexec->execute = 0; |
| return 6; |
| } |
| |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, reg, val.byte, mask, data); |
| |
| iexec->execute = ((val.byte & mask) == data); |
| |
| return 6; |
| } |
| |
| static int |
| init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_COPY_NV_REG opcode: 0x5F ('_') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): src reg |
| * offset + 5 (8 bit): shift |
| * offset + 6 (32 bit): src mask |
| * offset + 10 (32 bit): xor |
| * offset + 14 (32 bit): dst reg |
| * offset + 18 (32 bit): dst mask |
| * |
| * Shift REGVAL("src reg") right by (signed) "shift", AND result with |
| * "src mask", then XOR with "xor". Write this OR'd with |
| * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg" |
| */ |
| |
| uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1])); |
| uint8_t shift = bios->data[offset + 5]; |
| uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6])); |
| uint32_t xor = *((uint32_t *)(&bios->data[offset + 10])); |
| uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14])); |
| uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18])); |
| uint32_t srcvalue, dstvalue; |
| |
| if (!iexec->execute) |
| return 22; |
| |
| BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, " |
| "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n", |
| offset, srcreg, shift, srcmask, xor, dstreg, dstmask); |
| |
| srcvalue = bios_rd32(bios, srcreg); |
| |
| if (shift < 0x80) |
| srcvalue >>= shift; |
| else |
| srcvalue <<= (0x100 - shift); |
| |
| srcvalue = (srcvalue & srcmask) ^ xor; |
| |
| dstvalue = bios_rd32(bios, dstreg) & dstmask; |
| |
| bios_wr32(bios, dstreg, dstvalue | srcvalue); |
| |
| return 22; |
| } |
| |
| static int |
| init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_INDEX_IO opcode: 0x62 ('b') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): CRTC index |
| * offset + 4 (8 bit): data |
| * |
| * Write "data" to index "CRTC index" of "CRTC port" |
| */ |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t crtcindex = bios->data[offset + 3]; |
| uint8_t data = bios->data[offset + 4]; |
| |
| if (!iexec->execute) |
| return 5; |
| |
| bios_idxprt_wr(bios, crtcport, crtcindex, data); |
| |
| return 5; |
| } |
| |
| static inline void |
| bios_md32(struct nvbios *bios, uint32_t reg, |
| uint32_t mask, uint32_t val) |
| { |
| bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val); |
| } |
| |
| static uint32_t |
| peek_fb(struct drm_device *dev, struct io_mapping *fb, |
| uint32_t off) |
| { |
| uint32_t val = 0; |
| |
| if (off < pci_resource_len(dev->pdev, 1)) { |
| uint8_t __iomem *p = |
| io_mapping_map_atomic_wc(fb, off & PAGE_MASK); |
| |
| val = ioread32(p + (off & ~PAGE_MASK)); |
| |
| io_mapping_unmap_atomic(p); |
| } |
| |
| return val; |
| } |
| |
| static void |
| poke_fb(struct drm_device *dev, struct io_mapping *fb, |
| uint32_t off, uint32_t val) |
| { |
| if (off < pci_resource_len(dev->pdev, 1)) { |
| uint8_t __iomem *p = |
| io_mapping_map_atomic_wc(fb, off & PAGE_MASK); |
| |
| iowrite32(val, p + (off & ~PAGE_MASK)); |
| wmb(); |
| |
| io_mapping_unmap_atomic(p); |
| } |
| } |
| |
| static inline bool |
| read_back_fb(struct drm_device *dev, struct io_mapping *fb, |
| uint32_t off, uint32_t val) |
| { |
| poke_fb(dev, fb, off, val); |
| return val == peek_fb(dev, fb, off); |
| } |
| |
| static int |
| nv04_init_compute_mem(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| uint32_t patt = 0xdeadbeef; |
| struct io_mapping *fb; |
| int i; |
| |
| /* Map the framebuffer aperture */ |
| fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1)); |
| if (!fb) |
| return -ENOMEM; |
| |
| /* Sequencer and refresh off */ |
| NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); |
| bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF); |
| |
| bios_md32(bios, NV04_PFB_BOOT_0, ~0, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_16MB | |
| NV04_PFB_BOOT_0_RAM_WIDTH_128 | |
| NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT); |
| |
| for (i = 0; i < 4; i++) |
| poke_fb(dev, fb, 4 * i, patt); |
| |
| poke_fb(dev, fb, 0x400000, patt + 1); |
| |
| if (peek_fb(dev, fb, 0) == patt + 1) { |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, |
| NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT); |
| bios_md32(bios, NV04_PFB_DEBUG_0, |
| NV04_PFB_DEBUG_0_REFRESH_OFF, 0); |
| |
| for (i = 0; i < 4; i++) |
| poke_fb(dev, fb, 4 * i, patt); |
| |
| if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff)) |
| bios_md32(bios, NV04_PFB_BOOT_0, |
| NV04_PFB_BOOT_0_RAM_WIDTH_128 | |
| NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); |
| |
| } else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) != |
| (patt & 0xffff0000)) { |
| bios_md32(bios, NV04_PFB_BOOT_0, |
| NV04_PFB_BOOT_0_RAM_WIDTH_128 | |
| NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); |
| |
| } else if (peek_fb(dev, fb, 0) != patt) { |
| if (read_back_fb(dev, fb, 0x800000, patt)) |
| bios_md32(bios, NV04_PFB_BOOT_0, |
| NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); |
| else |
| bios_md32(bios, NV04_PFB_BOOT_0, |
| NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); |
| |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE, |
| NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT); |
| |
| } else if (!read_back_fb(dev, fb, 0x800000, patt)) { |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); |
| |
| } |
| |
| /* Refresh on, sequencer on */ |
| bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); |
| NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); |
| |
| io_mapping_free(fb); |
| return 0; |
| } |
| |
| static const uint8_t * |
| nv05_memory_config(struct nvbios *bios) |
| { |
| /* Defaults for BIOSes lacking a memory config table */ |
| static const uint8_t default_config_tab[][2] = { |
| { 0x24, 0x00 }, |
| { 0x28, 0x00 }, |
| { 0x24, 0x01 }, |
| { 0x1f, 0x00 }, |
| { 0x0f, 0x00 }, |
| { 0x17, 0x00 }, |
| { 0x06, 0x00 }, |
| { 0x00, 0x00 } |
| }; |
| int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & |
| NV_PEXTDEV_BOOT_0_RAMCFG) >> 2; |
| |
| if (bios->legacy.mem_init_tbl_ptr) |
| return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i]; |
| else |
| return default_config_tab[i]; |
| } |
| |
| static int |
| nv05_init_compute_mem(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| const uint8_t *ramcfg = nv05_memory_config(bios); |
| uint32_t patt = 0xdeadbeef; |
| struct io_mapping *fb; |
| int i, v; |
| |
| /* Map the framebuffer aperture */ |
| fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1)); |
| if (!fb) |
| return -ENOMEM; |
| |
| /* Sequencer off */ |
| NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20); |
| |
| if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE) |
| goto out; |
| |
| bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0); |
| |
| /* If present load the hardcoded scrambling table */ |
| if (bios->legacy.mem_init_tbl_ptr) { |
| uint32_t *scramble_tab = (uint32_t *)&bios->data[ |
| bios->legacy.mem_init_tbl_ptr + 0x10]; |
| |
| for (i = 0; i < 8; i++) |
| bios_wr32(bios, NV04_PFB_SCRAMBLE(i), |
| ROM32(scramble_tab[i])); |
| } |
| |
| /* Set memory type/width/length defaults depending on the straps */ |
| bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]); |
| |
| if (ramcfg[1] & 0x80) |
| bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE); |
| |
| bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20); |
| bios_md32(bios, NV04_PFB_CFG1, 0, 1); |
| |
| /* Probe memory bus width */ |
| for (i = 0; i < 4; i++) |
| poke_fb(dev, fb, 4 * i, patt); |
| |
| if (peek_fb(dev, fb, 0xc) != patt) |
| bios_md32(bios, NV04_PFB_BOOT_0, |
| NV04_PFB_BOOT_0_RAM_WIDTH_128, 0); |
| |
| /* Probe memory length */ |
| v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT; |
| |
| if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB && |
| (!read_back_fb(dev, fb, 0x1000000, ++patt) || |
| !read_back_fb(dev, fb, 0, ++patt))) |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_16MB); |
| |
| if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB && |
| !read_back_fb(dev, fb, 0x800000, ++patt)) |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_8MB); |
| |
| if (!read_back_fb(dev, fb, 0x400000, ++patt)) |
| bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT, |
| NV04_PFB_BOOT_0_RAM_AMOUNT_4MB); |
| |
| out: |
| /* Sequencer on */ |
| NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20); |
| |
| io_mapping_free(fb); |
| return 0; |
| } |
| |
| static int |
| nv10_init_compute_mem(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| const int mem_width[] = { 0x10, 0x00, 0x20 }; |
| const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2); |
| uint32_t patt = 0xdeadbeef; |
| struct io_mapping *fb; |
| int i, j, k; |
| |
| /* Map the framebuffer aperture */ |
| fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1)); |
| if (!fb) |
| return -ENOMEM; |
| |
| bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); |
| |
| /* Probe memory bus width */ |
| for (i = 0; i < mem_width_count; i++) { |
| bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]); |
| |
| for (j = 0; j < 4; j++) { |
| for (k = 0; k < 4; k++) |
| poke_fb(dev, fb, 0x1c, 0); |
| |
| poke_fb(dev, fb, 0x1c, patt); |
| poke_fb(dev, fb, 0x3c, 0); |
| |
| if (peek_fb(dev, fb, 0x1c) == patt) |
| goto mem_width_found; |
| } |
| } |
| |
| mem_width_found: |
| patt <<= 1; |
| |
| /* Probe amount of installed memory */ |
| for (i = 0; i < 4; i++) { |
| int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000; |
| |
| poke_fb(dev, fb, off, patt); |
| poke_fb(dev, fb, 0, 0); |
| |
| peek_fb(dev, fb, 0); |
| peek_fb(dev, fb, 0); |
| peek_fb(dev, fb, 0); |
| peek_fb(dev, fb, 0); |
| |
| if (peek_fb(dev, fb, off) == patt) |
| goto amount_found; |
| } |
| |
| /* IC missing - disable the upper half memory space. */ |
| bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0); |
| |
| amount_found: |
| io_mapping_free(fb); |
| return 0; |
| } |
| |
| static int |
| nv20_init_compute_mem(struct nvbios *bios) |
| { |
| struct drm_device *dev = bios->dev; |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900); |
| uint32_t amount, off; |
| struct io_mapping *fb; |
| |
| /* Map the framebuffer aperture */ |
| fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1), |
| pci_resource_len(dev->pdev, 1)); |
| if (!fb) |
| return -ENOMEM; |
| |
| bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1); |
| |
| /* Allow full addressing */ |
| bios_md32(bios, NV04_PFB_CFG0, 0, mask); |
| |
| amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); |
| for (off = amount; off > 0x2000000; off -= 0x2000000) |
| poke_fb(dev, fb, off - 4, off); |
| |
| amount = bios_rd32(bios, NV04_PFB_FIFO_DATA); |
| if (amount != peek_fb(dev, fb, amount - 4)) |
| /* IC missing - disable the upper half memory space. */ |
| bios_md32(bios, NV04_PFB_CFG0, mask, 0); |
| |
| io_mapping_free(fb); |
| return 0; |
| } |
| |
| static int |
| init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_COMPUTE_MEM opcode: 0x63 ('c') |
| * |
| * offset (8 bit): opcode |
| * |
| * This opcode is meant to set the PFB memory config registers |
| * appropriately so that we can correctly calculate how much VRAM it |
| * has (on nv10 and better chipsets the amount of installed VRAM is |
| * subsequently reported in NV_PFB_CSTATUS (0x10020C)). |
| * |
| * The implementation of this opcode in general consists of several |
| * parts: |
| * |
| * 1) Determination of memory type and density. Only necessary for |
| * really old chipsets, the memory type reported by the strap bits |
| * (0x101000) is assumed to be accurate on nv05 and newer. |
| * |
| * 2) Determination of the memory bus width. Usually done by a cunning |
| * combination of writes to offsets 0x1c and 0x3c in the fb, and |
| * seeing whether the written values are read back correctly. |
| * |
| * Only necessary on nv0x-nv1x and nv34, on the other cards we can |
| * trust the straps. |
| * |
| * 3) Determination of how many of the card's RAM pads have ICs |
| * attached, usually done by a cunning combination of writes to an |
| * offset slightly less than the maximum memory reported by |
| * NV_PFB_CSTATUS, then seeing if the test pattern can be read back. |
| * |
| * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io |
| * logs of the VBIOS and kmmio traces of the binary driver POSTing the |
| * card show nothing being done for this opcode. Why is it still listed |
| * in the table?! |
| */ |
| |
| /* no iexec->execute check by design */ |
| |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| int ret; |
| |
| if (dev_priv->chipset >= 0x40 || |
| dev_priv->chipset == 0x1a || |
| dev_priv->chipset == 0x1f) |
| ret = 0; |
| else if (dev_priv->chipset >= 0x20 && |
| dev_priv->chipset != 0x34) |
| ret = nv20_init_compute_mem(bios); |
| else if (dev_priv->chipset >= 0x10) |
| ret = nv10_init_compute_mem(bios); |
| else if (dev_priv->chipset >= 0x5) |
| ret = nv05_init_compute_mem(bios); |
| else |
| ret = nv04_init_compute_mem(bios); |
| |
| if (ret) |
| return ret; |
| |
| return 1; |
| } |
| |
| static int |
| init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_RESET opcode: 0x65 ('e') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (32 bit): value1 |
| * offset + 9 (32 bit): value2 |
| * |
| * Assign "value1" to "register", then assign "value2" to "register" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint32_t value1 = ROM32(bios->data[offset + 5]); |
| uint32_t value2 = ROM32(bios->data[offset + 9]); |
| uint32_t pci_nv_19, pci_nv_20; |
| |
| /* no iexec->execute check by design */ |
| |
| pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19); |
| bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00); |
| |
| bios_wr32(bios, reg, value1); |
| |
| udelay(10); |
| |
| bios_wr32(bios, reg, value2); |
| bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19); |
| |
| pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20); |
| pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED; /* 0xfffffffe */ |
| bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20); |
| |
| return 13; |
| } |
| |
| static int |
| init_configure_mem(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_CONFIGURE_MEM opcode: 0x66 ('f') |
| * |
| * offset (8 bit): opcode |
| * |
| * Equivalent to INIT_DONE on bios version 3 or greater. |
| * For early bios versions, sets up the memory registers, using values |
| * taken from the memory init table |
| */ |
| |
| /* no iexec->execute check by design */ |
| |
| uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); |
| uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6; |
| uint32_t reg, data; |
| |
| if (bios->major_version > 2) |
| return 0; |
| |
| bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd( |
| bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20); |
| |
| if (bios->data[meminitoffs] & 1) |
| seqtbloffs = bios->legacy.ddr_seq_tbl_ptr; |
| |
| for (reg = ROM32(bios->data[seqtbloffs]); |
| reg != 0xffffffff; |
| reg = ROM32(bios->data[seqtbloffs += 4])) { |
| |
| switch (reg) { |
| case NV04_PFB_PRE: |
| data = NV04_PFB_PRE_CMD_PRECHARGE; |
| break; |
| case NV04_PFB_PAD: |
| data = NV04_PFB_PAD_CKE_NORMAL; |
| break; |
| case NV04_PFB_REF: |
| data = NV04_PFB_REF_CMD_REFRESH; |
| break; |
| default: |
| data = ROM32(bios->data[meminitdata]); |
| meminitdata += 4; |
| if (data == 0xffffffff) |
| continue; |
| } |
| |
| bios_wr32(bios, reg, data); |
| } |
| |
| return 1; |
| } |
| |
| static int |
| init_configure_clk(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_CONFIGURE_CLK opcode: 0x67 ('g') |
| * |
| * offset (8 bit): opcode |
| * |
| * Equivalent to INIT_DONE on bios version 3 or greater. |
| * For early bios versions, sets up the NVClk and MClk PLLs, using |
| * values taken from the memory init table |
| */ |
| |
| /* no iexec->execute check by design */ |
| |
| uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4); |
| int clock; |
| |
| if (bios->major_version > 2) |
| return 0; |
| |
| clock = ROM16(bios->data[meminitoffs + 4]) * 10; |
| setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock); |
| |
| clock = ROM16(bios->data[meminitoffs + 2]) * 10; |
| if (bios->data[meminitoffs] & 1) /* DDR */ |
| clock *= 2; |
| setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock); |
| |
| return 1; |
| } |
| |
| static int |
| init_configure_preinit(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_CONFIGURE_PREINIT opcode: 0x68 ('h') |
| * |
| * offset (8 bit): opcode |
| * |
| * Equivalent to INIT_DONE on bios version 3 or greater. |
| * For early bios versions, does early init, loading ram and crystal |
| * configuration from straps into CR3C |
| */ |
| |
| /* no iexec->execute check by design */ |
| |
| uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0); |
| uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6; |
| |
| if (bios->major_version > 2) |
| return 0; |
| |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, |
| NV_CIO_CRE_SCRATCH4__INDEX, cr3c); |
| |
| return 1; |
| } |
| |
| static int |
| init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO opcode: 0x69 ('i') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): mask |
| * offset + 4 (8 bit): data |
| * |
| * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port" |
| */ |
| |
| struct drm_nouveau_private *dev_priv = bios->dev->dev_private; |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t mask = bios->data[offset + 3]; |
| uint8_t data = bios->data[offset + 4]; |
| |
| if (!iexec->execute) |
| return 5; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n", |
| offset, crtcport, mask, data); |
| |
| /* |
| * I have no idea what this does, but NVIDIA do this magic sequence |
| * in the places where this INIT_IO happens.. |
| */ |
| if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) { |
| int i; |
| |
| bios_wr32(bios, 0x614100, (bios_rd32( |
| bios, 0x614100) & 0x0fffffff) | 0x00800000); |
| |
| bios_wr32(bios, 0x00e18c, bios_rd32( |
| bios, 0x00e18c) | 0x00020000); |
| |
| bios_wr32(bios, 0x614900, (bios_rd32( |
| bios, 0x614900) & 0x0fffffff) | 0x00800000); |
| |
| bios_wr32(bios, 0x000200, bios_rd32( |
| bios, 0x000200) & ~0x40000000); |
| |
| mdelay(10); |
| |
| bios_wr32(bios, 0x00e18c, bios_rd32( |
| bios, 0x00e18c) & ~0x00020000); |
| |
| bios_wr32(bios, 0x000200, bios_rd32( |
| bios, 0x000200) | 0x40000000); |
| |
| bios_wr32(bios, 0x614100, 0x00800018); |
| bios_wr32(bios, 0x614900, 0x00800018); |
| |
| mdelay(10); |
| |
| bios_wr32(bios, 0x614100, 0x10000018); |
| bios_wr32(bios, 0x614900, 0x10000018); |
| |
| for (i = 0; i < 3; i++) |
| bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32( |
| bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0); |
| |
| for (i = 0; i < 2; i++) |
| bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32( |
| bios, 0x614300 + (i*0x800)) & 0xfffff0f0); |
| |
| for (i = 0; i < 3; i++) |
| bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32( |
| bios, 0x614380 + (i*0x800)) & 0xfffff0f0); |
| |
| for (i = 0; i < 2; i++) |
| bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32( |
| bios, 0x614200 + (i*0x800)) & 0xfffffff0); |
| |
| for (i = 0; i < 2; i++) |
| bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32( |
| bios, 0x614108 + (i*0x800)) & 0x0fffffff); |
| return 5; |
| } |
| |
| bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) | |
| data); |
| return 5; |
| } |
| |
| static int |
| init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_SUB opcode: 0x6B ('k') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): script number |
| * |
| * Execute script number "script number", as a subroutine |
| */ |
| |
| uint8_t sub = bios->data[offset + 1]; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub); |
| |
| parse_init_table(bios, |
| ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]), |
| iexec); |
| |
| BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub); |
| |
| return 2; |
| } |
| |
| static int |
| init_ram_condition(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_RAM_CONDITION opcode: 0x6D ('m') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): mask |
| * offset + 2 (8 bit): cmpval |
| * |
| * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval". |
| * If condition not met skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t mask = bios->data[offset + 1]; |
| uint8_t cmpval = bios->data[offset + 2]; |
| uint8_t data; |
| |
| if (!iexec->execute) |
| return 3; |
| |
| data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask; |
| |
| BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n", |
| offset, data, cmpval); |
| |
| if (data == cmpval) |
| BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); |
| else { |
| BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); |
| iexec->execute = false; |
| } |
| |
| return 3; |
| } |
| |
| static int |
| init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_NV_REG opcode: 0x6E ('n') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (32 bit): mask |
| * offset + 9 (32 bit): data |
| * |
| * Assign ((REGVAL("register") & "mask") | "data") to "register" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint32_t mask = ROM32(bios->data[offset + 5]); |
| uint32_t data = ROM32(bios->data[offset + 9]); |
| |
| if (!iexec->execute) |
| return 13; |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n", |
| offset, reg, mask, data); |
| |
| bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data); |
| |
| return 13; |
| } |
| |
| static int |
| init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_MACRO opcode: 0x6F ('o') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): macro number |
| * |
| * Look up macro index "macro number" in the macro index table. |
| * The macro index table entry has 1 byte for the index in the macro |
| * table, and 1 byte for the number of times to repeat the macro. |
| * The macro table entry has 4 bytes for the register address and |
| * 4 bytes for the value to write to that register |
| */ |
| |
| uint8_t macro_index_tbl_idx = bios->data[offset + 1]; |
| uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE); |
| uint8_t macro_tbl_idx = bios->data[tmp]; |
| uint8_t count = bios->data[tmp + 1]; |
| uint32_t reg, data; |
| int i; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, " |
| "Count: 0x%02X\n", |
| offset, macro_index_tbl_idx, macro_tbl_idx, count); |
| |
| for (i = 0; i < count; i++) { |
| uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE; |
| |
| reg = ROM32(bios->data[macroentryptr]); |
| data = ROM32(bios->data[macroentryptr + 4]); |
| |
| bios_wr32(bios, reg, data); |
| } |
| |
| return 2; |
| } |
| |
| static int |
| init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_DONE opcode: 0x71 ('q') |
| * |
| * offset (8 bit): opcode |
| * |
| * End the current script |
| */ |
| |
| /* mild retval abuse to stop parsing this table */ |
| return 0; |
| } |
| |
| static int |
| init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_RESUME opcode: 0x72 ('r') |
| * |
| * offset (8 bit): opcode |
| * |
| * End the current execute / no-execute condition |
| */ |
| |
| if (iexec->execute) |
| return 1; |
| |
| iexec->execute = true; |
| BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset); |
| |
| return 1; |
| } |
| |
| static int |
| init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_TIME opcode: 0x74 ('t') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): time |
| * |
| * Sleep for "time" microseconds. |
| */ |
| |
| unsigned time = ROM16(bios->data[offset + 1]); |
| |
| if (!iexec->execute) |
| return 3; |
| |
| BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n", |
| offset, time); |
| |
| if (time < 1000) |
| udelay(time); |
| else |
| mdelay((time + 900) / 1000); |
| |
| return 3; |
| } |
| |
| static int |
| init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_CONDITION opcode: 0x75 ('u') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): condition number |
| * |
| * Check condition "condition number" in the condition table. |
| * If condition not met skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t cond = bios->data[offset + 1]; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond); |
| |
| if (bios_condition_met(bios, offset, cond)) |
| BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); |
| else { |
| BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); |
| iexec->execute = false; |
| } |
| |
| return 2; |
| } |
| |
| static int |
| init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_IO_CONDITION opcode: 0x76 |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): condition number |
| * |
| * Check condition "condition number" in the io condition table. |
| * If condition not met skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t cond = bios->data[offset + 1]; |
| |
| if (!iexec->execute) |
| return 2; |
| |
| BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond); |
| |
| if (io_condition_met(bios, offset, cond)) |
| BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset); |
| else { |
| BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset); |
| iexec->execute = false; |
| } |
| |
| return 2; |
| } |
| |
| static int |
| init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_INDEX_IO opcode: 0x78 ('x') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (16 bit): CRTC port |
| * offset + 3 (8 bit): CRTC index |
| * offset + 4 (8 bit): mask |
| * offset + 5 (8 bit): data |
| * |
| * Read value at index "CRTC index" on "CRTC port", AND with "mask", |
| * OR with "data", write-back |
| */ |
| |
| uint16_t crtcport = ROM16(bios->data[offset + 1]); |
| uint8_t crtcindex = bios->data[offset + 3]; |
| uint8_t mask = bios->data[offset + 4]; |
| uint8_t data = bios->data[offset + 5]; |
| uint8_t value; |
| |
| if (!iexec->execute) |
| return 6; |
| |
| BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, " |
| "Data: 0x%02X\n", |
| offset, crtcport, crtcindex, mask, data); |
| |
| value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data; |
| bios_idxprt_wr(bios, crtcport, crtcindex, value); |
| |
| return 6; |
| } |
| |
| static int |
| init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_PLL opcode: 0x79 ('y') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (16 bit): freq |
| * |
| * Set PLL register "register" to coefficients for frequency (10kHz) |
| * "freq" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint16_t freq = ROM16(bios->data[offset + 5]); |
| |
| if (!iexec->execute) |
| return 7; |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq); |
| |
| setPLL(bios, reg, freq * 10); |
| |
| return 7; |
| } |
| |
| static int |
| init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_REG opcode: 0x7A ('z') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (32 bit): value |
| * |
| * Assign "value" to "register" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint32_t value = ROM32(bios->data[offset + 5]); |
| |
| if (!iexec->execute) |
| return 9; |
| |
| if (reg == 0x000200) |
| value |= 1; |
| |
| bios_wr32(bios, reg, value); |
| |
| return 9; |
| } |
| |
| static int |
| init_ram_restrict_pll(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_RAM_RESTRICT_PLL opcode: 0x87 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): PLL type |
| * offset + 2 (32 bit): frequency 0 |
| * |
| * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at |
| * ram_restrict_table_ptr. The value read from there is used to select |
| * a frequency from the table starting at 'frequency 0' to be |
| * programmed into the PLL corresponding to 'type'. |
| * |
| * The PLL limits table on cards using this opcode has a mapping of |
| * 'type' to the relevant registers. |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2; |
| uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap]; |
| uint8_t type = bios->data[offset + 1]; |
| uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]); |
| uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry; |
| int len = 2 + bios->ram_restrict_group_count * 4; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) { |
| NV_ERROR(dev, "PLL limits table not version 3.x\n"); |
| return len; /* deliberate, allow default clocks to remain */ |
| } |
| |
| entry = pll_limits + pll_limits[1]; |
| for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) { |
| if (entry[0] == type) { |
| uint32_t reg = ROM32(entry[3]); |
| |
| BIOSLOG(bios, "0x%04X: " |
| "Type %02x Reg 0x%08x Freq %dKHz\n", |
| offset, type, reg, freq); |
| |
| setPLL(bios, reg, freq); |
| return len; |
| } |
| } |
| |
| NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type); |
| return len; |
| } |
| |
| static int |
| init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_8C opcode: 0x8C ('') |
| * |
| * NOP so far.... |
| * |
| */ |
| |
| return 1; |
| } |
| |
| static int |
| init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_8D opcode: 0x8D ('') |
| * |
| * NOP so far.... |
| * |
| */ |
| |
| return 1; |
| } |
| |
| static int |
| init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_GPIO opcode: 0x8E ('') |
| * |
| * offset (8 bit): opcode |
| * |
| * Loop over all entries in the DCB GPIO table, and initialise |
| * each GPIO according to various values listed in each entry |
| */ |
| |
| if (iexec->execute && bios->execute) |
| nouveau_gpio_reset(bios->dev); |
| |
| return 1; |
| } |
| |
| static int |
| init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode: 0x8F ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): reg |
| * offset + 5 (8 bit): regincrement |
| * offset + 6 (8 bit): count |
| * offset + 7 (32 bit): value 1,1 |
| * ... |
| * |
| * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at |
| * ram_restrict_table_ptr. The value read from here is 'n', and |
| * "value 1,n" gets written to "reg". This repeats "count" times and on |
| * each iteration 'm', "reg" increases by "regincrement" and |
| * "value m,n" is used. The extent of n is limited by a number read |
| * from the 'M' BIT table, herein called "blocklen" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint8_t regincrement = bios->data[offset + 5]; |
| uint8_t count = bios->data[offset + 6]; |
| uint32_t strap_ramcfg, data; |
| /* previously set by 'M' BIT table */ |
| uint16_t blocklen = bios->ram_restrict_group_count * 4; |
| int len = 7 + count * blocklen; |
| uint8_t index; |
| int i; |
| |
| /* critical! to know the length of the opcode */; |
| if (!blocklen) { |
| NV_ERROR(bios->dev, |
| "0x%04X: Zero block length - has the M table " |
| "been parsed?\n", offset); |
| return -EINVAL; |
| } |
| |
| if (!iexec->execute) |
| return len; |
| |
| strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf; |
| index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg]; |
| |
| BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, " |
| "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n", |
| offset, reg, regincrement, count, strap_ramcfg, index); |
| |
| for (i = 0; i < count; i++) { |
| data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]); |
| |
| bios_wr32(bios, reg, data); |
| |
| reg += regincrement; |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_COPY_ZM_REG opcode: 0x90 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): src reg |
| * offset + 5 (32 bit): dst reg |
| * |
| * Put contents of "src reg" into "dst reg" |
| */ |
| |
| uint32_t srcreg = ROM32(bios->data[offset + 1]); |
| uint32_t dstreg = ROM32(bios->data[offset + 5]); |
| |
| if (!iexec->execute) |
| return 9; |
| |
| bios_wr32(bios, dstreg, bios_rd32(bios, srcreg)); |
| |
| return 9; |
| } |
| |
| static int |
| init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset, |
| struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_REG_GROUP_ADDRESS_LATCHED opcode: 0x91 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): dst reg |
| * offset + 5 (8 bit): count |
| * offset + 6 (32 bit): data 1 |
| * ... |
| * |
| * For each of "count" values write "data n" to "dst reg" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint8_t count = bios->data[offset + 5]; |
| int len = 6 + count * 4; |
| int i; |
| |
| if (!iexec->execute) |
| return len; |
| |
| for (i = 0; i < count; i++) { |
| uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]); |
| bios_wr32(bios, reg, data); |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_RESERVED opcode: 0x92 ('') |
| * |
| * offset (8 bit): opcode |
| * |
| * Seemingly does nothing |
| */ |
| |
| return 1; |
| } |
| |
| static int |
| init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_96 opcode: 0x96 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): sreg |
| * offset + 5 (8 bit): sshift |
| * offset + 6 (8 bit): smask |
| * offset + 7 (8 bit): index |
| * offset + 8 (32 bit): reg |
| * offset + 12 (32 bit): mask |
| * offset + 16 (8 bit): shift |
| * |
| */ |
| |
| uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2); |
| uint32_t reg = ROM32(bios->data[offset + 8]); |
| uint32_t mask = ROM32(bios->data[offset + 12]); |
| uint32_t val; |
| |
| val = bios_rd32(bios, ROM32(bios->data[offset + 1])); |
| if (bios->data[offset + 5] < 0x80) |
| val >>= bios->data[offset + 5]; |
| else |
| val <<= (0x100 - bios->data[offset + 5]); |
| val &= bios->data[offset + 6]; |
| |
| val = bios->data[ROM16(bios->data[xlatptr]) + val]; |
| val <<= bios->data[offset + 16]; |
| |
| if (!iexec->execute) |
| return 17; |
| |
| bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val); |
| return 17; |
| } |
| |
| static int |
| init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_97 opcode: 0x97 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): register |
| * offset + 5 (32 bit): mask |
| * offset + 9 (32 bit): value |
| * |
| * Adds "value" to "register" preserving the fields specified |
| * by "mask" |
| */ |
| |
| uint32_t reg = ROM32(bios->data[offset + 1]); |
| uint32_t mask = ROM32(bios->data[offset + 5]); |
| uint32_t add = ROM32(bios->data[offset + 9]); |
| uint32_t val; |
| |
| val = bios_rd32(bios, reg); |
| val = (val & mask) | ((val + add) & ~mask); |
| |
| if (!iexec->execute) |
| return 13; |
| |
| bios_wr32(bios, reg, val); |
| return 13; |
| } |
| |
| static int |
| init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_AUXCH opcode: 0x98 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): address |
| * offset + 5 (8 bit): count |
| * offset + 6 (8 bit): mask 0 |
| * offset + 7 (8 bit): data 0 |
| * ... |
| * |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| struct nouveau_i2c_chan *auxch; |
| uint32_t addr = ROM32(bios->data[offset + 1]); |
| uint8_t count = bios->data[offset + 5]; |
| int len = 6 + count * 2; |
| int ret, i; |
| |
| if (!bios->display.output) { |
| NV_ERROR(dev, "INIT_AUXCH: no active output\n"); |
| return len; |
| } |
| |
| auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); |
| if (!auxch) { |
| NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n", |
| bios->display.output->i2c_index); |
| return len; |
| } |
| |
| if (!iexec->execute) |
| return len; |
| |
| offset += 6; |
| for (i = 0; i < count; i++, offset += 2) { |
| uint8_t data; |
| |
| ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1); |
| if (ret) { |
| NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret); |
| return len; |
| } |
| |
| data &= bios->data[offset + 0]; |
| data |= bios->data[offset + 1]; |
| |
| ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1); |
| if (ret) { |
| NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret); |
| return len; |
| } |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_ZM_AUXCH opcode: 0x99 ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (32 bit): address |
| * offset + 5 (8 bit): count |
| * offset + 6 (8 bit): data 0 |
| * ... |
| * |
| */ |
| |
| struct drm_device *dev = bios->dev; |
| struct nouveau_i2c_chan *auxch; |
| uint32_t addr = ROM32(bios->data[offset + 1]); |
| uint8_t count = bios->data[offset + 5]; |
| int len = 6 + count; |
| int ret, i; |
| |
| if (!bios->display.output) { |
| NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n"); |
| return len; |
| } |
| |
| auxch = init_i2c_device_find(dev, bios->display.output->i2c_index); |
| if (!auxch) { |
| NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n", |
| bios->display.output->i2c_index); |
| return len; |
| } |
| |
| if (!iexec->execute) |
| return len; |
| |
| offset += 6; |
| for (i = 0; i < count; i++, offset++) { |
| ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1); |
| if (ret) { |
| NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret); |
| return len; |
| } |
| } |
| |
| return len; |
| } |
| |
| static int |
| init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * INIT_I2C_LONG_IF opcode: 0x9A ('') |
| * |
| * offset (8 bit): opcode |
| * offset + 1 (8 bit): DCB I2C table entry index |
| * offset + 2 (8 bit): I2C slave address |
| * offset + 3 (16 bit): I2C register |
| * offset + 5 (8 bit): mask |
| * offset + 6 (8 bit): data |
| * |
| * Read the register given by "I2C register" on the device addressed |
| * by "I2C slave address" on the I2C bus given by "DCB I2C table |
| * entry index". Compare the result AND "mask" to "data". |
| * If they're not equal, skip subsequent opcodes until condition is |
| * inverted (INIT_NOT), or we hit INIT_RESUME |
| */ |
| |
| uint8_t i2c_index = bios->data[offset + 1]; |
| uint8_t i2c_address = bios->data[offset + 2] >> 1; |
| uint8_t reglo = bios->data[offset + 3]; |
| uint8_t reghi = bios->data[offset + 4]; |
| uint8_t mask = bios->data[offset + 5]; |
| uint8_t data = bios->data[offset + 6]; |
| struct nouveau_i2c_chan *chan; |
| uint8_t buf0[2] = { reghi, reglo }; |
| uint8_t buf1[1]; |
| struct i2c_msg msg[2] = { |
| { i2c_address, 0, 1, buf0 }, |
| { i2c_address, I2C_M_RD, 1, buf1 }, |
| }; |
| int ret; |
| |
| /* no execute check by design */ |
| |
| BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n", |
| offset, i2c_index, i2c_address); |
| |
| chan = init_i2c_device_find(bios->dev, i2c_index); |
| if (!chan) |
| return -ENODEV; |
| |
| |
| ret = i2c_transfer(&chan->adapter, msg, 2); |
| if (ret < 0) { |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, reghi, reglo, mask, data); |
| iexec->execute = 0; |
| return 7; |
| } |
| |
| BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, " |
| "Mask: 0x%02X, Data: 0x%02X\n", |
| offset, reghi, reglo, buf1[0], mask, data); |
| |
| iexec->execute = ((buf1[0] & mask) == data); |
| |
| return 7; |
| } |
| |
| static struct init_tbl_entry itbl_entry[] = { |
| /* command name , id , length , offset , mult , command handler */ |
| /* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */ |
| { "INIT_IO_RESTRICT_PROG" , 0x32, init_io_restrict_prog }, |
| { "INIT_REPEAT" , 0x33, init_repeat }, |
| { "INIT_IO_RESTRICT_PLL" , 0x34, init_io_restrict_pll }, |
| { "INIT_END_REPEAT" , 0x36, init_end_repeat }, |
| { "INIT_COPY" , 0x37, init_copy }, |
| { "INIT_NOT" , 0x38, init_not }, |
| { "INIT_IO_FLAG_CONDITION" , 0x39, init_io_flag_condition }, |
| { "INIT_DP_CONDITION" , 0x3A, init_dp_condition }, |
| { "INIT_OP_3B" , 0x3B, init_op_3b }, |
| { "INIT_OP_3C" , 0x3C, init_op_3c }, |
| { "INIT_INDEX_ADDRESS_LATCHED" , 0x49, init_idx_addr_latched }, |
| { "INIT_IO_RESTRICT_PLL2" , 0x4A, init_io_restrict_pll2 }, |
| { "INIT_PLL2" , 0x4B, init_pll2 }, |
| { "INIT_I2C_BYTE" , 0x4C, init_i2c_byte }, |
| { "INIT_ZM_I2C_BYTE" , 0x4D, init_zm_i2c_byte }, |
| { "INIT_ZM_I2C" , 0x4E, init_zm_i2c }, |
| { "INIT_TMDS" , 0x4F, init_tmds }, |
| { "INIT_ZM_TMDS_GROUP" , 0x50, init_zm_tmds_group }, |
| { "INIT_CR_INDEX_ADDRESS_LATCHED" , 0x51, init_cr_idx_adr_latch }, |
| { "INIT_CR" , 0x52, init_cr }, |
| { "INIT_ZM_CR" , 0x53, init_zm_cr }, |
| { "INIT_ZM_CR_GROUP" , 0x54, init_zm_cr_group }, |
| { "INIT_CONDITION_TIME" , 0x56, init_condition_time }, |
| { "INIT_LTIME" , 0x57, init_ltime }, |
| { "INIT_ZM_REG_SEQUENCE" , 0x58, init_zm_reg_sequence }, |
| /* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */ |
| { "INIT_SUB_DIRECT" , 0x5B, init_sub_direct }, |
| { "INIT_JUMP" , 0x5C, init_jump }, |
| { "INIT_I2C_IF" , 0x5E, init_i2c_if }, |
| { "INIT_COPY_NV_REG" , 0x5F, init_copy_nv_reg }, |
| { "INIT_ZM_INDEX_IO" , 0x62, init_zm_index_io }, |
| { "INIT_COMPUTE_MEM" , 0x63, init_compute_mem }, |
| { "INIT_RESET" , 0x65, init_reset }, |
| { "INIT_CONFIGURE_MEM" , 0x66, init_configure_mem }, |
| { "INIT_CONFIGURE_CLK" , 0x67, init_configure_clk }, |
| { "INIT_CONFIGURE_PREINIT" , 0x68, init_configure_preinit }, |
| { "INIT_IO" , 0x69, init_io }, |
| { "INIT_SUB" , 0x6B, init_sub }, |
| { "INIT_RAM_CONDITION" , 0x6D, init_ram_condition }, |
| { "INIT_NV_REG" , 0x6E, init_nv_reg }, |
| { "INIT_MACRO" , 0x6F, init_macro }, |
| { "INIT_DONE" , 0x71, init_done }, |
| { "INIT_RESUME" , 0x72, init_resume }, |
| /* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */ |
| { "INIT_TIME" , 0x74, init_time }, |
| { "INIT_CONDITION" , 0x75, init_condition }, |
| { "INIT_IO_CONDITION" , 0x76, init_io_condition }, |
| { "INIT_INDEX_IO" , 0x78, init_index_io }, |
| { "INIT_PLL" , 0x79, init_pll }, |
| { "INIT_ZM_REG" , 0x7A, init_zm_reg }, |
| { "INIT_RAM_RESTRICT_PLL" , 0x87, init_ram_restrict_pll }, |
| { "INIT_8C" , 0x8C, init_8c }, |
| { "INIT_8D" , 0x8D, init_8d }, |
| { "INIT_GPIO" , 0x8E, init_gpio }, |
| { "INIT_RAM_RESTRICT_ZM_REG_GROUP" , 0x8F, init_ram_restrict_zm_reg_group }, |
| { "INIT_COPY_ZM_REG" , 0x90, init_copy_zm_reg }, |
| { "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched }, |
| { "INIT_RESERVED" , 0x92, init_reserved }, |
| { "INIT_96" , 0x96, init_96 }, |
| { "INIT_97" , 0x97, init_97 }, |
| { "INIT_AUXCH" , 0x98, init_auxch }, |
| { "INIT_ZM_AUXCH" , 0x99, init_zm_auxch }, |
| { "INIT_I2C_LONG_IF" , 0x9A, init_i2c_long_if }, |
| { NULL , 0 , NULL } |
| }; |
| |
| #define MAX_TABLE_OPS 1000 |
| |
| static int |
| parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec) |
| { |
| /* |
| * Parses all commands in an init table. |
| * |
| * We start out executing all commands found in the init table. Some |
| * opcodes may change the status of iexec->execute to SKIP, which will |
| * cause the following opcodes to perform no operation until the value |
| * is changed back to EXECUTE. |
| */ |
| |
| int count = 0, i, ret; |
| uint8_t id; |
| |
| /* catch NULL script pointers */ |
| if (offset == 0) |
| return 0; |
| |
| /* |
| * Loop until INIT_DONE causes us to break out of the loop |
| * (or until offset > bios length just in case... ) |
| * (and no more than MAX_TABLE_OPS iterations, just in case... ) |
| */ |
| while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) { |
| id = bios->data[offset]; |
| |
| /* Find matching id in itbl_entry */ |
| for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++) |
| ; |
| |
| if (!itbl_entry[i].name) { |
| NV_ERROR(bios->dev, |
| "0x%04X: Init table command not found: " |
| "0x%02X\n", offset, id); |
| return -ENOENT; |
| } |
| |
| BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset, |
| itbl_entry[i].id, itbl_entry[i].name); |
| |
| /* execute eventual command handler */ |
| ret = (*itbl_entry[i].handler)(bios, offset, iexec); |
| if (ret < 0) { |
| NV_ERROR(bios->dev, "0x%04X: Failed parsing init " |
| "table opcode: %s %d\n", offset, |
| itbl_entry[i].name, ret); |
| } |
| |
| if (ret <= 0) |
| break; |
| |
| /* |
| * Add the offset of the current command including all data |
| * of that command. The offset will then be pointing on the |
| * next op code. |
| */ |
| offset += ret; |
| } |
| |
| if (offset >= bios->length) |
| NV_WARN(bios->dev, |
| "Offset 0x%04X greater than known bios image length. " |
| "Corrupt image?\n", offset); |
| if (count >= MAX_TABLE_OPS) |
| NV_WARN(bios->dev, |
| "More than %d opcodes to a table is unlikely, " |
| "is the bios image corrupt?\n", MAX_TABLE_OPS); |
| |
| return 0; |
| } |
| |
| static void |
| parse_init_tables(struct nvbios *bios) |
| { |
| /* Loops and calls parse_init_table() for each present table. */ |
| |
| int i = 0; |
| uint16_t table; |
| struct init_exec iexec = {true, false}; |
| |
| if (bios->old_style_init) { |
| if (bios->init_script_tbls_ptr) |
| parse_init_table(bios, bios->init_script_tbls_ptr, &iexec); |
| if (bios->extra_init_script_tbl_ptr) |
| parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec); |
| |
| return; |
| } |
| |
| while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) { |
| NV_INFO(bios->dev, |
| "Parsing VBIOS init table %d at offset 0x%04X\n", |
| i / 2, table); |
| BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table); |
| |
| parse_init_table(bios, table, &iexec); |
| i += 2; |
| } |
| } |
| |
| static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk) |
| { |
| int compare_record_len, i = 0; |
| uint16_t compareclk, scriptptr = 0; |
| |
| if (bios->major_version < 5) /* pre BIT */ |
| compare_record_len = 3; |
| else |
| compare_record_len = 4; |
| |
| do { |
| compareclk = ROM16(bios->data[clktable + compare_record_len * i]); |
| if (pxclk >= compareclk * 10) { |
| if (bios->major_version < 5) { |
| uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i]; |
| scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]); |
| } else |
| scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]); |
| break; |
| } |
| i++; |
| } while (compareclk); |
| |
| return scriptptr; |
| } |
| |
| static void |
| run_digital_op_script(struct drm_device *dev, uint16_t scriptptr, |
| struct dcb_entry *dcbent, int head, bool dl) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| struct init_exec iexec = {true, false}; |
| |
| NV_TRACE(dev, "0x%04X: Parsing digital output script table\n", |
| scriptptr); |
| bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44, |
| head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA); |
| /* note: if dcb entries have been merged, index may be misleading */ |
| NVWriteVgaCrtc5758(dev, head, 0, dcbent->index); |
| parse_init_table(bios, scriptptr, &iexec); |
| |
| nv04_dfp_bind_head(dev, dcbent, head, dl); |
| } |
| |
| static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0); |
| uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]); |
| |
| if (!bios->fp.xlated_entry || !sub || !scriptofs) |
| return -EINVAL; |
| |
| run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link); |
| |
| if (script == LVDS_PANEL_OFF) { |
| /* off-on delay in ms */ |
| mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7])); |
| } |
| #ifdef __powerpc__ |
| /* Powerbook specific quirks */ |
| if (script == LVDS_RESET && |
| (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 || |
| dev->pci_device == 0x0329)) |
| nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72); |
| #endif |
| |
| return 0; |
| } |
| |
| static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) |
| { |
| /* |
| * The BIT LVDS table's header has the information to setup the |
| * necessary registers. Following the standard 4 byte header are: |
| * A bitmask byte and a dual-link transition pxclk value for use in |
| * selecting the init script when not using straps; 4 script pointers |
| * for panel power, selected by output and on/off; and 8 table pointers |
| * for panel init, the needed one determined by output, and bits in the |
| * conf byte. These tables are similar to the TMDS tables, consisting |
| * of a list of pxclks and script pointers. |
| */ |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| unsigned int outputset = (dcbent->or == 4) ? 1 : 0; |
| uint16_t scriptptr = 0, clktable; |
| |
| /* |
| * For now we assume version 3.0 table - g80 support will need some |
| * changes |
| */ |
| |
| switch (script) { |
| case LVDS_INIT: |
| return -ENOSYS; |
| case LVDS_BACKLIGHT_ON: |
| case LVDS_PANEL_ON: |
| scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]); |
| break; |
| case LVDS_BACKLIGHT_OFF: |
| case LVDS_PANEL_OFF: |
| scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]); |
| break; |
| case LVDS_RESET: |
| clktable = bios->fp.lvdsmanufacturerpointer + 15; |
| if (dcbent->or == 4) |
| clktable += 8; |
| |
| if (dcbent->lvdsconf.use_straps_for_mode) { |
| if (bios->fp.dual_link) |
| clktable += 4; |
| if (bios->fp.if_is_24bit) |
| clktable += 2; |
| } else { |
| /* using EDID */ |
| int cmpval_24bit = (dcbent->or == 4) ? 4 : 1; |
| |
| if (bios->fp.dual_link) { |
| clktable += 4; |
| cmpval_24bit <<= 1; |
| } |
| |
| if (bios->fp.strapless_is_24bit & cmpval_24bit) |
| clktable += 2; |
| } |
| |
| clktable = ROM16(bios->data[clktable]); |
| if (!clktable) { |
| NV_ERROR(dev, "Pixel clock comparison table not found\n"); |
| return -ENOENT; |
| } |
| scriptptr = clkcmptable(bios, clktable, pxclk); |
| } |
| |
| if (!scriptptr) { |
| NV_ERROR(dev, "LVDS output init script not found\n"); |
| return -ENOENT; |
| } |
| run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link); |
| |
| return 0; |
| } |
| |
| int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk) |
| { |
| /* |
| * LVDS operations are multiplexed in an effort to present a single API |
| * which works with two vastly differing underlying structures. |
| * This acts as the demux |
| */ |
| |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; |
| uint32_t sel_clk_binding, sel_clk; |
| int ret; |
| |
| if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver || |
| (lvds_ver >= 0x30 && script == LVDS_INIT)) |
| return 0; |
| |
| if (!bios->fp.lvds_init_run) { |
| bios->fp.lvds_init_run = true; |
| call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk); |
| } |
| |
| if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change) |
| call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk); |
| if (script == LVDS_RESET && bios->fp.power_off_for_reset) |
| call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk); |
| |
| NV_TRACE(dev, "Calling LVDS script %d:\n", script); |
| |
| /* don't let script change pll->head binding */ |
| sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; |
| |
| if (lvds_ver < 0x30) |
| ret = call_lvds_manufacturer_script(dev, dcbent, head, script); |
| else |
| ret = run_lvds_table(dev, dcbent, head, script, pxclk); |
| |
| bios->fp.last_script_invoc = (script << 1 | head); |
| |
| sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); |
| /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */ |
| nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0); |
| |
| return ret; |
| } |
| |
| struct lvdstableheader { |
| uint8_t lvds_ver, headerlen, recordlen; |
| }; |
| |
| static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth) |
| { |
| /* |
| * BMP version (0xa) LVDS table has a simple header of version and |
| * record length. The BIT LVDS table has the typical BIT table header: |
| * version byte, header length byte, record length byte, and a byte for |
| * the maximum number of records that can be held in the table. |
| */ |
| |
| uint8_t lvds_ver, headerlen, recordlen; |
| |
| memset(lth, 0, sizeof(struct lvdstableheader)); |
| |
| if (bios->fp.lvdsmanufacturerpointer == 0x0) { |
| NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n"); |
| return -EINVAL; |
| } |
| |
| lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; |
| |
| switch (lvds_ver) { |
| case 0x0a: /* pre NV40 */ |
| headerlen = 2; |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| break; |
| case 0x30: /* NV4x */ |
| headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| if (headerlen < 0x1f) { |
| NV_ERROR(dev, "LVDS table header not understood\n"); |
| return -EINVAL; |
| } |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; |
| break; |
| case 0x40: /* G80/G90 */ |
| headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; |
| if (headerlen < 0x7) { |
| NV_ERROR(dev, "LVDS table header not understood\n"); |
| return -EINVAL; |
| } |
| recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; |
| break; |
| default: |
| NV_ERROR(dev, |
| "LVDS table revision %d.%d not currently supported\n", |
| lvds_ver >> 4, lvds_ver & 0xf); |
| return -ENOSYS; |
| } |
| |
| lth->lvds_ver = lvds_ver; |
| lth->headerlen = headerlen; |
| lth->recordlen = recordlen; |
| |
| return 0; |
| } |
| |
| static int |
| get_fp_strap(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| /* |
| * The fp strap is normally dictated by the "User Strap" in |
| * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the |
| * Internal_Flags struct at 0x48 is set, the user strap gets overriden |
| * by the PCI subsystem ID during POST, but not before the previous user |
| * strap has been committed to CR58 for CR57=0xf on head A, which may be |
| * read and used instead |
| */ |
| |
| if (bios->major_version < 5 && bios->data[0x48] & 0x4) |
| return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf; |
| |
| if (dev_priv->card_type >= NV_50) |
| return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf; |
| else |
| return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf; |
| } |
| |
| static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| uint8_t *fptable; |
| uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex; |
| int ret, ofs, fpstrapping; |
| struct lvdstableheader lth; |
| |
| if (bios->fp.fptablepointer == 0x0) { |
| /* Apple cards don't have the fp table; the laptops use DDC */ |
| /* The table is also missing on some x86 IGPs */ |
| #ifndef __powerpc__ |
| NV_ERROR(dev, "Pointer to flat panel table invalid\n"); |
| #endif |
| bios->digital_min_front_porch = 0x4b; |
| return 0; |
| } |
| |
| fptable = &bios->data[bios->fp.fptablepointer]; |
| fptable_ver = fptable[0]; |
| |
| switch (fptable_ver) { |
| /* |
| * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no |
| * version field, and miss one of the spread spectrum/PWM bytes. |
| * This could affect early GF2Go parts (not seen any appropriate ROMs |
| * though). Here we assume that a version of 0x05 matches this case |
| * (combining with a BMP version check would be better), as the |
| * common case for the panel type field is 0x0005, and that is in |
| * fact what we are reading the first byte of. |
| */ |
| case 0x05: /* some NV10, 11, 15, 16 */ |
| recordlen = 42; |
| ofs = -1; |
| break; |
| case 0x10: /* some NV15/16, and NV11+ */ |
| recordlen = 44; |
| ofs = 0; |
| break; |
| case 0x20: /* NV40+ */ |
| headerlen = fptable[1]; |
| recordlen = fptable[2]; |
| fpentries = fptable[3]; |
| /* |
| * fptable[4] is the minimum |
| * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap |
| */ |
| bios->digital_min_front_porch = fptable[4]; |
| ofs = -7; |
| break; |
| default: |
| NV_ERROR(dev, |
| "FP table revision %d.%d not currently supported\n", |
| fptable_ver >> 4, fptable_ver & 0xf); |
| return -ENOSYS; |
| } |
| |
| if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */ |
| return 0; |
| |
| ret = parse_lvds_manufacturer_table_header(dev, bios, <h); |
| if (ret) |
| return ret; |
| |
| if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) { |
| bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer + |
| lth.headerlen + 1; |
| bios->fp.xlatwidth = lth.recordlen; |
| } |
| if (bios->fp.fpxlatetableptr == 0x0) { |
| NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n"); |
| return -EINVAL; |
| } |
| |
| fpstrapping = get_fp_strap(dev, bios); |
| |
| fpindex = bios->data[bios->fp.fpxlatetableptr + |
| fpstrapping * bios->fp.xlatwidth]; |
| |
| if (fpindex > fpentries) { |
| NV_ERROR(dev, "Bad flat panel table index\n"); |
| return -ENOENT; |
| } |
| |
| /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */ |
| if (lth.lvds_ver > 0x10) |
| bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf; |
| |
| /* |
| * If either the strap or xlated fpindex value are 0xf there is no |
| * panel using a strap-derived bios mode present. this condition |
| * includes, but is different from, the DDC panel indicator above |
| */ |
| if (fpstrapping == 0xf || fpindex == 0xf) |
| return 0; |
| |
| bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen + |
| recordlen * fpindex + ofs; |
| |
| NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n", |
| ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1, |
| ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1, |
| ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10); |
| |
| return 0; |
| } |
| |
| bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr]; |
| |
| if (!mode) /* just checking whether we can produce a mode */ |
| return bios->fp.mode_ptr; |
| |
| memset(mode, 0, sizeof(struct drm_display_mode)); |
| /* |
| * For version 1.0 (version in byte 0): |
| * bytes 1-2 are "panel type", including bits on whether Colour/mono, |
| * single/dual link, and type (TFT etc.) |
| * bytes 3-6 are bits per colour in RGBX |
| */ |
| mode->clock = ROM16(mode_entry[7]) * 10; |
| /* bytes 9-10 is HActive */ |
| mode->hdisplay = ROM16(mode_entry[11]) + 1; |
| /* |
| * bytes 13-14 is HValid Start |
| * bytes 15-16 is HValid End |
| */ |
| mode->hsync_start = ROM16(mode_entry[17]) + 1; |
| mode->hsync_end = ROM16(mode_entry[19]) + 1; |
| mode->htotal = ROM16(mode_entry[21]) + 1; |
| /* bytes 23-24, 27-30 similarly, but vertical */ |
| mode->vdisplay = ROM16(mode_entry[25]) + 1; |
| mode->vsync_start = ROM16(mode_entry[31]) + 1; |
| mode->vsync_end = ROM16(mode_entry[33]) + 1; |
| mode->vtotal = ROM16(mode_entry[35]) + 1; |
| mode->flags |= (mode_entry[37] & 0x10) ? |
| DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; |
| mode->flags |= (mode_entry[37] & 0x1) ? |
| DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; |
| /* |
| * bytes 38-39 relate to spread spectrum settings |
| * bytes 40-43 are something to do with PWM |
| */ |
| |
| mode->status = MODE_OK; |
| mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED; |
| drm_mode_set_name(mode); |
| return bios->fp.mode_ptr; |
| } |
| |
| int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit) |
| { |
| /* |
| * The LVDS table header is (mostly) described in |
| * parse_lvds_manufacturer_table_header(): the BIT header additionally |
| * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if |
| * straps are not being used for the panel, this specifies the frequency |
| * at which modes should be set up in the dual link style. |
| * |
| * Following the header, the BMP (ver 0xa) table has several records, |
| * indexed by a separate xlat table, indexed in turn by the fp strap in |
| * EXTDEV_BOOT. Each record had a config byte, followed by 6 script |
| * numbers for use by INIT_SUB which controlled panel init and power, |
| * and finally a dword of ms to sleep between power off and on |
| * operations. |
| * |
| * In the BIT versions, the table following the header serves as an |
| * integrated config and xlat table: the records in the table are |
| * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has |
| * two bytes - the first as a config byte, the second for indexing the |
| * fp mode table pointed to by the BIT 'D' table |
| * |
| * DDC is not used until after card init, so selecting the correct table |
| * entry and setting the dual link flag for EDID equipped panels, |
| * requiring tests against the native-mode pixel clock, cannot be done |
| * until later, when this function should be called with non-zero pxclk |
| */ |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0; |
| struct lvdstableheader lth; |
| uint16_t lvdsofs; |
| int ret, chip_version = bios->chip_version; |
| |
| ret = parse_lvds_manufacturer_table_header(dev, bios, <h); |
| if (ret) |
| return ret; |
| |
| switch (lth.lvds_ver) { |
| case 0x0a: /* pre NV40 */ |
| lvdsmanufacturerindex = bios->data[ |
| bios->fp.fpxlatemanufacturertableptr + |
| fpstrapping]; |
| |
| /* we're done if this isn't the EDID panel case */ |
| if (!pxclk) |
| break; |
| |
| if (chip_version < 0x25) { |
| /* nv17 behaviour |
| * |
| * It seems the old style lvds script pointer is reused |
| * to select 18/24 bit colour depth for EDID panels. |
| */ |
| lvdsmanufacturerindex = |
| (bios->legacy.lvds_single_a_script_ptr & 1) ? |
| 2 : 0; |
| if (pxclk >= bios->fp.duallink_transition_clk) |
| lvdsmanufacturerindex++; |
| } else if (chip_version < 0x30) { |
| /* nv28 behaviour (off-chip encoder) |
| * |
| * nv28 does a complex dance of first using byte 121 of |
| * the EDID to choose the lvdsmanufacturerindex, then |
| * later attempting to match the EDID manufacturer and |
| * product IDs in a table (signature 'pidt' (panel id |
| * table?)), setting an lvdsmanufacturerindex of 0 and |
| * an fp strap of the match index (or 0xf if none) |
| */ |
| lvdsmanufacturerindex = 0; |
| } else { |
| /* nv31, nv34 behaviour */ |
| lvdsmanufacturerindex = 0; |
| if (pxclk >= bios->fp.duallink_transition_clk) |
| lvdsmanufacturerindex = 2; |
| if (pxclk >= 140000) |
| lvdsmanufacturerindex = 3; |
| } |
| |
| /* |
| * nvidia set the high nibble of (cr57=f, cr58) to |
| * lvdsmanufacturerindex in this case; we don't |
| */ |
| break; |
| case 0x30: /* NV4x */ |
| case 0x40: /* G80/G90 */ |
| lvdsmanufacturerindex = fpstrapping; |
| break; |
| default: |
| NV_ERROR(dev, "LVDS table revision not currently supported\n"); |
| return -ENOSYS; |
| } |
| |
| lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex; |
| switch (lth.lvds_ver) { |
| case 0x0a: |
| bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1; |
| bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2; |
| bios->fp.dual_link = bios->data[lvdsofs] & 4; |
| bios->fp.link_c_increment = bios->data[lvdsofs] & 8; |
| *if_is_24bit = bios->data[lvdsofs] & 16; |
| break; |
| case 0x30: |
| case 0x40: |
| /* |
| * No sign of the "power off for reset" or "reset for panel |
| * on" bits, but it's safer to assume we should |
| */ |
| bios->fp.power_off_for_reset = true; |
| bios->fp.reset_after_pclk_change = true; |
| |
| /* |
| * It's ok lvdsofs is wrong for nv4x edid case; dual_link is |
| * over-written, and if_is_24bit isn't used |
| */ |
| bios->fp.dual_link = bios->data[lvdsofs] & 1; |
| bios->fp.if_is_24bit = bios->data[lvdsofs] & 2; |
| bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4]; |
| bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10; |
| break; |
| } |
| |
| /* set dual_link flag for EDID case */ |
| if (pxclk && (chip_version < 0x25 || chip_version > 0x28)) |
| bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk); |
| |
| *dl = bios->fp.dual_link; |
| |
| return 0; |
| } |
| |
| /* BIT 'U'/'d' table encoder subtables have hashes matching them to |
| * a particular set of encoders. |
| * |
| * This function returns true if a particular DCB entry matches. |
| */ |
| bool |
| bios_encoder_match(struct dcb_entry *dcb, u32 hash) |
| { |
| if ((hash & 0x000000f0) != (dcb->location << 4)) |
| return false; |
| if ((hash & 0x0000000f) != dcb->type) |
| return false; |
| if (!(hash & (dcb->or << 16))) |
| return false; |
| |
| switch (dcb->type) { |
| case OUTPUT_TMDS: |
| case OUTPUT_LVDS: |
| case OUTPUT_DP: |
| if (hash & 0x00c00000) { |
| if (!(hash & (dcb->sorconf.link << 22))) |
| return false; |
| } |
| default: |
| return true; |
| } |
| } |
| |
| int |
| nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk, |
| struct dcb_entry *dcbent, int crtc) |
| { |
| /* |
| * The display script table is located by the BIT 'U' table. |
| * |
| * It contains an array of pointers to various tables describing |
| * a particular output type. The first 32-bits of the output |
| * tables contains similar information to a DCB entry, and is |
| * used to decide whether that particular table is suitable for |
| * the output you want to access. |
| * |
| * The "record header length" field here seems to indicate the |
| * offset of the first configuration entry in the output tables. |
| * This is 10 on most cards I've seen, but 12 has been witnessed |
| * on DP cards, and there's another script pointer within the |
| * header. |
| * |
| * offset + 0 ( 8 bits): version |
| * offset + 1 ( 8 bits): header length |
| * offset + 2 ( 8 bits): record length |
| * offset + 3 ( 8 bits): number of records |
| * offset + 4 ( 8 bits): record header length |
| * offset + 5 (16 bits): pointer to first output script table |
| */ |
| |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| uint8_t *table = &bios->data[bios->display.script_table_ptr]; |
| uint8_t *otable = NULL; |
| uint16_t script; |
| int i; |
| |
| if (!bios->display.script_table_ptr) { |
| NV_ERROR(dev, "No pointer to output script table\n"); |
| return 1; |
| } |
| |
| /* |
| * Nothing useful has been in any of the pre-2.0 tables I've seen, |
| * so until they are, we really don't need to care. |
| */ |
| if (table[0] < 0x20) |
| return 1; |
| |
| if (table[0] != 0x20 && table[0] != 0x21) { |
| NV_ERROR(dev, "Output script table version 0x%02x unknown\n", |
| table[0]); |
| return 1; |
| } |
| |
| /* |
| * The output script tables describing a particular output type |
| * look as follows: |
| * |
| * offset + 0 (32 bits): output this table matches (hash of DCB) |
| * offset + 4 ( 8 bits): unknown |
| * offset + 5 ( 8 bits): number of configurations |
| * offset + 6 (16 bits): pointer to some script |
| * offset + 8 (16 bits): pointer to some script |
| * |
| * headerlen == 10 |
| * offset + 10 : configuration 0 |
| * |
| * headerlen == 12 |
| * offset + 10 : pointer to some script |
| * offset + 12 : configuration 0 |
| * |
| * Each config entry is as follows: |
| * |
| * offset + 0 (16 bits): unknown, assumed to be a match value |
| * offset + 2 (16 bits): pointer to script table (clock set?) |
| * offset + 4 (16 bits): pointer to script table (reset?) |
| * |
| * There doesn't appear to be a count value to say how many |
| * entries exist in each script table, instead, a 0 value in |
| * the first 16-bit word seems to indicate both the end of the |
| * list and the default entry. The second 16-bit word in the |
| * script tables is a pointer to the script to execute. |
| */ |
| |
| NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n", |
| dcbent->type, dcbent->location, dcbent->or); |
| for (i = 0; i < table[3]; i++) { |
| otable = ROMPTR(dev, table[table[1] + (i * table[2])]); |
| if (otable && bios_encoder_match(dcbent, ROM32(otable[0]))) |
| break; |
| } |
| |
| if (!otable) { |
| NV_DEBUG_KMS(dev, "failed to match any output table\n"); |
| return 1; |
| } |
| |
| if (pclk < -2 || pclk > 0) { |
| /* Try to find matching script table entry */ |
| for (i = 0; i < otable[5]; i++) { |
| if (ROM16(otable[table[4] + i*6]) == type) |
| break; |
| } |
| |
| if (i == otable[5]) { |
| NV_ERROR(dev, "Table 0x%04x not found for %d/%d, " |
| "using first\n", |
| type, dcbent->type, dcbent->or); |
| i = 0; |
| } |
| } |
| |
| if (pclk == 0) { |
| script = ROM16(otable[6]); |
| if (!script) { |
| NV_DEBUG_KMS(dev, "output script 0 not found\n"); |
| return 1; |
| } |
| |
| NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script); |
| nouveau_bios_run_init_table(dev, script, dcbent, crtc); |
| } else |
| if (pclk == -1) { |
| script = ROM16(otable[8]); |
| if (!script) { |
| NV_DEBUG_KMS(dev, "output script 1 not found\n"); |
| return 1; |
| } |
| |
| NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script); |
| nouveau_bios_run_init_table(dev, script, dcbent, crtc); |
| } else |
| if (pclk == -2) { |
| if (table[4] >= 12) |
| script = ROM16(otable[10]); |
| else |
| script = 0; |
| if (!script) { |
| NV_DEBUG_KMS(dev, "output script 2 not found\n"); |
| return 1; |
| } |
| |
| NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script); |
| nouveau_bios_run_init_table(dev, script, dcbent, crtc); |
| } else |
| if (pclk > 0) { |
| script = ROM16(otable[table[4] + i*6 + 2]); |
| if (script) |
| script = clkcmptable(bios, script, pclk); |
| if (!script) { |
| NV_DEBUG_KMS(dev, "clock script 0 not found\n"); |
| return 1; |
| } |
| |
| NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script); |
| nouveau_bios_run_init_table(dev, script, dcbent, crtc); |
| } else |
| if (pclk < 0) { |
| script = ROM16(otable[table[4] + i*6 + 4]); |
| if (script) |
| script = clkcmptable(bios, script, -pclk); |
| if (!script) { |
| NV_DEBUG_KMS(dev, "clock script 1 not found\n"); |
| return 1; |
| } |
| |
| NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script); |
| nouveau_bios_run_init_table(dev, script, dcbent, crtc); |
| } |
| |
| return 0; |
| } |
| |
| |
| int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk) |
| { |
| /* |
| * the pxclk parameter is in kHz |
| * |
| * This runs the TMDS regs setting code found on BIT bios cards |
| * |
| * For ffs(or) == 1 use the first table, for ffs(or) == 2 and |
| * ffs(or) == 3, use the second. |
| */ |
| |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| int cv = bios->chip_version; |
| uint16_t clktable = 0, scriptptr; |
| uint32_t sel_clk_binding, sel_clk; |
| |
| /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */ |
| if (cv >= 0x17 && cv != 0x1a && cv != 0x20 && |
| dcbent->location != DCB_LOC_ON_CHIP) |
| return 0; |
| |
| switch (ffs(dcbent->or)) { |
| case 1: |
| clktable = bios->tmds.output0_script_ptr; |
| break; |
| case 2: |
| case 3: |
| clktable = bios->tmds.output1_script_ptr; |
| break; |
| } |
| |
| if (!clktable) { |
| NV_ERROR(dev, "Pixel clock comparison table not found\n"); |
| return -EINVAL; |
| } |
| |
| scriptptr = clkcmptable(bios, clktable, pxclk); |
| |
| if (!scriptptr) { |
| NV_ERROR(dev, "TMDS output init script not found\n"); |
| return -ENOENT; |
| } |
| |
| /* don't let script change pll->head binding */ |
| sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000; |
| run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000); |
| sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); |
| |
| return 0; |
| } |
| |
| struct pll_mapping { |
| u8 type; |
| u32 reg; |
| }; |
| |
| static struct pll_mapping nv04_pll_mapping[] = { |
| { PLL_CORE , NV_PRAMDAC_NVPLL_COEFF }, |
| { PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF }, |
| { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF }, |
| { PLL_VPLL1 , NV_RAMDAC_VPLL2 }, |
| {} |
| }; |
| |
| static struct pll_mapping nv40_pll_mapping[] = { |
| { PLL_CORE , 0x004000 }, |
| { PLL_MEMORY, 0x004020 }, |
| { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF }, |
| { PLL_VPLL1 , NV_RAMDAC_VPLL2 }, |
| {} |
| }; |
| |
| static struct pll_mapping nv50_pll_mapping[] = { |
| { PLL_CORE , 0x004028 }, |
| { PLL_SHADER, 0x004020 }, |
| { PLL_UNK03 , 0x004000 }, |
| { PLL_MEMORY, 0x004008 }, |
| { PLL_UNK40 , 0x00e810 }, |
| { PLL_UNK41 , 0x00e818 }, |
| { PLL_UNK42 , 0x00e824 }, |
| { PLL_VPLL0 , 0x614100 }, |
| { PLL_VPLL1 , 0x614900 }, |
| {} |
| }; |
| |
| static struct pll_mapping nv84_pll_mapping[] = { |
| { PLL_CORE , 0x004028 }, |
| { PLL_SHADER, 0x004020 }, |
| { PLL_MEMORY, 0x004008 }, |
| { PLL_VDEC , 0x004030 }, |
| { PLL_UNK41 , 0x00e818 }, |
| { PLL_VPLL0 , 0x614100 }, |
| { PLL_VPLL1 , 0x614900 }, |
| {} |
| }; |
| |
| u32 |
| get_pll_register(struct drm_device *dev, enum pll_types type) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| struct pll_mapping *map; |
| int i; |
| |
| if (dev_priv->card_type < NV_40) |
| map = nv04_pll_mapping; |
| else |
| if (dev_priv->card_type < NV_50) |
| map = nv40_pll_mapping; |
| else { |
| u8 *plim = &bios->data[bios->pll_limit_tbl_ptr]; |
| |
| if (plim[0] >= 0x30) { |
| u8 *entry = plim + plim[1]; |
| for (i = 0; i < plim[3]; i++, entry += plim[2]) { |
| if (entry[0] == type) |
| return ROM32(entry[3]); |
| } |
| |
| return 0; |
| } |
| |
| if (dev_priv->chipset == 0x50) |
| map = nv50_pll_mapping; |
| else |
| map = nv84_pll_mapping; |
| } |
| |
| while (map->reg) { |
| if (map->type == type) |
| return map->reg; |
| map++; |
| } |
| |
| return 0; |
| } |
| |
| int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim) |
| { |
| /* |
| * PLL limits table |
| * |
| * Version 0x10: NV30, NV31 |
| * One byte header (version), one record of 24 bytes |
| * Version 0x11: NV36 - Not implemented |
| * Seems to have same record style as 0x10, but 3 records rather than 1 |
| * Version 0x20: Found on Geforce 6 cards |
| * Trivial 4 byte BIT header. 31 (0x1f) byte record length |
| * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards |
| * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record |
| * length in general, some (integrated) have an extra configuration byte |
| * Version 0x30: Found on Geforce 8, separates the register mapping |
| * from the limits tables. |
| */ |
| |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| int cv = bios->chip_version, pllindex = 0; |
| uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0; |
| uint32_t crystal_strap_mask, crystal_straps; |
| |
| if (!bios->pll_limit_tbl_ptr) { |
| if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 || |
| cv >= 0x40) { |
| NV_ERROR(dev, "Pointer to PLL limits table invalid\n"); |
| return -EINVAL; |
| } |
| } else |
| pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr]; |
| |
| crystal_strap_mask = 1 << 6; |
| /* open coded dev->twoHeads test */ |
| if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20) |
| crystal_strap_mask |= 1 << 22; |
| crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & |
| crystal_strap_mask; |
| |
| switch (pll_lim_ver) { |
| /* |
| * We use version 0 to indicate a pre limit table bios (single stage |
| * pll) and load the hard coded limits instead. |
| */ |
| case 0: |
| break; |
| case 0x10: |
| case 0x11: |
| /* |
| * Strictly v0x11 has 3 entries, but the last two don't seem |
| * to get used. |
| */ |
| headerlen = 1; |
| recordlen = 0x18; |
| entries = 1; |
| pllindex = 0; |
| break; |
| case 0x20: |
| case 0x21: |
| case 0x30: |
| case 0x40: |
| headerlen = bios->data[bios->pll_limit_tbl_ptr + 1]; |
| recordlen = bios->data[bios->pll_limit_tbl_ptr + 2]; |
| entries = bios->data[bios->pll_limit_tbl_ptr + 3]; |
| break; |
| default: |
| NV_ERROR(dev, "PLL limits table revision 0x%X not currently " |
| "supported\n", pll_lim_ver); |
| return -ENOSYS; |
| } |
| |
| /* initialize all members to zero */ |
| memset(pll_lim, 0, sizeof(struct pll_lims)); |
| |
| /* if we were passed a type rather than a register, figure |
| * out the register and store it |
| */ |
| if (limit_match > PLL_MAX) |
| pll_lim->reg = limit_match; |
| else { |
| pll_lim->reg = get_pll_register(dev, limit_match); |
| if (!pll_lim->reg) |
| return -ENOENT; |
| } |
| |
| if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) { |
| uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex]; |
| |
| pll_lim->vco1.minfreq = ROM32(pll_rec[0]); |
| pll_lim->vco1.maxfreq = ROM32(pll_rec[4]); |
| pll_lim->vco2.minfreq = ROM32(pll_rec[8]); |
| pll_lim->vco2.maxfreq = ROM32(pll_rec[12]); |
| pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]); |
| pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]); |
| pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX; |
| |
| /* these values taken from nv30/31/36 */ |
| pll_lim->vco1.min_n = 0x1; |
| if (cv == 0x36) |
| pll_lim->vco1.min_n = 0x5; |
| pll_lim->vco1.max_n = 0xff; |
| pll_lim->vco1.min_m = 0x1; |
| pll_lim->vco1.max_m = 0xd; |
| pll_lim->vco2.min_n = 0x4; |
| /* |
| * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this |
| * table version (apart from nv35)), N2 is compared to |
| * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and |
| * save a comparison |
| */ |
| pll_lim->vco2.max_n = 0x28; |
| if (cv == 0x30 || cv == 0x35) |
| /* only 5 bits available for N2 on nv30/35 */ |
| pll_lim->vco2.max_n = 0x1f; |
| pll_lim->vco2.min_m = 0x1; |
| pll_lim->vco2.max_m = 0x4; |
| pll_lim->max_log2p = 0x7; |
| pll_lim->max_usable_log2p = 0x6; |
| } else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) { |
| uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen; |
| uint8_t *pll_rec; |
| int i; |
| |
| /* |
| * First entry is default match, if nothing better. warn if |
| * reg field nonzero |
| */ |
| if (ROM32(bios->data[plloffs])) |
| NV_WARN(dev, "Default PLL limit entry has non-zero " |
| "register field\n"); |
| |
| for (i = 1; i < entries; i++) |
| if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) { |
| pllindex = i; |
| break; |
| } |
| |
| if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) { |
| NV_ERROR(dev, "Register 0x%08x not found in PLL " |
| "limits table", pll_lim->reg); |
| return -ENOENT; |
| } |
| |
| pll_rec = &bios->data[plloffs + recordlen * pllindex]; |
| |
| BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n", |
| pllindex ? pll_lim->reg : 0); |
| |
| /* |
| * Frequencies are stored in tables in MHz, kHz are more |
| * useful, so we convert. |
| */ |
| |
| /* What output frequencies can each VCO generate? */ |
| pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000; |
| pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000; |
| pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000; |
| pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000; |
| |
| /* What input frequencies they accept (past the m-divider)? */ |
| pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000; |
| pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000; |
| pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000; |
| pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000; |
| |
| /* What values are accepted as multiplier and divider? */ |
| pll_lim->vco1.min_n = pll_rec[20]; |
| pll_lim->vco1.max_n = pll_rec[21]; |
| pll_lim->vco1.min_m = pll_rec[22]; |
| pll_lim->vco1.max_m = pll_rec[23]; |
| pll_lim->vco2.min_n = pll_rec[24]; |
| pll_lim->vco2.max_n = pll_rec[25]; |
| pll_lim->vco2.min_m = pll_rec[26]; |
| pll_lim->vco2.max_m = pll_rec[27]; |
| |
| pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29]; |
| if (pll_lim->max_log2p > 0x7) |
| /* pll decoding in nv_hw.c assumes never > 7 */ |
| NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n", |
| pll_lim->max_log2p); |
| if (cv < 0x60) |
| pll_lim->max_usable_log2p = 0x6; |
| pll_lim->log2p_bias = pll_rec[30]; |
| |
| if (recordlen > 0x22) |
| pll_lim->refclk = ROM32(pll_rec[31]); |
| |
| if (recordlen > 0x23 && pll_rec[35]) |
| NV_WARN(dev, |
| "Bits set in PLL configuration byte (%x)\n", |
| pll_rec[35]); |
| |
| /* C51 special not seen elsewhere */ |
| if (cv == 0x51 && !pll_lim->refclk) { |
| uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK); |
| |
| if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) || |
| (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) { |
| if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3) |
| pll_lim->refclk = 200000; |
| else |
| pll_lim->refclk = 25000; |
| } |
| } |
| } else if (pll_lim_ver == 0x30) { /* ver 0x30 */ |
| uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; |
| uint8_t *record = NULL; |
| int i; |
| |
| BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", |
| pll_lim->reg); |
| |
| for (i = 0; i < entries; i++, entry += recordlen) { |
| if (ROM32(entry[3]) == pll_lim->reg) { |
| record = &bios->data[ROM16(entry[1])]; |
| break; |
| } |
| } |
| |
| if (!record) { |
| NV_ERROR(dev, "Register 0x%08x not found in PLL " |
| "limits table", pll_lim->reg); |
| return -ENOENT; |
| } |
| |
| pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; |
| pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; |
| pll_lim->vco2.minfreq = ROM16(record[4]) * 1000; |
| pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000; |
| pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000; |
| pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000; |
| pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000; |
| pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000; |
| pll_lim->vco1.min_n = record[16]; |
| pll_lim->vco1.max_n = record[17]; |
| pll_lim->vco1.min_m = record[18]; |
| pll_lim->vco1.max_m = record[19]; |
| pll_lim->vco2.min_n = record[20]; |
| pll_lim->vco2.max_n = record[21]; |
| pll_lim->vco2.min_m = record[22]; |
| pll_lim->vco2.max_m = record[23]; |
| pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25]; |
| pll_lim->log2p_bias = record[27]; |
| pll_lim->refclk = ROM32(record[28]); |
| } else if (pll_lim_ver) { /* ver 0x40 */ |
| uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen]; |
| uint8_t *record = NULL; |
| int i; |
| |
| BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n", |
| pll_lim->reg); |
| |
| for (i = 0; i < entries; i++, entry += recordlen) { |
| if (ROM32(entry[3]) == pll_lim->reg) { |
| record = &bios->data[ROM16(entry[1])]; |
| break; |
| } |
| } |
| |
| if (!record) { |
| NV_ERROR(dev, "Register 0x%08x not found in PLL " |
| "limits table", pll_lim->reg); |
| return -ENOENT; |
| } |
| |
| pll_lim->vco1.minfreq = ROM16(record[0]) * 1000; |
| pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000; |
| pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000; |
| pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000; |
| pll_lim->vco1.min_m = record[8]; |
| pll_lim->vco1.max_m = record[9]; |
| pll_lim->vco1.min_n = record[10]; |
| pll_lim->vco1.max_n = record[11]; |
| pll_lim->min_p = record[12]; |
| pll_lim->max_p = record[13]; |
| pll_lim->refclk = ROM16(entry[9]) * 1000; |
| } |
| |
| /* |
| * By now any valid limit table ought to have set a max frequency for |
| * vco1, so if it's zero it's either a pre limit table bios, or one |
| * with an empty limit table (seen on nv18) |
| */ |
| if (!pll_lim->vco1.maxfreq) { |
| pll_lim->vco1.minfreq = bios->fminvco; |
| pll_lim->vco1.maxfreq = bios->fmaxvco; |
| pll_lim->vco1.min_inputfreq = 0; |
| pll_lim->vco1.max_inputfreq = INT_MAX; |
| pll_lim->vco1.min_n = 0x1; |
| pll_lim->vco1.max_n = 0xff; |
| pll_lim->vco1.min_m = 0x1; |
| if (crystal_straps == 0) { |
| /* nv05 does this, nv11 doesn't, nv10 unknown */ |
| if (cv < 0x11) |
| pll_lim->vco1.min_m = 0x7; |
| pll_lim->vco1.max_m = 0xd; |
| } else { |
| if (cv < 0x11) |
| pll_lim->vco1.min_m = 0x8; |
| pll_lim->vco1.max_m = 0xe; |
| } |
| if (cv < 0x17 || cv == 0x1a || cv == 0x20) |
| pll_lim->max_log2p = 4; |
| else |
| pll_lim->max_log2p = 5; |
| pll_lim->max_usable_log2p = pll_lim->max_log2p; |
| } |
| |
| if (!pll_lim->refclk) |
| switch (crystal_straps) { |
| case 0: |
| pll_lim->refclk = 13500; |
| break; |
| case (1 << 6): |
| pll_lim->refclk = 14318; |
| break; |
| case (1 << 22): |
| pll_lim->refclk = 27000; |
| break; |
| case (1 << 22 | 1 << 6): |
| pll_lim->refclk = 25000; |
| break; |
| } |
| |
| NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq); |
| NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq); |
| NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq); |
| NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq); |
| NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n); |
| NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n); |
| NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m); |
| NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m); |
| if (pll_lim->vco2.maxfreq) { |
| NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq); |
| NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq); |
| NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq); |
| NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq); |
| NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n); |
| NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n); |
| NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m); |
| NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m); |
| } |
| if (!pll_lim->max_p) { |
| NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p); |
| NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias); |
| } else { |
| NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p); |
| NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p); |
| } |
| NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk); |
| |
| return 0; |
| } |
| |
| static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset) |
| { |
| /* |
| * offset + 0 (8 bits): Micro version |
| * offset + 1 (8 bits): Minor version |
| * offset + 2 (8 bits): Chip version |
| * offset + 3 (8 bits): Major version |
| */ |
| |
| bios->major_version = bios->data[offset + 3]; |
| bios->chip_version = bios->data[offset + 2]; |
| NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n", |
| bios->data[offset + 3], bios->data[offset + 2], |
| bios->data[offset + 1], bios->data[offset]); |
| } |
| |
| static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset) |
| { |
| /* |
| * Parses the init table segment for pointers used in script execution. |
| * |
| * offset + 0 (16 bits): init script tables pointer |
| * offset + 2 (16 bits): macro index table pointer |
| * offset + 4 (16 bits): macro table pointer |
| * offset + 6 (16 bits): condition table pointer |
| * offset + 8 (16 bits): io condition table pointer |
| * offset + 10 (16 bits): io flag condition table pointer |
| * offset + 12 (16 bits): init function table pointer |
| */ |
| |
| bios->init_script_tbls_ptr = ROM16(bios->data[offset]); |
| bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]); |
| bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]); |
| bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]); |
| bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]); |
| bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]); |
| bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]); |
| } |
| |
| static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the load detect values for g80 cards. |
| * |
| * offset + 0 (16 bits): loadval table pointer |
| */ |
| |
| uint16_t load_table_ptr; |
| uint8_t version, headerlen, entrylen, num_entries; |
| |
| if (bitentry->length != 3) { |
| NV_ERROR(dev, "Do not understand BIT A table\n"); |
| return -EINVAL; |
| } |
| |
| load_table_ptr = ROM16(bios->data[bitentry->offset]); |
| |
| if (load_table_ptr == 0x0) { |
| NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n"); |
| return -EINVAL; |
| } |
| |
| version = bios->data[load_table_ptr]; |
| |
| if (version != 0x10) { |
| NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n", |
| version >> 4, version & 0xF); |
| return -ENOSYS; |
| } |
| |
| headerlen = bios->data[load_table_ptr + 1]; |
| entrylen = bios->data[load_table_ptr + 2]; |
| num_entries = bios->data[load_table_ptr + 3]; |
| |
| if (headerlen != 4 || entrylen != 4 || num_entries != 2) { |
| NV_ERROR(dev, "Do not understand BIT loadval table\n"); |
| return -EINVAL; |
| } |
| |
| /* First entry is normal dac, 2nd tv-out perhaps? */ |
| bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff; |
| |
| return 0; |
| } |
| |
| static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * offset + 8 (16 bits): PLL limits table pointer |
| * |
| * There's more in here, but that's unknown. |
| */ |
| |
| if (bitentry->length < 10) { |
| NV_ERROR(dev, "Do not understand BIT C table\n"); |
| return -EINVAL; |
| } |
| |
| bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the flat panel table segment that the bit entry points to. |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte |
| * records beginning with a freq. |
| * offset + 2 (16 bits): mode table pointer |
| */ |
| |
| if (bitentry->length != 4) { |
| NV_ERROR(dev, "Do not understand BIT display table\n"); |
| return -EINVAL; |
| } |
| |
| bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the init table segment that the bit entry points to. |
| * |
| * See parse_script_table_pointers for layout |
| */ |
| |
| if (bitentry->length < 14) { |
| NV_ERROR(dev, "Do not understand init table\n"); |
| return -EINVAL; |
| } |
| |
| parse_script_table_pointers(bios, bitentry->offset); |
| |
| if (bitentry->length >= 16) |
| bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]); |
| if (bitentry->length >= 18) |
| bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * BIT 'i' (info?) table |
| * |
| * offset + 0 (32 bits): BIOS version dword (as in B table) |
| * offset + 5 (8 bits): BIOS feature byte (same as for BMP?) |
| * offset + 13 (16 bits): pointer to table containing DAC load |
| * detection comparison values |
| * |
| * There's other things in the table, purpose unknown |
| */ |
| |
| uint16_t daccmpoffset; |
| uint8_t dacver, dacheaderlen; |
| |
| if (bitentry->length < 6) { |
| NV_ERROR(dev, "BIT i table too short for needed information\n"); |
| return -EINVAL; |
| } |
| |
| parse_bios_version(dev, bios, bitentry->offset); |
| |
| /* |
| * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's |
| * Quadro identity crisis), other bits possibly as for BMP feature byte |
| */ |
| bios->feature_byte = bios->data[bitentry->offset + 5]; |
| bios->is_mobile = bios->feature_byte & FEATURE_MOBILE; |
| |
| if (bitentry->length < 15) { |
| NV_WARN(dev, "BIT i table not long enough for DAC load " |
| "detection comparison table\n"); |
| return -EINVAL; |
| } |
| |
| daccmpoffset = ROM16(bios->data[bitentry->offset + 13]); |
| |
| /* doesn't exist on g80 */ |
| if (!daccmpoffset) |
| return 0; |
| |
| /* |
| * The first value in the table, following the header, is the |
| * comparison value, the second entry is a comparison value for |
| * TV load detection. |
| */ |
| |
| dacver = bios->data[daccmpoffset]; |
| dacheaderlen = bios->data[daccmpoffset + 1]; |
| |
| if (dacver != 0x00 && dacver != 0x10) { |
| NV_WARN(dev, "DAC load detection comparison table version " |
| "%d.%d not known\n", dacver >> 4, dacver & 0xf); |
| return -ENOSYS; |
| } |
| |
| bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]); |
| bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]); |
| |
| return 0; |
| } |
| |
| static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the LVDS table segment that the bit entry points to. |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): LVDS strap xlate table pointer |
| */ |
| |
| if (bitentry->length != 2) { |
| NV_ERROR(dev, "Do not understand BIT LVDS table\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * No idea if it's still called the LVDS manufacturer table, but |
| * the concept's close enough. |
| */ |
| bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]); |
| |
| return 0; |
| } |
| |
| static int |
| parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios, |
| struct bit_entry *bitentry) |
| { |
| /* |
| * offset + 2 (8 bits): number of options in an |
| * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set |
| * offset + 3 (16 bits): pointer to strap xlate table for RAM |
| * restrict option selection |
| * |
| * There's a bunch of bits in this table other than the RAM restrict |
| * stuff that we don't use - their use currently unknown |
| */ |
| |
| /* |
| * Older bios versions don't have a sufficiently long table for |
| * what we want |
| */ |
| if (bitentry->length < 0x5) |
| return 0; |
| |
| if (bitentry->version < 2) { |
| bios->ram_restrict_group_count = bios->data[bitentry->offset + 2]; |
| bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]); |
| } else { |
| bios->ram_restrict_group_count = bios->data[bitentry->offset + 0]; |
| bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]); |
| } |
| |
| return 0; |
| } |
| |
| static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the pointer to the TMDS table |
| * |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): TMDS table pointer |
| * |
| * The TMDS table is typically found just before the DCB table, with a |
| * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being |
| * length?) |
| * |
| * At offset +7 is a pointer to a script, which I don't know how to |
| * run yet. |
| * At offset +9 is a pointer to another script, likewise |
| * Offset +11 has a pointer to a table where the first word is a pxclk |
| * frequency and the second word a pointer to a script, which should be |
| * run if the comparison pxclk frequency is less than the pxclk desired. |
| * This repeats for decreasing comparison frequencies |
| * Offset +13 has a pointer to a similar table |
| * The selection of table (and possibly +7/+9 script) is dictated by |
| * "or" from the DCB. |
| */ |
| |
| uint16_t tmdstableptr, script1, script2; |
| |
| if (bitentry->length != 2) { |
| NV_ERROR(dev, "Do not understand BIT TMDS table\n"); |
| return -EINVAL; |
| } |
| |
| tmdstableptr = ROM16(bios->data[bitentry->offset]); |
| if (!tmdstableptr) { |
| NV_ERROR(dev, "Pointer to TMDS table invalid\n"); |
| return -EINVAL; |
| } |
| |
| NV_INFO(dev, "TMDS table version %d.%d\n", |
| bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf); |
| |
| /* nv50+ has v2.0, but we don't parse it atm */ |
| if (bios->data[tmdstableptr] != 0x11) |
| return -ENOSYS; |
| |
| /* |
| * These two scripts are odd: they don't seem to get run even when |
| * they are not stubbed. |
| */ |
| script1 = ROM16(bios->data[tmdstableptr + 7]); |
| script2 = ROM16(bios->data[tmdstableptr + 9]); |
| if (bios->data[script1] != 'q' || bios->data[script2] != 'q') |
| NV_WARN(dev, "TMDS table script pointers not stubbed\n"); |
| |
| bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]); |
| bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]); |
| |
| return 0; |
| } |
| |
| static int |
| parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios, |
| struct bit_entry *bitentry) |
| { |
| /* |
| * Parses the pointer to the G80 output script tables |
| * |
| * Starting at bitentry->offset: |
| * |
| * offset + 0 (16 bits): output script table pointer |
| */ |
| |
| uint16_t outputscripttableptr; |
| |
| if (bitentry->length != 3) { |
| NV_ERROR(dev, "Do not understand BIT U table\n"); |
| return -EINVAL; |
| } |
| |
| outputscripttableptr = ROM16(bios->data[bitentry->offset]); |
| bios->display.script_table_ptr = outputscripttableptr; |
| return 0; |
| } |
| |
| struct bit_table { |
| const char id; |
| int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *); |
| }; |
| |
| #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry }) |
| |
| int |
| bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| u8 entries, *entry; |
| |
| if (bios->type != NVBIOS_BIT) |
| return -ENODEV; |
| |
| entries = bios->data[bios->offset + 10]; |
| entry = &bios->data[bios->offset + 12]; |
| while (entries--) { |
| if (entry[0] == id) { |
| bit->id = entry[0]; |
| bit->version = entry[1]; |
| bit->length = ROM16(entry[2]); |
| bit->offset = ROM16(entry[4]); |
| bit->data = ROMPTR(dev, entry[4]); |
| return 0; |
| } |
| |
| entry += bios->data[bios->offset + 9]; |
| } |
| |
| return -ENOENT; |
| } |
| |
| static int |
| parse_bit_table(struct nvbios *bios, const uint16_t bitoffset, |
| struct bit_table *table) |
| { |
| struct drm_device *dev = bios->dev; |
| struct bit_entry bitentry; |
| |
| if (bit_table(dev, table->id, &bitentry) == 0) |
| return table->parse_fn(dev, bios, &bitentry); |
| |
| NV_INFO(dev, "BIT table '%c' not found\n", table->id); |
| return -ENOSYS; |
| } |
| |
| static int |
| parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset) |
| { |
| int ret; |
| |
| /* |
| * The only restriction on parsing order currently is having 'i' first |
| * for use of bios->*_version or bios->feature_byte while parsing; |
| * functions shouldn't be actually *doing* anything apart from pulling |
| * data from the image into the bios struct, thus no interdependencies |
| */ |
| ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i)); |
| if (ret) /* info? */ |
| return ret; |
| if (bios->major_version >= 0x60) /* g80+ */ |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A)); |
| ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C)); |
| if (ret) |
| return ret; |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display)); |
| ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init)); |
| if (ret) |
| return ret; |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */ |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds)); |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds)); |
| parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U)); |
| |
| return 0; |
| } |
| |
| static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset) |
| { |
| /* |
| * Parses the BMP structure for useful things, but does not act on them |
| * |
| * offset + 5: BMP major version |
| * offset + 6: BMP minor version |
| * offset + 9: BMP feature byte |
| * offset + 10: BCD encoded BIOS version |
| * |
| * offset + 18: init script table pointer (for bios versions < 5.10h) |
| * offset + 20: extra init script table pointer (for bios |
| * versions < 5.10h) |
| * |
| * offset + 24: memory init table pointer (used on early bios versions) |
| * offset + 26: SDR memory sequencing setup data table |
| * offset + 28: DDR memory sequencing setup data table |
| * |
| * offset + 54: index of I2C CRTC pair to use for CRT output |
| * offset + 55: index of I2C CRTC pair to use for TV output |
| * offset + 56: index of I2C CRTC pair to use for flat panel output |
| * offset + 58: write CRTC index for I2C pair 0 |
| * offset + 59: read CRTC index for I2C pair 0 |
| * offset + 60: write CRTC index for I2C pair 1 |
| * offset + 61: read CRTC index for I2C pair 1 |
| * |
| * offset + 67: maximum internal PLL frequency (single stage PLL) |
| * offset + 71: minimum internal PLL frequency (single stage PLL) |
| * |
| * offset + 75: script table pointers, as described in |
| * parse_script_table_pointers |
| * |
| * offset + 89: TMDS single link output A table pointer |
| * offset + 91: TMDS single link output B table pointer |
| * offset + 95: LVDS single link output A table pointer |
| * offset + 105: flat panel timings table pointer |
| * offset + 107: flat panel strapping translation table pointer |
| * offset + 117: LVDS manufacturer panel config table pointer |
| * offset + 119: LVDS manufacturer strapping translation table pointer |
| * |
| * offset + 142: PLL limits table pointer |
| * |
| * offset + 156: minimum pixel clock for LVDS dual link |
| */ |
| |
| uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor; |
| uint16_t bmplength; |
| uint16_t legacy_scripts_offset, legacy_i2c_offset; |
| |
| /* load needed defaults in case we can't parse this info */ |
| bios->digital_min_front_porch = 0x4b; |
| bios->fmaxvco = 256000; |
| bios->fminvco = 128000; |
| bios->fp.duallink_transition_clk = 90000; |
| |
| bmp_version_major = bmp[5]; |
| bmp_version_minor = bmp[6]; |
| |
| NV_TRACE(dev, "BMP version %d.%d\n", |
| bmp_version_major, bmp_version_minor); |
| |
| /* |
| * Make sure that 0x36 is blank and can't be mistaken for a DCB |
| * pointer on early versions |
| */ |
| if (bmp_version_major < 5) |
| *(uint16_t *)&bios->data[0x36] = 0; |
| |
| /* |
| * Seems that the minor version was 1 for all major versions prior |
| * to 5. Version 6 could theoretically exist, but I suspect BIT |
| * happened instead. |
| */ |
| if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) { |
| NV_ERROR(dev, "You have an unsupported BMP version. " |
| "Please send in your bios\n"); |
| return -ENOSYS; |
| } |
| |
| if (bmp_version_major == 0) |
| /* nothing that's currently useful in this version */ |
| return 0; |
| else if (bmp_version_major == 1) |
| bmplength = 44; /* exact for 1.01 */ |
| else if (bmp_version_major == 2) |
| bmplength = 48; /* exact for 2.01 */ |
| else if (bmp_version_major == 3) |
| bmplength = 54; |
| /* guessed - mem init tables added in this version */ |
| else if (bmp_version_major == 4 || bmp_version_minor < 0x1) |
| /* don't know if 5.0 exists... */ |
| bmplength = 62; |
| /* guessed - BMP I2C indices added in version 4*/ |
| else if (bmp_version_minor < 0x6) |
| bmplength = 67; /* exact for 5.01 */ |
| else if (bmp_version_minor < 0x10) |
| bmplength = 75; /* exact for 5.06 */ |
| else if (bmp_version_minor == 0x10) |
| bmplength = 89; /* exact for 5.10h */ |
| else if (bmp_version_minor < 0x14) |
| bmplength = 118; /* exact for 5.11h */ |
| else if (bmp_version_minor < 0x24) |
| /* |
| * Not sure of version where pll limits came in; |
| * certainly exist by 0x24 though. |
| */ |
| /* length not exact: this is long enough to get lvds members */ |
| bmplength = 123; |
| else if (bmp_version_minor < 0x27) |
| /* |
| * Length not exact: this is long enough to get pll limit |
| * member |
| */ |
| bmplength = 144; |
| else |
| /* |
| * Length not exact: this is long enough to get dual link |
| * transition clock. |
| */ |
| bmplength = 158; |
| |
| /* checksum */ |
| if (nv_cksum(bmp, 8)) { |
| NV_ERROR(dev, "Bad BMP checksum\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Bit 4 seems to indicate either a mobile bios or a quadro card -- |
| * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl |
| * (not nv10gl), bit 5 that the flat panel tables are present, and |
| * bit 6 a tv bios. |
| */ |
| bios->feature_byte = bmp[9]; |
| |
| parse_bios_version(dev, bios, offset + 10); |
| |
| if (bmp_version_major < 5 || bmp_version_minor < 0x10) |
| bios->old_style_init = true; |
| legacy_scripts_offset = 18; |
| if (bmp_version_major < 2) |
| legacy_scripts_offset -= 4; |
| bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]); |
| bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]); |
| |
| if (bmp_version_major > 2) { /* appears in BMP 3 */ |
| bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]); |
| bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]); |
| bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]); |
| } |
| |
| legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */ |
| if (bmplength > 61) |
| legacy_i2c_offset = offset + 54; |
| bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset]; |
| bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1]; |
| bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2]; |
| |
| if (bmplength > 74) { |
| bios->fmaxvco = ROM32(bmp[67]); |
| bios->fminvco = ROM32(bmp[71]); |
| } |
| if (bmplength > 88) |
| parse_script_table_pointers(bios, offset + 75); |
| if (bmplength > 94) { |
| bios->tmds.output0_script_ptr = ROM16(bmp[89]); |
| bios->tmds.output1_script_ptr = ROM16(bmp[91]); |
| /* |
| * Never observed in use with lvds scripts, but is reused for |
| * 18/24 bit panel interface default for EDID equipped panels |
| * (if_is_24bit not set directly to avoid any oscillation). |
| */ |
| bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]); |
| } |
| if (bmplength > 108) { |
| bios->fp.fptablepointer = ROM16(bmp[105]); |
| bios->fp.fpxlatetableptr = ROM16(bmp[107]); |
| bios->fp.xlatwidth = 1; |
| } |
| if (bmplength > 120) { |
| bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]); |
| bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]); |
| } |
| if (bmplength > 143) |
| bios->pll_limit_tbl_ptr = ROM16(bmp[142]); |
| |
| if (bmplength > 157) |
| bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10; |
| |
| return 0; |
| } |
| |
| static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len) |
| { |
| int i, j; |
| |
| for (i = 0; i <= (n - len); i++) { |
| for (j = 0; j < len; j++) |
| if (data[i + j] != str[j]) |
| break; |
| if (j == len) |
| return i; |
| } |
| |
| return 0; |
| } |
| |
| void * |
| dcb_table(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| u8 *dcb = NULL; |
| |
| if (dev_priv->card_type > NV_04) |
| dcb = ROMPTR(dev, dev_priv->vbios.data[0x36]); |
| if (!dcb) { |
| NV_WARNONCE(dev, "No DCB data found in VBIOS\n"); |
| return NULL; |
| } |
| |
| if (dcb[0] >= 0x41) { |
| NV_WARNONCE(dev, "DCB version 0x%02x unknown\n", dcb[0]); |
| return NULL; |
| } else |
| if (dcb[0] >= 0x30) { |
| if (ROM32(dcb[6]) == 0x4edcbdcb) |
| return dcb; |
| } else |
| if (dcb[0] >= 0x20) { |
| if (ROM32(dcb[4]) == 0x4edcbdcb) |
| return dcb; |
| } else |
| if (dcb[0] >= 0x15) { |
| if (!memcmp(&dcb[-7], "DEV_REC", 7)) |
| return dcb; |
| } else { |
| /* |
| * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but |
| * always has the same single (crt) entry, even when tv-out |
| * present, so the conclusion is this version cannot really |
| * be used. |
| * |
| * v1.2 tables (some NV6/10, and NV15+) normally have the |
| * same 5 entries, which are not specific to the card and so |
| * no use. |
| * |
| * v1.2 does have an I2C table that read_dcb_i2c_table can |
| * handle, but cards exist (nv11 in #14821) with a bad i2c |
| * table pointer, so use the indices parsed in |
| * parse_bmp_structure. |
| * |
| * v1.1 (NV5+, maybe some NV4) is entirely unhelpful |
| */ |
| NV_WARNONCE(dev, "No useful DCB data in VBIOS\n"); |
| return NULL; |
| } |
| |
| NV_WARNONCE(dev, "DCB header validation failed\n"); |
| return NULL; |
| } |
| |
| void * |
| dcb_outp(struct drm_device *dev, u8 idx) |
| { |
| u8 *dcb = dcb_table(dev); |
| if (dcb && dcb[0] >= 0x30) { |
| if (idx < dcb[2]) |
| return dcb + dcb[1] + (idx * dcb[3]); |
| } else |
| if (dcb && dcb[0] >= 0x20) { |
| u8 *i2c = ROMPTR(dev, dcb[2]); |
| u8 *ent = dcb + 8 + (idx * 8); |
| if (i2c && ent < i2c) |
| return ent; |
| } else |
| if (dcb && dcb[0] >= 0x15) { |
| u8 *i2c = ROMPTR(dev, dcb[2]); |
| u8 *ent = dcb + 4 + (idx * 10); |
| if (i2c && ent < i2c) |
| return ent; |
| } |
| |
| return NULL; |
| } |
| |
| int |
| dcb_outp_foreach(struct drm_device *dev, void *data, |
| int (*exec)(struct drm_device *, void *, int idx, u8 *outp)) |
| { |
| int ret, idx = -1; |
| u8 *outp = NULL; |
| while ((outp = dcb_outp(dev, ++idx))) { |
| if (ROM32(outp[0]) == 0x00000000) |
| break; /* seen on an NV11 with DCB v1.5 */ |
| if (ROM32(outp[0]) == 0xffffffff) |
| break; /* seen on an NV17 with DCB v2.0 */ |
| |
| if ((outp[0] & 0x0f) == OUTPUT_UNUSED) |
| continue; |
| if ((outp[0] & 0x0f) == OUTPUT_EOL) |
| break; |
| |
| ret = exec(dev, data, idx, outp); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| u8 * |
| dcb_conntab(struct drm_device *dev) |
| { |
| u8 *dcb = dcb_table(dev); |
| if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) { |
| u8 *conntab = ROMPTR(dev, dcb[0x14]); |
| if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40) |
| return conntab; |
| } |
| return NULL; |
| } |
| |
| u8 * |
| dcb_conn(struct drm_device *dev, u8 idx) |
| { |
| u8 *conntab = dcb_conntab(dev); |
| if (conntab && idx < conntab[2]) |
| return conntab + conntab[1] + (idx * conntab[3]); |
| return NULL; |
| } |
| |
| static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb) |
| { |
| struct dcb_entry *entry = &dcb->entry[dcb->entries]; |
| |
| memset(entry, 0, sizeof(struct dcb_entry)); |
| entry->index = dcb->entries++; |
| |
| return entry; |
| } |
| |
| static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c, |
| int heads, int or) |
| { |
| struct dcb_entry *entry = new_dcb_entry(dcb); |
| |
| entry->type = type; |
| entry->i2c_index = i2c; |
| entry->heads = heads; |
| if (type != OUTPUT_ANALOG) |
| entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ |
| entry->or = or; |
| } |
| |
| static bool |
| parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb, |
| uint32_t conn, uint32_t conf, struct dcb_entry *entry) |
| { |
| entry->type = conn & 0xf; |
| entry->i2c_index = (conn >> 4) & 0xf; |
| entry->heads = (conn >> 8) & 0xf; |
| entry->connector = (conn >> 12) & 0xf; |
| entry->bus = (conn >> 16) & 0xf; |
| entry->location = (conn >> 20) & 0x3; |
| entry->or = (conn >> 24) & 0xf; |
| |
| switch (entry->type) { |
| case OUTPUT_ANALOG: |
| /* |
| * Although the rest of a CRT conf dword is usually |
| * zeros, mac biosen have stuff there so we must mask |
| */ |
| entry->crtconf.maxfreq = (dcb->version < 0x30) ? |
| (conf & 0xffff) * 10 : |
| (conf & 0xff) * 10000; |
| break; |
| case OUTPUT_LVDS: |
| { |
| uint32_t mask; |
| if (conf & 0x1) |
| entry->lvdsconf.use_straps_for_mode = true; |
| if (dcb->version < 0x22) { |
| mask = ~0xd; |
| /* |
| * The laptop in bug 14567 lies and claims to not use |
| * straps when it does, so assume all DCB 2.0 laptops |
| * use straps, until a broken EDID using one is produced |
| */ |
| entry->lvdsconf.use_straps_for_mode = true; |
| /* |
| * Both 0x4 and 0x8 show up in v2.0 tables; assume they |
| * mean the same thing (probably wrong, but might work) |
| */ |
| if (conf & 0x4 || conf & 0x8) |
| entry->lvdsconf.use_power_scripts = true; |
| } else { |
| mask = ~0x7; |
| if (conf & 0x2) |
| entry->lvdsconf.use_acpi_for_edid = true; |
| if (conf & 0x4) |
| entry->lvdsconf.use_power_scripts = true; |
| entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4; |
| } |
| if (conf & mask) { |
| /* |
| * Until we even try to use these on G8x, it's |
| * useless reporting unknown bits. They all are. |
| */ |
| if (dcb->version >= 0x40) |
| break; |
| |
| NV_ERROR(dev, "Unknown LVDS configuration bits, " |
| "please report\n"); |
| } |
| break; |
| } |
| case OUTPUT_TV: |
| { |
| if (dcb->version >= 0x30) |
| entry->tvconf.has_component_output = conf & (0x8 << 4); |
| else |
| entry->tvconf.has_component_output = false; |
| |
| break; |
| } |
| case OUTPUT_DP: |
| entry->dpconf.sor.link = (conf & 0x00000030) >> 4; |
| switch ((conf & 0x00e00000) >> 21) { |
| case 0: |
| entry->dpconf.link_bw = 162000; |
| break; |
| default: |
| entry->dpconf.link_bw = 270000; |
| break; |
| } |
| switch ((conf & 0x0f000000) >> 24) { |
| case 0xf: |
| entry->dpconf.link_nr = 4; |
| break; |
| case 0x3: |
| entry->dpconf.link_nr = 2; |
| break; |
| default: |
| entry->dpconf.link_nr = 1; |
| break; |
| } |
| break; |
| case OUTPUT_TMDS: |
| if (dcb->version >= 0x40) |
| entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4; |
| else if (dcb->version >= 0x30) |
| entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8; |
| else if (dcb->version >= 0x22) |
| entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4; |
| |
| break; |
| case OUTPUT_EOL: |
| /* weird g80 mobile type that "nv" treats as a terminator */ |
| dcb->entries--; |
| return false; |
| default: |
| break; |
| } |
| |
| if (dcb->version < 0x40) { |
| /* Normal entries consist of a single bit, but dual link has |
| * the next most significant bit set too |
| */ |
| entry->duallink_possible = |
| ((1 << (ffs(entry->or) - 1)) * 3 == entry->or); |
| } else { |
| entry->duallink_possible = (entry->sorconf.link == 3); |
| } |
| |
| /* unsure what DCB version introduces this, 3.0? */ |
| if (conf & 0x100000) |
| entry->i2c_upper_default = true; |
| |
| return true; |
| } |
| |
| static bool |
| parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb, |
| uint32_t conn, uint32_t conf, struct dcb_entry *entry) |
| { |
| switch (conn & 0x0000000f) { |
| case 0: |
| entry->type = OUTPUT_ANALOG; |
| break; |
| case 1: |
| entry->type = OUTPUT_TV; |
| break; |
| case 2: |
| case 4: |
| if (conn & 0x10) |
| entry->type = OUTPUT_LVDS; |
| else |
| entry->type = OUTPUT_TMDS; |
| break; |
| case 3: |
| entry->type = OUTPUT_LVDS; |
| break; |
| default: |
| NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f); |
| return false; |
| } |
| |
| entry->i2c_index = (conn & 0x0003c000) >> 14; |
| entry->heads = ((conn & 0x001c0000) >> 18) + 1; |
| entry->or = entry->heads; /* same as heads, hopefully safe enough */ |
| entry->location = (conn & 0x01e00000) >> 21; |
| entry->bus = (conn & 0x0e000000) >> 25; |
| entry->duallink_possible = false; |
| |
| switch (entry->type) { |
| case OUTPUT_ANALOG: |
| entry->crtconf.maxfreq = (conf & 0xffff) * 10; |
| break; |
| case OUTPUT_TV: |
| entry->tvconf.has_component_output = false; |
| break; |
| case OUTPUT_LVDS: |
| if ((conn & 0x00003f00) >> 8 != 0x10) |
| entry->lvdsconf.use_straps_for_mode = true; |
| entry->lvdsconf.use_power_scripts = true; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static |
| void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb) |
| { |
| /* |
| * DCB v2.0 lists each output combination separately. |
| * Here we merge compatible entries to have fewer outputs, with |
| * more options |
| */ |
| |
| int i, newentries = 0; |
| |
| for (i = 0; i < dcb->entries; i++) { |
| struct dcb_entry *ient = &dcb->entry[i]; |
| int j; |
| |
| for (j = i + 1; j < dcb->entries; j++) { |
| struct dcb_entry *jent = &dcb->entry[j]; |
| |
| if (jent->type == 100) /* already merged entry */ |
| continue; |
| |
| /* merge heads field when all other fields the same */ |
| if (jent->i2c_index == ient->i2c_index && |
| jent->type == ient->type && |
| jent->location == ient->location && |
| jent->or == ient->or) { |
| NV_TRACE(dev, "Merging DCB entries %d and %d\n", |
| i, j); |
| ient->heads |= jent->heads; |
| jent->type = 100; /* dummy value */ |
| } |
| } |
| } |
| |
| /* Compact entries merged into others out of dcb */ |
| for (i = 0; i < dcb->entries; i++) { |
| if (dcb->entry[i].type == 100) |
| continue; |
| |
| if (newentries != i) { |
| dcb->entry[newentries] = dcb->entry[i]; |
| dcb->entry[newentries].index = newentries; |
| } |
| newentries++; |
| } |
| |
| dcb->entries = newentries; |
| } |
| |
| static bool |
| apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct dcb_table *dcb = &dev_priv->vbios.dcb; |
| |
| /* Dell Precision M6300 |
| * DCB entry 2: 02025312 00000010 |
| * DCB entry 3: 02026312 00000020 |
| * |
| * Identical, except apparently a different connector on a |
| * different SOR link. Not a clue how we're supposed to know |
| * which one is in use if it even shares an i2c line... |
| * |
| * Ignore the connector on the second SOR link to prevent |
| * nasty problems until this is sorted (assuming it's not a |
| * VBIOS bug). |
| */ |
| if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) { |
| if (*conn == 0x02026312 && *conf == 0x00000020) |
| return false; |
| } |
| |
| /* GeForce3 Ti 200 |
| * |
| * DCB reports an LVDS output that should be TMDS: |
| * DCB entry 1: f2005014 ffffffff |
| */ |
| if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) { |
| if (*conn == 0xf2005014 && *conf == 0xffffffff) { |
| fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1); |
| return false; |
| } |
| } |
| |
| /* XFX GT-240X-YA |
| * |
| * So many things wrong here, replace the entire encoder table.. |
| */ |
| if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) { |
| if (idx == 0) { |
| *conn = 0x02001300; /* VGA, connector 1 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 1) { |
| *conn = 0x01010312; /* DVI, connector 0 */ |
| *conf = 0x00020030; |
| } else |
| if (idx == 2) { |
| *conn = 0x01010310; /* VGA, connector 0 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 3) { |
| *conn = 0x02022362; /* HDMI, connector 2 */ |
| *conf = 0x00020010; |
| } else { |
| *conn = 0x0000000e; /* EOL */ |
| *conf = 0x00000000; |
| } |
| } |
| |
| /* Some other twisted XFX board (rhbz#694914) |
| * |
| * The DVI/VGA encoder combo that's supposed to represent the |
| * DVI-I connector actually point at two different ones, and |
| * the HDMI connector ends up paired with the VGA instead. |
| * |
| * Connector table is missing anything for VGA at all, pointing it |
| * an invalid conntab entry 2 so we figure it out ourself. |
| */ |
| if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) { |
| if (idx == 0) { |
| *conn = 0x02002300; /* VGA, connector 2 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 1) { |
| *conn = 0x01010312; /* DVI, connector 0 */ |
| *conf = 0x00020030; |
| } else |
| if (idx == 2) { |
| *conn = 0x04020310; /* VGA, connector 0 */ |
| *conf = 0x00000028; |
| } else |
| if (idx == 3) { |
| *conn = 0x02021322; /* HDMI, connector 1 */ |
| *conf = 0x00020010; |
| } else { |
| *conn = 0x0000000e; /* EOL */ |
| *conf = 0x00000000; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void |
| fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct dcb_table *dcb = &bios->dcb; |
| int all_heads = (nv_two_heads(dev) ? 3 : 1); |
| |
| #ifdef __powerpc__ |
| /* Apple iMac G4 NV17 */ |
| if (of_machine_is_compatible("PowerMac4,5")) { |
| fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1); |
| fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2); |
| return; |
| } |
| #endif |
| |
| /* Make up some sane defaults */ |
| fabricate_dcb_output(dcb, OUTPUT_ANALOG, |
| bios->legacy.i2c_indices.crt, 1, 1); |
| |
| if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) |
| fabricate_dcb_output(dcb, OUTPUT_TV, |
| bios->legacy.i2c_indices.tv, |
| all_heads, 0); |
| |
| else if (bios->tmds.output0_script_ptr || |
| bios->tmds.output1_script_ptr) |
| fabricate_dcb_output(dcb, OUTPUT_TMDS, |
| bios->legacy.i2c_indices.panel, |
| all_heads, 1); |
| } |
| |
| static int |
| parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct dcb_table *dcb = &dev_priv->vbios.dcb; |
| u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]); |
| u32 conn = ROM32(outp[0]); |
| bool ret; |
| |
| if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) { |
| struct dcb_entry *entry = new_dcb_entry(dcb); |
| |
| NV_TRACEWARN(dev, "DCB outp %02d: %08x %08x\n", idx, conn, conf); |
| |
| if (dcb->version >= 0x20) |
| ret = parse_dcb20_entry(dev, dcb, conn, conf, entry); |
| else |
| ret = parse_dcb15_entry(dev, dcb, conn, conf, entry); |
| if (!ret) |
| return 1; /* stop parsing */ |
| |
| /* Ignore the I2C index for on-chip TV-out, as there |
| * are cards with bogus values (nv31m in bug 23212), |
| * and it's otherwise useless. |
| */ |
| if (entry->type == OUTPUT_TV && |
| entry->location == DCB_LOC_ON_CHIP) |
| entry->i2c_index = 0x0f; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| dcb_fake_connectors(struct nvbios *bios) |
| { |
| struct dcb_table *dcbt = &bios->dcb; |
| u8 map[16] = { }; |
| int i, idx = 0; |
| |
| /* heuristic: if we ever get a non-zero connector field, assume |
| * that all the indices are valid and we don't need fake them. |
| * |
| * and, as usual, a blacklist of boards with bad bios data.. |
| */ |
| if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) { |
| for (i = 0; i < dcbt->entries; i++) { |
| if (dcbt->entry[i].connector) |
| return; |
| } |
| } |
| |
| /* no useful connector info available, we need to make it up |
| * ourselves. the rule here is: anything on the same i2c bus |
| * is considered to be on the same connector. any output |
| * without an associated i2c bus is assigned its own unique |
| * connector index. |
| */ |
| for (i = 0; i < dcbt->entries; i++) { |
| u8 i2c = dcbt->entry[i].i2c_index; |
| if (i2c == 0x0f) { |
| dcbt->entry[i].connector = idx++; |
| } else { |
| if (!map[i2c]) |
| map[i2c] = ++idx; |
| dcbt->entry[i].connector = map[i2c] - 1; |
| } |
| } |
| |
| /* if we created more than one connector, destroy the connector |
| * table - just in case it has random, rather than stub, entries. |
| */ |
| if (i > 1) { |
| u8 *conntab = dcb_conntab(bios->dev); |
| if (conntab) |
| conntab[0] = 0x00; |
| } |
| } |
| |
| static int |
| parse_dcb_table(struct drm_device *dev, struct nvbios *bios) |
| { |
| struct dcb_table *dcb = &bios->dcb; |
| u8 *dcbt, *conn; |
| int idx; |
| |
| dcbt = dcb_table(dev); |
| if (!dcbt) { |
| /* handle pre-DCB boards */ |
| if (bios->type == NVBIOS_BMP) { |
| fabricate_dcb_encoder_table(dev, bios); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| NV_TRACE(dev, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf); |
| |
| dcb->version = dcbt[0]; |
| dcb_outp_foreach(dev, NULL, parse_dcb_entry); |
| |
| /* |
| * apart for v2.1+ not being known for requiring merging, this |
| * guarantees dcbent->index is the index of the entry in the rom image |
| */ |
| if (dcb->version < 0x21) |
| merge_like_dcb_entries(dev, dcb); |
| |
| if (!dcb->entries) |
| return -ENXIO; |
| |
| /* dump connector table entries to log, if any exist */ |
| idx = -1; |
| while ((conn = dcb_conn(dev, ++idx))) { |
| if (conn[0] != 0xff) { |
| NV_TRACE(dev, "DCB conn %02d: ", idx); |
| if (dcb_conntab(dev)[3] < 4) |
| printk("%04x\n", ROM16(conn[0])); |
| else |
| printk("%08x\n", ROM32(conn[0])); |
| } |
| } |
| dcb_fake_connectors(bios); |
| return 0; |
| } |
| |
| static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry) |
| { |
| /* |
| * The header following the "HWSQ" signature has the number of entries, |
| * and the entry size |
| * |
| * An entry consists of a dword to write to the sequencer control reg |
| * (0x00001304), followed by the ucode bytes, written sequentially, |
| * starting at reg 0x00001400 |
| */ |
| |
| uint8_t bytes_to_write; |
| uint16_t hwsq_entry_offset; |
| int i; |
| |
| if (bios->data[hwsq_offset] <= entry) { |
| NV_ERROR(dev, "Too few entries in HW sequencer table for " |
| "requested entry\n"); |
| return -ENOENT; |
| } |
| |
| bytes_to_write = bios->data[hwsq_offset + 1]; |
| |
| if (bytes_to_write != 36) { |
| NV_ERROR(dev, "Unknown HW sequencer entry size\n"); |
| return -EINVAL; |
| } |
| |
| NV_TRACE(dev, "Loading NV17 power sequencing microcode\n"); |
| |
| hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write; |
| |
| /* set sequencer control */ |
| bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset])); |
| bytes_to_write -= 4; |
| |
| /* write ucode */ |
| for (i = 0; i < bytes_to_write; i += 4) |
| bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4])); |
| |
| /* twiddle NV_PBUS_DEBUG_4 */ |
| bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18); |
| |
| return 0; |
| } |
| |
| static int load_nv17_hw_sequencer_ucode(struct drm_device *dev, |
| struct nvbios *bios) |
| { |
| /* |
| * BMP based cards, from NV17, need a microcode loading to correctly |
| * control the GPIO etc for LVDS panels |
| * |
| * BIT based cards seem to do this directly in the init scripts |
| * |
| * The microcode entries are found by the "HWSQ" signature. |
| */ |
| |
| const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' }; |
| const int sz = sizeof(hwsq_signature); |
| int hwsq_offset; |
| |
| hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz); |
| if (!hwsq_offset) |
| return 0; |
| |
| /* always use entry 0? */ |
| return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0); |
| } |
| |
| uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| const uint8_t edid_sig[] = { |
| 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; |
| uint16_t offset = 0; |
| uint16_t newoffset; |
| int searchlen = NV_PROM_SIZE; |
| |
| if (bios->fp.edid) |
| return bios->fp.edid; |
| |
| while (searchlen) { |
| newoffset = findstr(&bios->data[offset], searchlen, |
| edid_sig, 8); |
| if (!newoffset) |
| return NULL; |
| offset += newoffset; |
| if (!nv_cksum(&bios->data[offset], EDID1_LEN)) |
| break; |
| |
| searchlen -= offset; |
| offset++; |
| } |
| |
| NV_TRACE(dev, "Found EDID in BIOS\n"); |
| |
| return bios->fp.edid = &bios->data[offset]; |
| } |
| |
| void |
| nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table, |
| struct dcb_entry *dcbent, int crtc) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| struct init_exec iexec = { true, false }; |
| |
| spin_lock_bh(&bios->lock); |
| bios->display.output = dcbent; |
| bios->display.crtc = crtc; |
| parse_init_table(bios, table, &iexec); |
| bios->display.output = NULL; |
| spin_unlock_bh(&bios->lock); |
| } |
| |
| void |
| nouveau_bios_init_exec(struct drm_device *dev, uint16_t table) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| struct init_exec iexec = { true, false }; |
| |
| parse_init_table(bios, table, &iexec); |
| } |
| |
| static bool NVInitVBIOS(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| |
| memset(bios, 0, sizeof(struct nvbios)); |
| spin_lock_init(&bios->lock); |
| bios->dev = dev; |
| |
| return bios_shadow(dev); |
| } |
| |
| static int nouveau_parse_vbios_struct(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' }; |
| const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 }; |
| int offset; |
| |
| offset = findstr(bios->data, bios->length, |
| bit_signature, sizeof(bit_signature)); |
| if (offset) { |
| NV_TRACE(dev, "BIT BIOS found\n"); |
| bios->type = NVBIOS_BIT; |
| bios->offset = offset; |
| return parse_bit_structure(bios, offset + 6); |
| } |
| |
| offset = findstr(bios->data, bios->length, |
| bmp_signature, sizeof(bmp_signature)); |
| if (offset) { |
| NV_TRACE(dev, "BMP BIOS found\n"); |
| bios->type = NVBIOS_BMP; |
| bios->offset = offset; |
| return parse_bmp_structure(dev, bios, offset); |
| } |
| |
| NV_ERROR(dev, "No known BIOS signature found\n"); |
| return -ENODEV; |
| } |
| |
| int |
| nouveau_run_vbios_init(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| int i, ret = 0; |
| |
| /* Reset the BIOS head to 0. */ |
| bios->state.crtchead = 0; |
| |
| if (bios->major_version < 5) /* BMP only */ |
| load_nv17_hw_sequencer_ucode(dev, bios); |
| |
| if (bios->execute) { |
| bios->fp.last_script_invoc = 0; |
| bios->fp.lvds_init_run = false; |
| } |
| |
| parse_init_tables(bios); |
| |
| /* |
| * Runs some additional script seen on G8x VBIOSen. The VBIOS' |
| * parser will run this right after the init tables, the binary |
| * driver appears to run it at some point later. |
| */ |
| if (bios->some_script_ptr) { |
| struct init_exec iexec = {true, false}; |
| |
| NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n", |
| bios->some_script_ptr); |
| parse_init_table(bios, bios->some_script_ptr, &iexec); |
| } |
| |
| if (dev_priv->card_type >= NV_50) { |
| for (i = 0; i < bios->dcb.entries; i++) { |
| nouveau_bios_run_display_table(dev, 0, 0, |
| &bios->dcb.entry[i], -1); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static bool |
| nouveau_bios_posted(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| unsigned htotal; |
| |
| if (dev_priv->card_type >= NV_50) { |
| if (NVReadVgaCrtc(dev, 0, 0x00) == 0 && |
| NVReadVgaCrtc(dev, 0, 0x1a) == 0) |
| return false; |
| return true; |
| } |
| |
| htotal = NVReadVgaCrtc(dev, 0, 0x06); |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10; |
| htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11; |
| |
| return (htotal != 0); |
| } |
| |
| int |
| nouveau_bios_init(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nvbios *bios = &dev_priv->vbios; |
| int ret; |
| |
| if (!NVInitVBIOS(dev)) |
| return -ENODEV; |
| |
| ret = nouveau_parse_vbios_struct(dev); |
| if (ret) |
| return ret; |
| |
| ret = nouveau_i2c_init(dev); |
| if (ret) |
| return ret; |
| |
| ret = nouveau_mxm_init(dev); |
| if (ret) |
| return ret; |
| |
| ret = parse_dcb_table(dev, bios); |
| if (ret) |
| return ret; |
| |
| if (!bios->major_version) /* we don't run version 0 bios */ |
| return 0; |
| |
| /* init script execution disabled */ |
| bios->execute = false; |
| |
| /* ... unless card isn't POSTed already */ |
| if (!nouveau_bios_posted(dev)) { |
| NV_INFO(dev, "Adaptor not initialised, " |
| "running VBIOS init tables.\n"); |
| bios->execute = true; |
| } |
| if (nouveau_force_post) |
| bios->execute = true; |
| |
| ret = nouveau_run_vbios_init(dev); |
| if (ret) |
| return ret; |
| |
| /* feature_byte on BMP is poor, but init always sets CR4B */ |
| if (bios->major_version < 5) |
| bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40; |
| |
| /* all BIT systems need p_f_m_t for digital_min_front_porch */ |
| if (bios->is_mobile || bios->major_version >= 5) |
| ret = parse_fp_mode_table(dev, bios); |
| |
| /* allow subsequent scripts to execute */ |
| bios->execute = true; |
| |
| return 0; |
| } |
| |
| void |
| nouveau_bios_takedown(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| nouveau_mxm_fini(dev); |
| nouveau_i2c_fini(dev); |
| |
| kfree(dev_priv->vbios.data); |
| } |