blob: 84121ef6e2aed0a8462e56d9718b548c91dcda91 [file] [log] [blame]
/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <asm/mach-types.h>
#include <mach/msm_iomap.h>
#include <mach/clk.h>
#include <mach/msm_xo.h>
#include <mach/rpm-9615.h>
#include "clock-local.h"
#include "clock-voter.h"
#include "clock-rpm.h"
#include "devices.h"
#define REG(off) (MSM_CLK_CTL_BASE + (off))
#define REG_LPA(off) (MSM_LPASS_CLK_CTL_BASE + (off))
#define REG_GCC(off) (MSM_APCS_GCC_BASE + (off))
/* Peripheral clock registers. */
#define CE1_HCLK_CTL_REG REG(0x2720)
#define CE1_CORE_CLK_CTL_REG REG(0x2724)
#define DMA_BAM_HCLK_CTL REG(0x25C0)
#define CLK_HALT_CFPB_STATEA_REG REG(0x2FCC)
#define CLK_HALT_CFPB_STATEB_REG REG(0x2FD0)
#define CLK_HALT_CFPB_STATEC_REG REG(0x2FD4)
#define CLK_HALT_DFAB_STATE_REG REG(0x2FC8)
#define CLK_HALT_MSS_KPSS_MISC_STATE_REG REG(0x2FDC)
#define CLK_HALT_SFPB_MISC_STATE_REG REG(0x2FD8)
#define CLK_TEST_REG REG(0x2FA0)
#define GSBIn_HCLK_CTL_REG(n) REG(0x29C0+(0x20*((n)-1)))
#define GSBIn_QUP_APPS_MD_REG(n) REG(0x29C8+(0x20*((n)-1)))
#define GSBIn_QUP_APPS_NS_REG(n) REG(0x29CC+(0x20*((n)-1)))
#define GSBIn_RESET_REG(n) REG(0x29DC+(0x20*((n)-1)))
#define GSBIn_UART_APPS_MD_REG(n) REG(0x29D0+(0x20*((n)-1)))
#define GSBIn_UART_APPS_NS_REG(n) REG(0x29D4+(0x20*((n)-1)))
#define PDM_CLK_NS_REG REG(0x2CC0)
#define BB_PLL_ENA_SC0_REG REG(0x34C0)
#define BB_PLL0_L_VAL_REG REG(0x30C4)
#define BB_PLL0_M_VAL_REG REG(0x30C8)
#define BB_PLL0_MODE_REG REG(0x30C0)
#define BB_PLL0_N_VAL_REG REG(0x30CC)
#define BB_PLL0_STATUS_REG REG(0x30D8)
#define BB_PLL0_CONFIG_REG REG(0x30D4)
#define BB_PLL0_TEST_CTL_REG REG(0x30D0)
#define BB_PLL8_L_VAL_REG REG(0x3144)
#define BB_PLL8_M_VAL_REG REG(0x3148)
#define BB_PLL8_MODE_REG REG(0x3140)
#define BB_PLL8_N_VAL_REG REG(0x314C)
#define BB_PLL8_STATUS_REG REG(0x3158)
#define BB_PLL8_CONFIG_REG REG(0x3154)
#define BB_PLL8_TEST_CTL_REG REG(0x3150)
#define BB_PLL14_L_VAL_REG REG(0x31C4)
#define BB_PLL14_M_VAL_REG REG(0x31C8)
#define BB_PLL14_MODE_REG REG(0x31C0)
#define BB_PLL14_N_VAL_REG REG(0x31CC)
#define BB_PLL14_STATUS_REG REG(0x31D8)
#define BB_PLL14_CONFIG_REG REG(0x31D4)
#define BB_PLL14_TEST_CTL_REG REG(0x31D0)
#define SC_PLL0_L_VAL_REG REG(0x3208)
#define SC_PLL0_M_VAL_REG REG(0x320C)
#define SC_PLL0_MODE_REG REG(0x3200)
#define SC_PLL0_N_VAL_REG REG(0x3210)
#define SC_PLL0_STATUS_REG REG(0x321C)
#define SC_PLL0_CONFIG_REG REG(0x3204)
#define SC_PLL0_TEST_CTL_REG REG(0x3218)
#define PLLTEST_PAD_CFG_REG REG(0x2FA4)
#define PMEM_ACLK_CTL_REG REG(0x25A0)
#define RINGOSC_NS_REG REG(0x2DC0)
#define RINGOSC_STATUS_REG REG(0x2DCC)
#define RINGOSC_TCXO_CTL_REG REG(0x2DC4)
#define SC0_U_CLK_BRANCH_ENA_VOTE_REG REG(0x3080)
#define SDCn_APPS_CLK_MD_REG(n) REG(0x2828+(0x20*((n)-1)))
#define SDCn_APPS_CLK_NS_REG(n) REG(0x282C+(0x20*((n)-1)))
#define SDCn_HCLK_CTL_REG(n) REG(0x2820+(0x20*((n)-1)))
#define SDCn_RESET_REG(n) REG(0x2830+(0x20*((n)-1)))
#define USB_HS1_HCLK_CTL_REG REG(0x2900)
#define USB_HS1_RESET_REG REG(0x2910)
#define USB_HS1_XCVR_FS_CLK_MD_REG REG(0x2908)
#define USB_HS1_XCVR_FS_CLK_NS_REG REG(0x290C)
#define USB_HS1_SYS_CLK_MD_REG REG(0x36A0)
#define USB_HS1_SYS_CLK_NS_REG REG(0x36A4)
#define USB_HSIC_HCLK_CTL_REG REG(0x2920)
#define USB_HSIC_XCVR_FS_CLK_MD_REG REG(0x2924)
#define USB_HSIC_XCVR_FS_CLK_NS_REG REG(0x2928)
#define USB_HSIC_RESET_REG REG(0x2934)
#define USB_HSIC_HSIO_CAL_CLK_CTL_REG REG(0x2B48)
#define USB_HSIC_CLK_MD_REG REG(0x2B4C)
#define USB_HSIC_CLK_NS_REG REG(0x2B50)
#define USB_HSIC_SYSTEM_CLK_MD_REG REG(0x2B54)
#define USB_HSIC_SYSTEM_CLK_NS_REG REG(0x2B58)
#define SLIMBUS_XO_SRC_CLK_CTL_REG REG(0x2628)
/* Low-power Audio clock registers. */
#define LCC_CLK_LS_DEBUG_CFG_REG REG_LPA(0x00A8)
#define LCC_CODEC_I2S_MIC_MD_REG REG_LPA(0x0064)
#define LCC_CODEC_I2S_MIC_NS_REG REG_LPA(0x0060)
#define LCC_CODEC_I2S_MIC_STATUS_REG REG_LPA(0x0068)
#define LCC_CODEC_I2S_SPKR_MD_REG REG_LPA(0x0070)
#define LCC_CODEC_I2S_SPKR_NS_REG REG_LPA(0x006C)
#define LCC_CODEC_I2S_SPKR_STATUS_REG REG_LPA(0x0074)
#define LCC_MI2S_MD_REG REG_LPA(0x004C)
#define LCC_MI2S_NS_REG REG_LPA(0x0048)
#define LCC_MI2S_STATUS_REG REG_LPA(0x0050)
#define LCC_PCM_MD_REG REG_LPA(0x0058)
#define LCC_PCM_NS_REG REG_LPA(0x0054)
#define LCC_PCM_STATUS_REG REG_LPA(0x005C)
#define LCC_PLL0_STATUS_REG REG_LPA(0x0018)
#define LCC_SPARE_I2S_MIC_MD_REG REG_LPA(0x007C)
#define LCC_SPARE_I2S_MIC_NS_REG REG_LPA(0x0078)
#define LCC_SPARE_I2S_MIC_STATUS_REG REG_LPA(0x0080)
#define LCC_SPARE_I2S_SPKR_MD_REG REG_LPA(0x0088)
#define LCC_SPARE_I2S_SPKR_NS_REG REG_LPA(0x0084)
#define LCC_SPARE_I2S_SPKR_STATUS_REG REG_LPA(0x008C)
#define LCC_SLIMBUS_NS_REG REG_LPA(0x00CC)
#define LCC_SLIMBUS_MD_REG REG_LPA(0x00D0)
#define LCC_SLIMBUS_STATUS_REG REG_LPA(0x00D4)
#define LCC_AHBEX_BRANCH_CTL_REG REG_LPA(0x00E4)
#define LCC_PRI_PLL_CLK_CTL_REG REG_LPA(0x00C4)
#define GCC_APCS_CLK_DIAG REG_GCC(0x001C)
/* MUX source input identifiers. */
#define cxo_to_bb_mux 0
#define pll8_to_bb_mux 3
#define pll14_to_bb_mux 4
#define gnd_to_bb_mux 6
#define cxo_to_xo_mux 0
#define gnd_to_xo_mux 3
#define cxo_to_lpa_mux 1
#define pll4_to_lpa_mux 2
#define gnd_to_lpa_mux 6
/* Test Vector Macros */
#define TEST_TYPE_PER_LS 1
#define TEST_TYPE_PER_HS 2
#define TEST_TYPE_LPA 5
#define TEST_TYPE_SHIFT 24
#define TEST_CLK_SEL_MASK BM(23, 0)
#define TEST_VECTOR(s, t) (((t) << TEST_TYPE_SHIFT) | BVAL(23, 0, (s)))
#define TEST_PER_LS(s) TEST_VECTOR((s), TEST_TYPE_PER_LS)
#define TEST_PER_HS(s) TEST_VECTOR((s), TEST_TYPE_PER_HS)
#define TEST_LPA(s) TEST_VECTOR((s), TEST_TYPE_LPA)
#define MN_MODE_DUAL_EDGE 0x2
/* MD Registers */
#define MD8(m_lsb, m, n_lsb, n) \
(BVAL((m_lsb+7), m_lsb, m) | BVAL((n_lsb+7), n_lsb, ~(n)))
#define MD16(m, n) (BVAL(31, 16, m) | BVAL(15, 0, ~(n)))
/* NS Registers */
#define NS(n_msb, n_lsb, n, m, mde_lsb, d_msb, d_lsb, d, s_msb, s_lsb, s) \
(BVAL(n_msb, n_lsb, ~(n-m)) \
| (BVAL((mde_lsb+1), mde_lsb, MN_MODE_DUAL_EDGE) * !!(n)) \
| BVAL(d_msb, d_lsb, (d-1)) | BVAL(s_msb, s_lsb, s))
#define NS_SRC_SEL(s_msb, s_lsb, s) \
BVAL(s_msb, s_lsb, s)
/*
* Clock Descriptions
*/
static struct msm_xo_voter *xo_cxo;
static int cxo_clk_enable(struct clk *clk)
{
return msm_xo_mode_vote(xo_cxo, MSM_XO_MODE_ON);
}
static void cxo_clk_disable(struct clk *clk)
{
msm_xo_mode_vote(xo_cxo, MSM_XO_MODE_OFF);
}
static struct clk_ops clk_ops_cxo = {
.enable = cxo_clk_enable,
.disable = cxo_clk_disable,
.get_rate = fixed_clk_get_rate,
.is_local = local_clk_is_local,
};
static struct fixed_clk cxo_clk = {
.rate = 19200000,
.c = {
.dbg_name = "cxo_clk",
.ops = &clk_ops_cxo,
CLK_INIT(cxo_clk.c),
},
};
static struct pll_vote_clk pll0_clk = {
.rate = 276000000,
.en_reg = BB_PLL_ENA_SC0_REG,
.en_mask = BIT(0),
.status_reg = BB_PLL0_STATUS_REG,
.parent = &cxo_clk.c,
.c = {
.dbg_name = "pll0_clk",
.ops = &clk_ops_pll_vote,
CLK_INIT(pll0_clk.c),
},
};
static struct pll_vote_clk pll4_clk = {
.rate = 393216000,
.en_reg = BB_PLL_ENA_SC0_REG,
.en_mask = BIT(4),
.status_reg = LCC_PLL0_STATUS_REG,
.parent = &cxo_clk.c,
.c = {
.dbg_name = "pll4_clk",
.ops = &clk_ops_pll_vote,
CLK_INIT(pll4_clk.c),
},
};
static struct pll_vote_clk pll8_clk = {
.rate = 384000000,
.en_reg = BB_PLL_ENA_SC0_REG,
.en_mask = BIT(8),
.status_reg = BB_PLL8_STATUS_REG,
.parent = &cxo_clk.c,
.c = {
.dbg_name = "pll8_clk",
.ops = &clk_ops_pll_vote,
CLK_INIT(pll8_clk.c),
},
};
static struct pll_vote_clk pll9_clk = {
.rate = 440000000,
.en_reg = BB_PLL_ENA_SC0_REG,
.en_mask = BIT(9),
.status_reg = SC_PLL0_STATUS_REG,
.parent = &cxo_clk.c,
.c = {
.dbg_name = "pll9_clk",
.ops = &clk_ops_pll_vote,
CLK_INIT(pll9_clk.c),
},
};
static struct pll_vote_clk pll14_clk = {
.rate = 480000000,
.en_reg = BB_PLL_ENA_SC0_REG,
.en_mask = BIT(11),
.status_reg = BB_PLL14_STATUS_REG,
.parent = &cxo_clk.c,
.c = {
.dbg_name = "pll14_clk",
.ops = &clk_ops_pll_vote,
CLK_INIT(pll14_clk.c),
},
};
/*
* SoC-specific functions required by clock-local driver
*/
/* TODO: Update these voltages when info becomes available. */
/* Update the sys_vdd voltage given a level. */
static int msm9615_update_sys_vdd(enum sys_vdd_level level)
{
/* TODO: Implement when rpm-regulator is ready.
static const int vdd_uv[] = {
[NONE...LOW] = 945000,
[NOMINAL] = 1050000,
[HIGH] = 1150000,
};
return rpm_vreg_set_voltage(RPM_VREG_ID_PM8921_S3, RPM_VREG_VOTER3,
vdd_uv[level], vdd_uv[HIGH], 1);
*/
return 0;
}
static int soc_clk_reset(struct clk *clk, enum clk_reset_action action)
{
return branch_reset(&to_rcg_clk(clk)->b, action);
}
static struct clk_ops clk_ops_rcg_9615 = {
.enable = rcg_clk_enable,
.disable = rcg_clk_disable,
.auto_off = rcg_clk_auto_off,
.set_rate = rcg_clk_set_rate,
.set_min_rate = rcg_clk_set_min_rate,
.get_rate = rcg_clk_get_rate,
.list_rate = rcg_clk_list_rate,
.is_enabled = rcg_clk_is_enabled,
.round_rate = rcg_clk_round_rate,
.reset = soc_clk_reset,
.is_local = local_clk_is_local,
.get_parent = rcg_clk_get_parent,
};
static struct clk_ops clk_ops_branch = {
.enable = branch_clk_enable,
.disable = branch_clk_disable,
.auto_off = branch_clk_auto_off,
.is_enabled = branch_clk_is_enabled,
.reset = branch_clk_reset,
.is_local = local_clk_is_local,
.get_parent = branch_clk_get_parent,
.set_parent = branch_clk_set_parent,
};
/*
* Peripheral Clocks
*/
#define CLK_GSBI_UART(i, n, h_r, h_b) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = GSBIn_UART_APPS_NS_REG(n), \
.en_mask = BIT(9), \
.reset_reg = GSBIn_RESET_REG(n), \
.reset_mask = BIT(0), \
.halt_reg = h_r, \
.halt_bit = h_b, \
}, \
.ns_reg = GSBIn_UART_APPS_NS_REG(n), \
.md_reg = GSBIn_UART_APPS_MD_REG(n), \
.root_en_mask = BIT(11), \
.ns_mask = (BM(31, 16) | BM(6, 0)), \
.set_rate = set_rate_mnd, \
.freq_tbl = clk_tbl_gsbi_uart, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
#define F_GSBI_UART(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD16(m, n), \
.ns_val = NS(31, 16, n, m, 5, 4, 3, d, 2, 0, s##_to_bb_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_gsbi_uart[] = {
F_GSBI_UART( 0, gnd, 1, 0, 0, NONE),
F_GSBI_UART( 3686400, pll8, 1, 6, 625, LOW),
F_GSBI_UART( 7372800, pll8, 1, 12, 625, LOW),
F_GSBI_UART(14745600, pll8, 1, 24, 625, LOW),
F_GSBI_UART(16000000, pll8, 4, 1, 6, LOW),
F_GSBI_UART(24000000, pll8, 4, 1, 4, LOW),
F_GSBI_UART(32000000, pll8, 4, 1, 3, LOW),
F_GSBI_UART(40000000, pll8, 1, 5, 48, NOMINAL),
F_GSBI_UART(46400000, pll8, 1, 29, 240, NOMINAL),
F_GSBI_UART(48000000, pll8, 4, 1, 2, NOMINAL),
F_GSBI_UART(51200000, pll8, 1, 2, 15, NOMINAL),
F_GSBI_UART(56000000, pll8, 1, 7, 48, NOMINAL),
F_GSBI_UART(58982400, pll8, 1, 96, 625, NOMINAL),
F_GSBI_UART(64000000, pll8, 2, 1, 3, NOMINAL),
F_END
};
static CLK_GSBI_UART(gsbi1_uart, 1, CLK_HALT_CFPB_STATEA_REG, 10);
static CLK_GSBI_UART(gsbi2_uart, 2, CLK_HALT_CFPB_STATEA_REG, 6);
static CLK_GSBI_UART(gsbi3_uart, 3, CLK_HALT_CFPB_STATEA_REG, 2);
static CLK_GSBI_UART(gsbi4_uart, 4, CLK_HALT_CFPB_STATEB_REG, 26);
static CLK_GSBI_UART(gsbi5_uart, 5, CLK_HALT_CFPB_STATEB_REG, 22);
#define CLK_GSBI_QUP(i, n, h_r, h_b) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = GSBIn_QUP_APPS_NS_REG(n), \
.en_mask = BIT(9), \
.reset_reg = GSBIn_RESET_REG(n), \
.reset_mask = BIT(0), \
.halt_reg = h_r, \
.halt_bit = h_b, \
}, \
.ns_reg = GSBIn_QUP_APPS_NS_REG(n), \
.md_reg = GSBIn_QUP_APPS_MD_REG(n), \
.root_en_mask = BIT(11), \
.ns_mask = (BM(23, 16) | BM(6, 0)), \
.set_rate = set_rate_mnd, \
.freq_tbl = clk_tbl_gsbi_qup, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
#define F_GSBI_QUP(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD8(16, m, 0, n), \
.ns_val = NS(23, 16, n, m, 5, 4, 3, d, 2, 0, s##_to_bb_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_gsbi_qup[] = {
F_GSBI_QUP( 0, gnd, 1, 0, 0, NONE),
F_GSBI_QUP( 960000, cxo, 4, 1, 5, LOW),
F_GSBI_QUP( 4800000, cxo, 4, 0, 1, LOW),
F_GSBI_QUP( 9600000, cxo, 2, 0, 1, LOW),
F_GSBI_QUP(15058800, pll8, 1, 2, 51, LOW),
F_GSBI_QUP(24000000, pll8, 4, 1, 4, LOW),
F_GSBI_QUP(25600000, pll8, 1, 1, 15, NOMINAL),
F_GSBI_QUP(48000000, pll8, 4, 1, 2, NOMINAL),
F_GSBI_QUP(51200000, pll8, 1, 2, 15, NOMINAL),
F_END
};
static CLK_GSBI_QUP(gsbi1_qup, 1, CLK_HALT_CFPB_STATEA_REG, 9);
static CLK_GSBI_QUP(gsbi2_qup, 2, CLK_HALT_CFPB_STATEA_REG, 4);
static CLK_GSBI_QUP(gsbi3_qup, 3, CLK_HALT_CFPB_STATEA_REG, 0);
static CLK_GSBI_QUP(gsbi4_qup, 4, CLK_HALT_CFPB_STATEB_REG, 24);
static CLK_GSBI_QUP(gsbi5_qup, 5, CLK_HALT_CFPB_STATEB_REG, 20);
#define F_PDM(f, s, d, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.ns_val = NS_SRC_SEL(1, 0, s##_to_xo_mux), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_pdm[] = {
F_PDM( 0, gnd, 1, NONE),
F_PDM(19200000, cxo, 1, LOW),
F_END
};
static struct rcg_clk pdm_clk = {
.b = {
.ctl_reg = PDM_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = PDM_CLK_NS_REG,
.reset_mask = BIT(12),
.halt_reg = CLK_HALT_CFPB_STATEC_REG,
.halt_bit = 3,
},
.ns_reg = PDM_CLK_NS_REG,
.root_en_mask = BIT(11),
.ns_mask = BM(1, 0),
.set_rate = set_rate_nop,
.freq_tbl = clk_tbl_pdm,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "pdm_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(pdm_clk.c),
},
};
static struct branch_clk pmem_clk = {
.b = {
.ctl_reg = PMEM_ACLK_CTL_REG,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 20,
},
.c = {
.dbg_name = "pmem_clk",
.ops = &clk_ops_branch,
CLK_INIT(pmem_clk.c),
},
};
#define F_PRNG(f, s, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_prng[] = {
F_PRNG(32000000, pll8, LOW),
F_END
};
static struct rcg_clk prng_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(10),
.halt_reg = CLK_HALT_SFPB_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 10,
},
.set_rate = set_rate_nop,
.freq_tbl = clk_tbl_prng,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "prng_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(prng_clk.c),
},
};
#define CLK_SDC(name, n, h_b, f_table) \
struct rcg_clk name = { \
.b = { \
.ctl_reg = SDCn_APPS_CLK_NS_REG(n), \
.en_mask = BIT(9), \
.reset_reg = SDCn_RESET_REG(n), \
.reset_mask = BIT(0), \
.halt_reg = CLK_HALT_DFAB_STATE_REG, \
.halt_bit = h_b, \
}, \
.ns_reg = SDCn_APPS_CLK_NS_REG(n), \
.md_reg = SDCn_APPS_CLK_MD_REG(n), \
.root_en_mask = BIT(11), \
.ns_mask = (BM(23, 16) | BM(6, 0)), \
.set_rate = set_rate_mnd, \
.freq_tbl = f_table, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #name, \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(name.c), \
}, \
}
#define F_SDC(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD8(16, m, 0, n), \
.ns_val = NS(23, 16, n, m, 5, 4, 3, d, 2, 0, s##_to_bb_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_sdc1_2[] = {
F_SDC( 0, gnd, 1, 0, 0, NONE),
F_SDC( 144300, cxo, 1, 1, 133, LOW),
F_SDC( 400000, pll8, 4, 1, 240, LOW),
F_SDC( 16000000, pll8, 4, 1, 6, LOW),
F_SDC( 17070000, pll8, 1, 2, 45, LOW),
F_SDC( 20210000, pll8, 1, 1, 19, LOW),
F_SDC( 24000000, pll8, 4, 1, 4, LOW),
F_SDC( 48000000, pll8, 4, 1, 2, NOMINAL),
F_END
};
static CLK_SDC(sdc1_clk, 1, 6, clk_tbl_sdc1_2);
static CLK_SDC(sdc2_clk, 2, 5, clk_tbl_sdc1_2);
#define F_USB(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD8(16, m, 0, n), \
.ns_val = NS(23, 16, n, m, 5, 4, 3, d, 2, 0, s##_to_bb_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_usb[] = {
F_USB( 0, gnd, 1, 0, 0, NONE),
F_USB(60000000, pll8, 1, 5, 32, NOMINAL),
F_END
};
static struct rcg_clk usb_hs1_xcvr_clk = {
.b = {
.ctl_reg = USB_HS1_XCVR_FS_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = USB_HS1_RESET_REG,
.reset_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 0,
},
.ns_reg = USB_HS1_XCVR_FS_CLK_NS_REG,
.md_reg = USB_HS1_XCVR_FS_CLK_MD_REG,
.root_en_mask = BIT(11),
.ns_mask = (BM(23, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_usb,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "usb_hs1_xcvr_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(usb_hs1_xcvr_clk.c),
},
};
static struct rcg_clk usb_hs1_sys_clk = {
.b = {
.ctl_reg = USB_HS1_SYS_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = USB_HS1_RESET_REG,
.reset_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 4,
},
.ns_reg = USB_HS1_SYS_CLK_NS_REG,
.md_reg = USB_HS1_SYS_CLK_MD_REG,
.root_en_mask = BIT(11),
.ns_mask = (BM(23, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_usb,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "usb_hs1_sys_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(usb_hs1_sys_clk.c),
},
};
static struct rcg_clk usb_hsic_xcvr_clk = {
.b = {
.ctl_reg = USB_HSIC_XCVR_FS_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = USB_HSIC_RESET_REG,
.reset_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 9,
},
.ns_reg = USB_HSIC_XCVR_FS_CLK_NS_REG,
.md_reg = USB_HSIC_XCVR_FS_CLK_MD_REG,
.root_en_mask = BIT(11),
.ns_mask = (BM(23, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_usb,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "usb_hsic_xcvr_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(usb_hsic_xcvr_clk.c),
},
};
static struct rcg_clk usb_hsic_sys_clk = {
.b = {
.ctl_reg = USB_HSIC_SYSTEM_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = USB_HSIC_RESET_REG,
.reset_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 7,
},
.ns_reg = USB_HSIC_SYSTEM_CLK_NS_REG,
.md_reg = USB_HSIC_SYSTEM_CLK_MD_REG,
.root_en_mask = BIT(11),
.ns_mask = (BM(23, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_usb,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "usb_hsic_sys_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(usb_hsic_sys_clk.c),
},
};
static struct clk_freq_tbl clk_tbl_usb_hsic[] = {
F_USB( 0, gnd, 1, 0, 0, NONE),
F_USB(480000000, pll14, 1, 0, 1, NOMINAL),
F_END
};
static struct rcg_clk usb_hsic_clk = {
.b = {
.ctl_reg = USB_HSIC_CLK_NS_REG,
.en_mask = BIT(9),
.reset_reg = USB_HSIC_RESET_REG,
.reset_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 7,
},
.ns_reg = USB_HSIC_CLK_NS_REG,
.md_reg = USB_HSIC_CLK_MD_REG,
.root_en_mask = BIT(11),
.ns_mask = (BM(23, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_usb_hsic,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "usb_hsic_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(usb_hsic_clk.c),
},
};
static struct branch_clk usb_hsic_hsio_cal_clk = {
.b = {
.ctl_reg = USB_HSIC_HSIO_CAL_CLK_CTL_REG,
.en_mask = BIT(0),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 8,
},
.parent = &cxo_clk.c,
.c = {
.dbg_name = "usb_hsic_hsio_cal_clk",
.ops = &clk_ops_branch,
CLK_INIT(usb_hsic_hsio_cal_clk.c),
},
};
/* Fast Peripheral Bus Clocks */
static struct branch_clk ce1_core_clk = {
.b = {
.ctl_reg = CE1_CORE_CLK_CTL_REG,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEC_REG,
.halt_bit = 27,
},
.c = {
.dbg_name = "ce1_core_clk",
.ops = &clk_ops_branch,
CLK_INIT(ce1_core_clk.c),
},
};
static struct branch_clk ce1_p_clk = {
.b = {
.ctl_reg = CE1_HCLK_CTL_REG,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEC_REG,
.halt_bit = 1,
},
.c = {
.dbg_name = "ce1_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(ce1_p_clk.c),
},
};
static struct branch_clk dma_bam_p_clk = {
.b = {
.ctl_reg = DMA_BAM_HCLK_CTL,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 12,
},
.c = {
.dbg_name = "dma_bam_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(dma_bam_p_clk.c),
},
};
static struct branch_clk gsbi1_p_clk = {
.b = {
.ctl_reg = GSBIn_HCLK_CTL_REG(1),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEA_REG,
.halt_bit = 11,
},
.c = {
.dbg_name = "gsbi1_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(gsbi1_p_clk.c),
},
};
static struct branch_clk gsbi2_p_clk = {
.b = {
.ctl_reg = GSBIn_HCLK_CTL_REG(2),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEA_REG,
.halt_bit = 7,
},
.c = {
.dbg_name = "gsbi2_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(gsbi2_p_clk.c),
},
};
static struct branch_clk gsbi3_p_clk = {
.b = {
.ctl_reg = GSBIn_HCLK_CTL_REG(3),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEA_REG,
.halt_bit = 3,
},
.c = {
.dbg_name = "gsbi3_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(gsbi3_p_clk.c),
},
};
static struct branch_clk gsbi4_p_clk = {
.b = {
.ctl_reg = GSBIn_HCLK_CTL_REG(4),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEB_REG,
.halt_bit = 27,
},
.c = {
.dbg_name = "gsbi4_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(gsbi4_p_clk.c),
},
};
static struct branch_clk gsbi5_p_clk = {
.b = {
.ctl_reg = GSBIn_HCLK_CTL_REG(5),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_CFPB_STATEB_REG,
.halt_bit = 23,
},
.c = {
.dbg_name = "gsbi5_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(gsbi5_p_clk.c),
},
};
static struct branch_clk usb_hs1_p_clk = {
.b = {
.ctl_reg = USB_HS1_HCLK_CTL_REG,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 1,
},
.c = {
.dbg_name = "usb_hs1_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(usb_hs1_p_clk.c),
},
};
static struct branch_clk usb_hsic_p_clk = {
.b = {
.ctl_reg = USB_HSIC_HCLK_CTL_REG,
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 3,
},
.c = {
.dbg_name = "usb_hsic_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(usb_hsic_p_clk.c),
},
};
static struct branch_clk sdc1_p_clk = {
.b = {
.ctl_reg = SDCn_HCLK_CTL_REG(1),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 11,
},
.c = {
.dbg_name = "sdc1_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(sdc1_p_clk.c),
},
};
static struct branch_clk sdc2_p_clk = {
.b = {
.ctl_reg = SDCn_HCLK_CTL_REG(2),
.en_mask = BIT(4),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 10,
},
.c = {
.dbg_name = "sdc2_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(sdc2_p_clk.c),
},
};
/* HW-Voteable Clocks */
static struct branch_clk adm0_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(2),
.halt_reg = CLK_HALT_MSS_KPSS_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 14,
},
.c = {
.dbg_name = "adm0_clk",
.ops = &clk_ops_branch,
CLK_INIT(adm0_clk.c),
},
};
static struct branch_clk adm0_p_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(3),
.halt_reg = CLK_HALT_MSS_KPSS_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 13,
},
.c = {
.dbg_name = "adm0_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(adm0_p_clk.c),
},
};
static struct branch_clk pmic_arb0_p_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(8),
.halt_reg = CLK_HALT_SFPB_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 22,
},
.c = {
.dbg_name = "pmic_arb0_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(pmic_arb0_p_clk.c),
},
};
static struct branch_clk pmic_arb1_p_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(9),
.halt_reg = CLK_HALT_SFPB_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 21,
},
.c = {
.dbg_name = "pmic_arb1_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(pmic_arb1_p_clk.c),
},
};
static struct branch_clk pmic_ssbi2_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(7),
.halt_reg = CLK_HALT_SFPB_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 23,
},
.c = {
.dbg_name = "pmic_ssbi2_clk",
.ops = &clk_ops_branch,
CLK_INIT(pmic_ssbi2_clk.c),
},
};
static struct branch_clk rpm_msg_ram_p_clk = {
.b = {
.ctl_reg = SC0_U_CLK_BRANCH_ENA_VOTE_REG,
.en_mask = BIT(6),
.halt_reg = CLK_HALT_SFPB_MISC_STATE_REG,
.halt_check = HALT_VOTED,
.halt_bit = 12,
},
.c = {
.dbg_name = "rpm_msg_ram_p_clk",
.ops = &clk_ops_branch,
CLK_INIT(rpm_msg_ram_p_clk.c),
},
};
/*
* Low Power Audio Clocks
*/
#define F_AIF_OSR(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD8(8, m, 0, n), \
.ns_val = NS(31, 24, n, m, 5, 4, 3, d, 2, 0, s##_to_lpa_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_aif_osr[] = {
F_AIF_OSR( 0, gnd, 1, 0, 0, NONE),
F_AIF_OSR( 512000, pll4, 4, 1, 192, LOW),
F_AIF_OSR( 768000, pll4, 4, 1, 128, LOW),
F_AIF_OSR( 1024000, pll4, 4, 1, 96, LOW),
F_AIF_OSR( 1536000, pll4, 4, 1, 64, LOW),
F_AIF_OSR( 2048000, pll4, 4, 1, 48, LOW),
F_AIF_OSR( 3072000, pll4, 4, 1, 32, LOW),
F_AIF_OSR( 4096000, pll4, 4, 1, 24, LOW),
F_AIF_OSR( 6144000, pll4, 4, 1, 16, LOW),
F_AIF_OSR( 8192000, pll4, 4, 1, 12, LOW),
F_AIF_OSR(12288000, pll4, 4, 1, 8, LOW),
F_AIF_OSR(24576000, pll4, 4, 1, 4, LOW),
F_END
};
#define CLK_AIF_OSR(i, ns, md, h_r) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = ns, \
.en_mask = BIT(17), \
.reset_reg = ns, \
.reset_mask = BIT(19), \
.halt_reg = h_r, \
.halt_check = ENABLE, \
.halt_bit = 1, \
}, \
.ns_reg = ns, \
.md_reg = md, \
.root_en_mask = BIT(9), \
.ns_mask = (BM(31, 24) | BM(6, 0)), \
.set_rate = set_rate_mnd, \
.freq_tbl = clk_tbl_aif_osr, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
#define CLK_AIF_OSR_DIV(i, ns, md, h_r) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = ns, \
.en_mask = BIT(21), \
.reset_reg = ns, \
.reset_mask = BIT(23), \
.halt_reg = h_r, \
.halt_check = ENABLE, \
.halt_bit = 1, \
}, \
.ns_reg = ns, \
.md_reg = md, \
.root_en_mask = BIT(9), \
.ns_mask = (BM(31, 24) | BM(6, 0)), \
.set_rate = set_rate_mnd, \
.freq_tbl = clk_tbl_aif_osr, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
#define F_AIF_BIT(d, s) \
{ \
.freq_hz = d, \
.ns_val = (BVAL(14, 14, s) | BVAL(13, 10, (d-1))) \
}
static struct clk_freq_tbl clk_tbl_aif_bit[] = {
F_AIF_BIT(0, 1), /* Use external clock. */
F_AIF_BIT(1, 0), F_AIF_BIT(2, 0), F_AIF_BIT(3, 0), F_AIF_BIT(4, 0),
F_AIF_BIT(5, 0), F_AIF_BIT(6, 0), F_AIF_BIT(7, 0), F_AIF_BIT(8, 0),
F_AIF_BIT(9, 0), F_AIF_BIT(10, 0), F_AIF_BIT(11, 0), F_AIF_BIT(12, 0),
F_AIF_BIT(13, 0), F_AIF_BIT(14, 0), F_AIF_BIT(15, 0), F_AIF_BIT(16, 0),
F_END
};
#define CLK_AIF_BIT(i, ns, h_r) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = ns, \
.en_mask = BIT(15), \
.halt_reg = h_r, \
.halt_check = DELAY, \
}, \
.ns_reg = ns, \
.ns_mask = BM(14, 10), \
.set_rate = set_rate_nop, \
.freq_tbl = clk_tbl_aif_bit, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
#define F_AIF_BIT_D(d, s) \
{ \
.freq_hz = d, \
.ns_val = (BVAL(18, 18, s) | BVAL(17, 10, (d-1))) \
}
static struct clk_freq_tbl clk_tbl_aif_bit_div[] = {
F_AIF_BIT_D(0, 1), /* Use external clock. */
F_AIF_BIT_D(1, 0), F_AIF_BIT_D(2, 0), F_AIF_BIT_D(3, 0),
F_AIF_BIT_D(4, 0), F_AIF_BIT_D(5, 0), F_AIF_BIT_D(6, 0),
F_AIF_BIT_D(7, 0), F_AIF_BIT_D(8, 0), F_AIF_BIT_D(9, 0),
F_AIF_BIT_D(10, 0), F_AIF_BIT_D(11, 0), F_AIF_BIT_D(12, 0),
F_AIF_BIT_D(13, 0), F_AIF_BIT_D(14, 0), F_AIF_BIT_D(15, 0),
F_AIF_BIT_D(16, 0),
F_END
};
#define CLK_AIF_BIT_DIV(i, ns, h_r) \
struct rcg_clk i##_clk = { \
.b = { \
.ctl_reg = ns, \
.en_mask = BIT(19), \
.halt_reg = h_r, \
.halt_check = ENABLE, \
}, \
.ns_reg = ns, \
.ns_mask = BM(18, 10), \
.set_rate = set_rate_nop, \
.freq_tbl = clk_tbl_aif_bit_div, \
.current_freq = &rcg_dummy_freq, \
.c = { \
.dbg_name = #i "_clk", \
.ops = &clk_ops_rcg_9615, \
CLK_INIT(i##_clk.c), \
}, \
}
static CLK_AIF_OSR(mi2s_osr, LCC_MI2S_NS_REG, LCC_MI2S_MD_REG,
LCC_MI2S_STATUS_REG);
static CLK_AIF_BIT(mi2s_bit, LCC_MI2S_NS_REG, LCC_MI2S_STATUS_REG);
static CLK_AIF_OSR_DIV(codec_i2s_mic_osr, LCC_CODEC_I2S_MIC_NS_REG,
LCC_CODEC_I2S_MIC_MD_REG, LCC_CODEC_I2S_MIC_STATUS_REG);
static CLK_AIF_BIT_DIV(codec_i2s_mic_bit, LCC_CODEC_I2S_MIC_NS_REG,
LCC_CODEC_I2S_MIC_STATUS_REG);
static CLK_AIF_OSR_DIV(spare_i2s_mic_osr, LCC_SPARE_I2S_MIC_NS_REG,
LCC_SPARE_I2S_MIC_MD_REG, LCC_SPARE_I2S_MIC_STATUS_REG);
static CLK_AIF_BIT_DIV(spare_i2s_mic_bit, LCC_SPARE_I2S_MIC_NS_REG,
LCC_SPARE_I2S_MIC_STATUS_REG);
static CLK_AIF_OSR_DIV(codec_i2s_spkr_osr, LCC_CODEC_I2S_SPKR_NS_REG,
LCC_CODEC_I2S_SPKR_MD_REG, LCC_CODEC_I2S_SPKR_STATUS_REG);
static CLK_AIF_BIT_DIV(codec_i2s_spkr_bit, LCC_CODEC_I2S_SPKR_NS_REG,
LCC_CODEC_I2S_SPKR_STATUS_REG);
static CLK_AIF_OSR_DIV(spare_i2s_spkr_osr, LCC_SPARE_I2S_SPKR_NS_REG,
LCC_SPARE_I2S_SPKR_MD_REG, LCC_SPARE_I2S_SPKR_STATUS_REG);
static CLK_AIF_BIT_DIV(spare_i2s_spkr_bit, LCC_SPARE_I2S_SPKR_NS_REG,
LCC_SPARE_I2S_SPKR_STATUS_REG);
#define F_PCM(f, s, d, m, n, v) \
{ \
.freq_hz = f, \
.src_clk = &s##_clk.c, \
.md_val = MD16(m, n), \
.ns_val = NS(31, 16, n, m, 5, 4, 3, d, 2, 0, s##_to_lpa_mux), \
.mnd_en_mask = BIT(8) * !!(n), \
.sys_vdd = v, \
}
static struct clk_freq_tbl clk_tbl_pcm[] = {
F_PCM( 0, gnd, 1, 0, 0, NONE),
F_PCM( 512000, pll4, 4, 1, 192, LOW),
F_PCM( 768000, pll4, 4, 1, 128, LOW),
F_PCM( 1024000, pll4, 4, 1, 96, LOW),
F_PCM( 1536000, pll4, 4, 1, 64, LOW),
F_PCM( 2048000, pll4, 4, 1, 48, LOW),
F_PCM( 3072000, pll4, 4, 1, 32, LOW),
F_PCM( 4096000, pll4, 4, 1, 24, LOW),
F_PCM( 6144000, pll4, 4, 1, 16, LOW),
F_PCM( 8192000, pll4, 4, 1, 12, LOW),
F_PCM(12288000, pll4, 4, 1, 8, LOW),
F_PCM(24576000, pll4, 4, 1, 4, LOW),
F_END
};
static struct rcg_clk pcm_clk = {
.b = {
.ctl_reg = LCC_PCM_NS_REG,
.en_mask = BIT(11),
.reset_reg = LCC_PCM_NS_REG,
.reset_mask = BIT(13),
.halt_reg = LCC_PCM_STATUS_REG,
.halt_check = ENABLE,
.halt_bit = 0,
},
.ns_reg = LCC_PCM_NS_REG,
.md_reg = LCC_PCM_MD_REG,
.root_en_mask = BIT(9),
.ns_mask = (BM(31, 16) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_pcm,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "pcm_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(pcm_clk.c),
},
};
static struct rcg_clk audio_slimbus_clk = {
.b = {
.ctl_reg = LCC_SLIMBUS_NS_REG,
.en_mask = BIT(10),
.reset_reg = LCC_AHBEX_BRANCH_CTL_REG,
.reset_mask = BIT(5),
.halt_reg = LCC_SLIMBUS_STATUS_REG,
.halt_check = ENABLE,
.halt_bit = 0,
},
.ns_reg = LCC_SLIMBUS_NS_REG,
.md_reg = LCC_SLIMBUS_MD_REG,
.root_en_mask = BIT(9),
.ns_mask = (BM(31, 24) | BM(6, 0)),
.set_rate = set_rate_mnd,
.freq_tbl = clk_tbl_aif_osr,
.current_freq = &rcg_dummy_freq,
.c = {
.dbg_name = "audio_slimbus_clk",
.ops = &clk_ops_rcg_9615,
CLK_INIT(audio_slimbus_clk.c),
},
};
static struct branch_clk sps_slimbus_clk = {
.b = {
.ctl_reg = LCC_SLIMBUS_NS_REG,
.en_mask = BIT(12),
.halt_reg = LCC_SLIMBUS_STATUS_REG,
.halt_check = ENABLE,
.halt_bit = 1,
},
.parent = &audio_slimbus_clk.c,
.c = {
.dbg_name = "sps_slimbus_clk",
.ops = &clk_ops_branch,
CLK_INIT(sps_slimbus_clk.c),
},
};
static struct branch_clk slimbus_xo_src_clk = {
.b = {
.ctl_reg = SLIMBUS_XO_SRC_CLK_CTL_REG,
.en_mask = BIT(2),
.halt_reg = CLK_HALT_DFAB_STATE_REG,
.halt_bit = 28,
},
.parent = &sps_slimbus_clk.c,
.c = {
.dbg_name = "slimbus_xo_src_clk",
.ops = &clk_ops_branch,
CLK_INIT(slimbus_xo_src_clk.c),
},
};
DEFINE_CLK_RPM(cfpb_clk, cfpb_a_clk, CFPB, NULL);
DEFINE_CLK_RPM(dfab_clk, dfab_a_clk, DAYTONA_FABRIC, NULL);
DEFINE_CLK_RPM(ebi1_clk, ebi1_a_clk, EBI1, NULL);
DEFINE_CLK_RPM(sfab_clk, sfab_a_clk, SYSTEM_FABRIC, NULL);
DEFINE_CLK_RPM(sfpb_clk, sfpb_a_clk, SFPB, NULL);
static DEFINE_CLK_VOTER(dfab_usb_hs_clk, &dfab_clk.c);
static DEFINE_CLK_VOTER(dfab_sdc1_clk, &dfab_clk.c);
static DEFINE_CLK_VOTER(dfab_sdc2_clk, &dfab_clk.c);
static DEFINE_CLK_VOTER(dfab_sps_clk, &dfab_clk.c);
static DEFINE_CLK_VOTER(ebi1_msmbus_clk, &ebi1_clk.c);
/*
* TODO: replace dummy_clk below with ebi1_clk.c once the
* bus driver starts voting on ebi1 rates.
*/
static DEFINE_CLK_VOTER(ebi1_adm_clk, &dummy_clk);
#ifdef CONFIG_DEBUG_FS
struct measure_sel {
u32 test_vector;
struct clk *clk;
};
static struct measure_sel measure_mux[] = {
{ TEST_PER_LS(0x08), &slimbus_xo_src_clk.c },
{ TEST_PER_LS(0x12), &sdc1_p_clk.c },
{ TEST_PER_LS(0x13), &sdc1_clk.c },
{ TEST_PER_LS(0x14), &sdc2_p_clk.c },
{ TEST_PER_LS(0x15), &sdc2_clk.c },
{ TEST_PER_LS(0x26), &pmem_clk.c },
{ TEST_PER_LS(0x25), &dfab_clk.c },
{ TEST_PER_LS(0x25), &dfab_a_clk.c },
{ TEST_PER_LS(0x32), &dma_bam_p_clk.c },
{ TEST_PER_LS(0x33), &cfpb_clk.c },
{ TEST_PER_LS(0x33), &cfpb_a_clk.c },
{ TEST_PER_LS(0x3E), &gsbi1_uart_clk.c },
{ TEST_PER_LS(0x3F), &gsbi1_qup_clk.c },
{ TEST_PER_LS(0x41), &gsbi2_p_clk.c },
{ TEST_PER_LS(0x42), &gsbi2_uart_clk.c },
{ TEST_PER_LS(0x44), &gsbi2_qup_clk.c },
{ TEST_PER_LS(0x45), &gsbi3_p_clk.c },
{ TEST_PER_LS(0x46), &gsbi3_uart_clk.c },
{ TEST_PER_LS(0x48), &gsbi3_qup_clk.c },
{ TEST_PER_LS(0x49), &gsbi4_p_clk.c },
{ TEST_PER_LS(0x4A), &gsbi4_uart_clk.c },
{ TEST_PER_LS(0x4C), &gsbi4_qup_clk.c },
{ TEST_PER_LS(0x4D), &gsbi5_p_clk.c },
{ TEST_PER_LS(0x4E), &gsbi5_uart_clk.c },
{ TEST_PER_LS(0x50), &gsbi5_qup_clk.c },
{ TEST_PER_LS(0x78), &sfpb_clk.c },
{ TEST_PER_LS(0x78), &sfpb_a_clk.c },
{ TEST_PER_LS(0x7A), &pmic_ssbi2_clk.c },
{ TEST_PER_LS(0x7B), &pmic_arb0_p_clk.c },
{ TEST_PER_LS(0x7C), &pmic_arb1_p_clk.c },
{ TEST_PER_LS(0x7D), &prng_clk.c },
{ TEST_PER_LS(0x7F), &rpm_msg_ram_p_clk.c },
{ TEST_PER_LS(0x80), &adm0_p_clk.c },
{ TEST_PER_LS(0x84), &usb_hs1_p_clk.c },
{ TEST_PER_LS(0x85), &usb_hs1_xcvr_clk.c },
{ TEST_PER_LS(0x86), &usb_hsic_sys_clk.c },
{ TEST_PER_LS(0x87), &usb_hsic_p_clk.c },
{ TEST_PER_LS(0x88), &usb_hsic_xcvr_clk.c },
{ TEST_PER_LS(0x8B), &usb_hsic_hsio_cal_clk.c },
{ TEST_PER_LS(0x8D), &usb_hs1_sys_clk.c },
{ TEST_PER_LS(0x92), &ce1_p_clk.c },
{ TEST_PER_HS(0x18), &sfab_clk.c },
{ TEST_PER_HS(0x18), &sfab_a_clk.c },
{ TEST_PER_LS(0xA4), &ce1_core_clk.c },
{ TEST_PER_HS(0x2A), &adm0_clk.c },
{ TEST_PER_HS(0x34), &ebi1_clk.c },
{ TEST_PER_HS(0x34), &ebi1_a_clk.c },
{ TEST_LPA(0x0F), &mi2s_bit_clk.c },
{ TEST_LPA(0x10), &codec_i2s_mic_bit_clk.c },
{ TEST_LPA(0x11), &codec_i2s_spkr_bit_clk.c },
{ TEST_LPA(0x12), &spare_i2s_mic_bit_clk.c },
{ TEST_LPA(0x13), &spare_i2s_spkr_bit_clk.c },
{ TEST_LPA(0x14), &pcm_clk.c },
{ TEST_LPA(0x1D), &audio_slimbus_clk.c },
};
static struct measure_sel *find_measure_sel(struct clk *clk)
{
int i;
for (i = 0; i < ARRAY_SIZE(measure_mux); i++)
if (measure_mux[i].clk == clk)
return &measure_mux[i];
return NULL;
}
static int measure_clk_set_parent(struct clk *c, struct clk *parent)
{
int ret = 0;
u32 clk_sel;
struct measure_sel *p;
struct measure_clk *clk = to_measure_clk(c);
unsigned long flags;
if (!parent)
return -EINVAL;
p = find_measure_sel(parent);
if (!p)
return -EINVAL;
spin_lock_irqsave(&local_clock_reg_lock, flags);
/*
* Program the test vector, measurement period (sample_ticks)
* and scaling multiplier.
*/
clk->sample_ticks = 0x10000;
clk_sel = p->test_vector & TEST_CLK_SEL_MASK;
clk->multiplier = 1;
switch (p->test_vector >> TEST_TYPE_SHIFT) {
case TEST_TYPE_PER_LS:
writel_relaxed(0x4030D00|BVAL(7, 0, clk_sel), CLK_TEST_REG);
break;
case TEST_TYPE_PER_HS:
writel_relaxed(0x4020000|BVAL(16, 10, clk_sel), CLK_TEST_REG);
break;
case TEST_TYPE_LPA:
writel_relaxed(0x4030D98, CLK_TEST_REG);
writel_relaxed(BVAL(6, 1, clk_sel)|BIT(0),
LCC_CLK_LS_DEBUG_CFG_REG);
break;
default:
ret = -EPERM;
}
/* Make sure test vector is set before starting measurements. */
mb();
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return ret;
}
/* Sample clock for 'ticks' reference clock ticks. */
static u32 run_measurement(unsigned ticks)
{
/* Stop counters and set the XO4 counter start value. */
writel_relaxed(ticks, RINGOSC_TCXO_CTL_REG);
/* Wait for timer to become ready. */
while ((readl_relaxed(RINGOSC_STATUS_REG) & BIT(25)) != 0)
cpu_relax();
/* Run measurement and wait for completion. */
writel_relaxed(BIT(28)|ticks, RINGOSC_TCXO_CTL_REG);
while ((readl_relaxed(RINGOSC_STATUS_REG) & BIT(25)) == 0)
cpu_relax();
/* Stop counters. */
writel_relaxed(0x0, RINGOSC_TCXO_CTL_REG);
/* Return measured ticks. */
return readl_relaxed(RINGOSC_STATUS_REG) & BM(24, 0);
}
/* Perform a hardware rate measurement for a given clock.
FOR DEBUG USE ONLY: Measurements take ~15 ms! */
static unsigned measure_clk_get_rate(struct clk *c)
{
unsigned long flags;
u32 pdm_reg_backup, ringosc_reg_backup;
u64 raw_count_short, raw_count_full;
struct measure_clk *clk = to_measure_clk(c);
unsigned ret;
spin_lock_irqsave(&local_clock_reg_lock, flags);
/* Enable CXO/4 and RINGOSC branch and root. */
pdm_reg_backup = readl_relaxed(PDM_CLK_NS_REG);
ringosc_reg_backup = readl_relaxed(RINGOSC_NS_REG);
writel_relaxed(0x2898, PDM_CLK_NS_REG);
writel_relaxed(0xA00, RINGOSC_NS_REG);
/*
* The ring oscillator counter will not reset if the measured clock
* is not running. To detect this, run a short measurement before
* the full measurement. If the raw results of the two are the same
* then the clock must be off.
*/
/* Run a short measurement. (~1 ms) */
raw_count_short = run_measurement(0x1000);
/* Run a full measurement. (~14 ms) */
raw_count_full = run_measurement(clk->sample_ticks);
writel_relaxed(ringosc_reg_backup, RINGOSC_NS_REG);
writel_relaxed(pdm_reg_backup, PDM_CLK_NS_REG);
/* Return 0 if the clock is off. */
if (raw_count_full == raw_count_short)
ret = 0;
else {
/* Compute rate in Hz. */
raw_count_full = ((raw_count_full * 10) + 15) * 4800000;
do_div(raw_count_full, ((clk->sample_ticks * 10) + 35));
ret = (raw_count_full * clk->multiplier);
}
/* Route dbg_hs_clk to PLLTEST. 300mV single-ended amplitude. */
writel_relaxed(0x38F8, PLLTEST_PAD_CFG_REG);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return ret;
}
#else /* !CONFIG_DEBUG_FS */
static int measure_clk_set_parent(struct clk *clk, struct clk *parent)
{
return -EINVAL;
}
static unsigned measure_clk_get_rate(struct clk *clk)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static struct clk_ops measure_clk_ops = {
.set_parent = measure_clk_set_parent,
.get_rate = measure_clk_get_rate,
.is_local = local_clk_is_local,
};
static struct measure_clk measure_clk = {
.c = {
.dbg_name = "measure_clk",
.ops = &measure_clk_ops,
CLK_INIT(measure_clk.c),
},
.multiplier = 1,
};
static struct clk_lookup msm_clocks_9615[] = {
CLK_LOOKUP("cxo", cxo_clk.c, NULL),
CLK_LOOKUP("pll0", pll0_clk.c, NULL),
CLK_LOOKUP("pll8", pll8_clk.c, NULL),
CLK_LOOKUP("pll9", pll9_clk.c, NULL),
CLK_LOOKUP("pll14", pll14_clk.c, NULL),
CLK_LOOKUP("measure", measure_clk.c, "debug"),
CLK_LOOKUP("cfpb_clk", cfpb_clk.c, NULL),
CLK_LOOKUP("cfpb_a_clk", cfpb_a_clk.c, NULL),
CLK_LOOKUP("dfab_clk", dfab_clk.c, NULL),
CLK_LOOKUP("dfab_a_clk", dfab_a_clk.c, NULL),
CLK_LOOKUP("ebi1_clk", ebi1_clk.c, NULL),
CLK_LOOKUP("ebi1_a_clk", ebi1_a_clk.c, NULL),
CLK_LOOKUP("sfab_clk", sfab_clk.c, NULL),
CLK_LOOKUP("sfab_a_clk", sfab_a_clk.c, NULL),
CLK_LOOKUP("sfpb_clk", sfpb_clk.c, NULL),
CLK_LOOKUP("sfpb_a_clk", sfpb_a_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi1_uart_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi2_uart_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi3_uart_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi4_uart_clk.c, "msm_serial_hsl.0"),
CLK_LOOKUP("core_clk", gsbi5_uart_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi1_qup_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi2_qup_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi3_qup_clk.c, "spi_qsd.0"),
CLK_LOOKUP("core_clk", gsbi4_qup_clk.c, NULL),
CLK_LOOKUP("core_clk", gsbi5_qup_clk.c, "qup_i2c.0"),
CLK_LOOKUP("pdm_clk", pdm_clk.c, NULL),
CLK_LOOKUP("mem_clk", pmem_clk.c, "msm_sps"),
CLK_LOOKUP("core_clk", prng_clk.c, "msm_rng.0"),
CLK_LOOKUP("core_clk", sdc1_clk.c, "msm_sdcc.1"),
CLK_LOOKUP("core_clk", sdc2_clk.c, "msm_sdcc.2"),
CLK_LOOKUP("ce_pclk", ce1_p_clk.c, NULL),
CLK_LOOKUP("ce_clk", ce1_core_clk.c, NULL),
CLK_LOOKUP("dma_bam_pclk", dma_bam_p_clk.c, NULL),
CLK_LOOKUP("iface_clk", gsbi1_p_clk.c, NULL),
CLK_LOOKUP("iface_clk", gsbi2_p_clk.c, NULL),
CLK_LOOKUP("iface_clk", gsbi3_p_clk.c, "spi_qsd.0"),
CLK_LOOKUP("iface_clk", gsbi4_p_clk.c, "msm_serial_hsl.0"),
CLK_LOOKUP("iface_clk", gsbi5_p_clk.c, "qup_i2c.0"),
CLK_LOOKUP("usb_hs_pclk", usb_hs1_p_clk.c, NULL),
CLK_LOOKUP("usb_hs_system_clk", usb_hs1_sys_clk.c, NULL),
CLK_LOOKUP("usb_hs_clk", usb_hs1_xcvr_clk.c, NULL),
CLK_LOOKUP("usb_hsic_xcvr_clk", usb_hsic_xcvr_clk.c, NULL),
CLK_LOOKUP("usb_hsic_hsio_cal_clk", usb_hsic_hsio_cal_clk.c, NULL),
CLK_LOOKUP("usb_hsic_sys_clk", usb_hsic_sys_clk.c, NULL),
CLK_LOOKUP("usb_hsic_p_clk", usb_hsic_p_clk.c, NULL),
CLK_LOOKUP("iface_clk", sdc1_p_clk.c, "msm_sdcc.1"),
CLK_LOOKUP("iface_clk", sdc2_p_clk.c, "msm_sdcc.2"),
CLK_LOOKUP("core_clk", adm0_clk.c, "msm_dmov"),
CLK_LOOKUP("iface_clk", adm0_p_clk.c, "msm_dmov"),
CLK_LOOKUP("pmic_arb_pclk", pmic_arb0_p_clk.c, NULL),
CLK_LOOKUP("pmic_arb_pclk", pmic_arb1_p_clk.c, NULL),
CLK_LOOKUP("pmic_ssbi2", pmic_ssbi2_clk.c, NULL),
CLK_LOOKUP("rpm_msg_ram_pclk", rpm_msg_ram_p_clk.c, NULL),
CLK_LOOKUP("mi2s_bit_clk", mi2s_bit_clk.c, NULL),
CLK_LOOKUP("mi2s_osr_clk", mi2s_osr_clk.c, NULL),
CLK_LOOKUP("i2s_mic_bit_clk", codec_i2s_mic_bit_clk.c, NULL),
CLK_LOOKUP("i2s_mic_osr_clk", codec_i2s_mic_osr_clk.c, NULL),
CLK_LOOKUP("i2s_mic_bit_clk", spare_i2s_mic_bit_clk.c, NULL),
CLK_LOOKUP("i2s_mic_osr_clk", spare_i2s_mic_osr_clk.c, NULL),
CLK_LOOKUP("i2s_spkr_bit_clk", codec_i2s_spkr_bit_clk.c, NULL),
CLK_LOOKUP("i2s_spkr_osr_clk", codec_i2s_spkr_osr_clk.c, NULL),
CLK_LOOKUP("i2s_spkr_bit_clk", spare_i2s_spkr_bit_clk.c, NULL),
CLK_LOOKUP("i2s_spkr_osr_clk", spare_i2s_spkr_osr_clk.c, NULL),
CLK_LOOKUP("pcm_clk", pcm_clk.c, NULL),
CLK_LOOKUP("sps_slimbus_clk", sps_slimbus_clk.c, NULL),
CLK_LOOKUP("audio_slimbus_clk", audio_slimbus_clk.c, NULL),
CLK_LOOKUP("dfab_usb_hs_clk", dfab_usb_hs_clk.c, NULL),
CLK_LOOKUP("bus_clk", dfab_sdc1_clk.c, "msm_sdcc.1"),
CLK_LOOKUP("bus_clk", dfab_sdc2_clk.c, "msm_sdcc.2"),
CLK_LOOKUP("dfab_clk", dfab_sps_clk.c, "msm_sps"),
CLK_LOOKUP("ebi1_msmbus_clk", ebi1_msmbus_clk.c, NULL),
CLK_LOOKUP("mem_clk", ebi1_adm_clk.c, "msm_dmov"),
CLK_LOOKUP("iface_clk", ce1_p_clk.c, "qce.0"),
CLK_LOOKUP("iface_clk", ce1_p_clk.c, "qcrypto.0"),
CLK_LOOKUP("core_clk", ce1_core_clk.c, "qce.0"),
CLK_LOOKUP("core_clk", ce1_core_clk.c, "qcrypto.0"),
/* TODO: Make this real when RPM's ready. */
CLK_DUMMY("ebi1_msmbus_clk", ebi1_msmbus_clk.c, NULL, OFF),
CLK_DUMMY("mem_clk", ebi1_adm_clk.c, "msm_dmov", OFF),
};
static void set_fsm_mode(void __iomem *mode_reg)
{
u32 regval = readl_relaxed(mode_reg);
/* De-assert reset to FSM */
regval &= ~BIT(21);
writel_relaxed(regval, mode_reg);
/* Program bias count */
regval &= ~BM(19, 14);
regval |= BVAL(19, 14, 0x4);
writel_relaxed(regval, mode_reg);
/* Program lock count */
regval &= ~BM(13, 8);
regval |= BVAL(13, 8, 0x8);
writel_relaxed(regval, mode_reg);
/* Enable PLL FSM voting */
regval |= BIT(20);
writel_relaxed(regval, mode_reg);
}
/*
* Miscellaneous clock register initializations
*/
static void __init reg_init(void)
{
u32 regval, is_pll_enabled;
/* Enable PDM CXO source. */
regval = readl_relaxed(PDM_CLK_NS_REG);
writel_relaxed(BIT(13) | regval, PDM_CLK_NS_REG);
/* Check if PLL0 is active */
is_pll_enabled = readl_relaxed(BB_PLL0_STATUS_REG) & BIT(16);
if (!is_pll_enabled) {
writel_relaxed(0xE, BB_PLL0_L_VAL_REG);
writel_relaxed(0x3, BB_PLL0_M_VAL_REG);
writel_relaxed(0x8, BB_PLL0_N_VAL_REG);
regval = readl_relaxed(BB_PLL0_CONFIG_REG);
/* Enable the main output and the MN accumulator */
regval |= BIT(23) | BIT(22);
/* Set pre-divider and post-divider values to 1 and 1 */
regval &= ~BIT(19);
regval &= ~BM(21, 20);
/* Set VCO frequency */
regval &= ~BM(17, 16);
writel_relaxed(regval, BB_PLL0_CONFIG_REG);
/* Enable AUX output */
regval = readl_relaxed(BB_PLL0_TEST_CTL_REG);
regval |= BIT(12);
writel_relaxed(regval, BB_PLL0_TEST_CTL_REG);
set_fsm_mode(BB_PLL0_MODE_REG);
}
/* Check if PLL9 (SC_PLL0) is enabled in FSM mode */
is_pll_enabled = readl_relaxed(SC_PLL0_STATUS_REG) & BIT(16);
if (!is_pll_enabled) {
writel_relaxed(0x16, SC_PLL0_L_VAL_REG);
writel_relaxed(0xB, SC_PLL0_M_VAL_REG);
writel_relaxed(0xC, SC_PLL0_N_VAL_REG);
regval = readl_relaxed(SC_PLL0_CONFIG_REG);
/* Enable main output and the MN accumulator */
regval |= BIT(23) | BIT(22);
/* Set pre-divider and post-divider values to 1 and 1 */
regval &= ~BIT(19);
regval &= ~BM(21, 20);
/* Set VCO frequency */
regval &= ~BM(17, 16);
writel_relaxed(regval, SC_PLL0_CONFIG_REG);
set_fsm_mode(SC_PLL0_MODE_REG);
} else if (!(readl_relaxed(SC_PLL0_MODE_REG) & BIT(20)))
WARN(1, "PLL9 enabled in non-FSM mode!\n");
/* Check if PLL14 is enabled in FSM mode */
is_pll_enabled = readl_relaxed(BB_PLL14_STATUS_REG) & BIT(16);
if (!is_pll_enabled) {
writel_relaxed(0x19, BB_PLL14_L_VAL_REG);
writel_relaxed(0x0, BB_PLL14_M_VAL_REG);
writel_relaxed(0x1, BB_PLL14_N_VAL_REG);
regval = readl_relaxed(BB_PLL14_CONFIG_REG);
/* Enable main output and the MN accumulator */
regval |= BIT(23) | BIT(22);
/* Set pre-divider and post-divider values to 1 and 1 */
regval &= ~BIT(19);
regval &= ~BM(21, 20);
/* Set VCO frequency */
regval &= ~BM(17, 16);
writel_relaxed(regval, BB_PLL14_CONFIG_REG);
set_fsm_mode(BB_PLL14_MODE_REG);
} else if (!(readl_relaxed(BB_PLL14_MODE_REG) & BIT(20)))
WARN(1, "PLL14 enabled in non-FSM mode!\n");
/* Enable PLL4 source on the LPASS Primary PLL Mux */
regval = readl_relaxed(LCC_PRI_PLL_CLK_CTL_REG);
writel_relaxed(regval | BIT(0), LCC_PRI_PLL_CLK_CTL_REG);
}
/* Local clock driver initialization. */
static void __init msm9615_clock_init(void)
{
xo_cxo = msm_xo_get(MSM_XO_TCXO_D0, "clock-9615");
if (IS_ERR(xo_cxo)) {
pr_err("%s: msm_xo_get(CXO) failed.\n", __func__);
BUG();
}
soc_update_sys_vdd = msm9615_update_sys_vdd;
local_vote_sys_vdd(HIGH);
clk_ops_pll.enable = sr_pll_clk_enable;
/* Initialize clock registers. */
reg_init();
/* Initialize rates for clocks that only support one. */
clk_set_rate(&pdm_clk.c, 19200000);
clk_set_rate(&prng_clk.c, 32000000);
clk_set_rate(&usb_hs1_xcvr_clk.c, 60000000);
clk_set_rate(&usb_hs1_sys_clk.c, 60000000);
clk_set_rate(&usb_hsic_xcvr_clk.c, 60000000);
clk_set_rate(&usb_hsic_sys_clk.c, 60000000);
clk_set_rate(&usb_hsic_clk.c, 48000000);
/*
* The halt status bits for PDM may be incorrect at boot.
* Toggle these clocks on and off to refresh them.
*/
rcg_clk_enable(&pdm_clk.c);
rcg_clk_disable(&pdm_clk.c);
}
static int __init msm9615_clock_late_init(void)
{
return local_unvote_sys_vdd(HIGH);
}
struct clock_init_data msm9615_clock_init_data __initdata = {
.table = msm_clocks_9615,
.size = ARRAY_SIZE(msm_clocks_9615),
.init = msm9615_clock_init,
.late_init = msm9615_clock_late_init,
};