blob: 2dbf4307ed9ed1e5ea7629bcd551c4b32f3eed08 [file] [log] [blame]
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
/*
* We need the mmu code to access both 32-bit and 64-bit guest ptes,
* so the code in this file is compiled twice, once per pte size.
*/
#if PTTYPE == 64
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
#define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
#define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
#ifdef CONFIG_X86_64
#define PT_MAX_FULL_LEVELS 4
#else
#define PT_MAX_FULL_LEVELS 2
#endif
#elif PTTYPE == 32
#define pt_element_t u32
#define guest_walker guest_walker32
#define FNAME(name) paging##32_##name
#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
#define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
#define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
#define PT_MAX_FULL_LEVELS 2
#else
#error Invalid PTTYPE value
#endif
/*
* The guest_walker structure emulates the behavior of the hardware page
* table walker.
*/
struct guest_walker {
int level;
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
pt_element_t *table;
pt_element_t *ptep;
pt_element_t inherited_ar;
gfn_t gfn;
};
/*
* Fetch a guest pte for a guest virtual address
*/
static void FNAME(walk_addr)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr)
{
hpa_t hpa;
struct kvm_memory_slot *slot;
pt_element_t *ptep;
pt_element_t root;
gfn_t table_gfn;
pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
walker->level = vcpu->mmu.root_level;
walker->table = NULL;
root = vcpu->cr3;
#if PTTYPE == 64
if (!is_long_mode(vcpu)) {
walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
root = *walker->ptep;
if (!(root & PT_PRESENT_MASK))
return;
--walker->level;
}
#endif
table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
walker->table_gfn[walker->level - 1] = table_gfn;
pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
walker->level - 1, table_gfn);
slot = gfn_to_memslot(vcpu->kvm, table_gfn);
hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
for (;;) {
int index = PT_INDEX(addr, walker->level);
hpa_t paddr;
ptep = &walker->table[index];
ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
((unsigned long)ptep & PAGE_MASK));
if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
*ptep |= PT_ACCESSED_MASK;
if (!is_present_pte(*ptep))
break;
if (walker->level == PT_PAGE_TABLE_LEVEL) {
walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
>> PAGE_SHIFT;
break;
}
if (walker->level == PT_DIRECTORY_LEVEL
&& (*ptep & PT_PAGE_SIZE_MASK)
&& (PTTYPE == 64 || is_pse(vcpu))) {
walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
>> PAGE_SHIFT;
walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
break;
}
if (walker->level != 3 || is_long_mode(vcpu))
walker->inherited_ar &= walker->table[index];
table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
kunmap_atomic(walker->table, KM_USER0);
walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
KM_USER0);
--walker->level;
walker->table_gfn[walker->level - 1 ] = table_gfn;
pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
walker->level - 1, table_gfn);
}
walker->ptep = ptep;
pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
}
static void FNAME(release_walker)(struct guest_walker *walker)
{
if (walker->table)
kunmap_atomic(walker->table, KM_USER0);
}
static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
u64 *shadow_pte, u64 access_bits, gfn_t gfn)
{
ASSERT(*shadow_pte == 0);
access_bits &= guest_pte;
*shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
guest_pte & PT_DIRTY_MASK, access_bits, gfn);
}
static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
u64 *shadow_pte, u64 access_bits, gfn_t gfn)
{
gpa_t gaddr;
ASSERT(*shadow_pte == 0);
access_bits &= guest_pde;
gaddr = (gpa_t)gfn << PAGE_SHIFT;
if (PTTYPE == 32 && is_cpuid_PSE36())
gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
(32 - PT32_DIR_PSE36_SHIFT);
*shadow_pte = guest_pde & PT_PTE_COPY_MASK;
set_pte_common(vcpu, shadow_pte, gaddr,
guest_pde & PT_DIRTY_MASK, access_bits, gfn);
}
/*
* Fetch a shadow pte for a specific level in the paging hierarchy.
*/
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *walker)
{
hpa_t shadow_addr;
int level;
u64 *prev_shadow_ent = NULL;
pt_element_t *guest_ent = walker->ptep;
if (!is_present_pte(*guest_ent))
return NULL;
shadow_addr = vcpu->mmu.root_hpa;
level = vcpu->mmu.shadow_root_level;
if (level == PT32E_ROOT_LEVEL) {
shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
shadow_addr &= PT64_BASE_ADDR_MASK;
--level;
}
for (; ; level--) {
u32 index = SHADOW_PT_INDEX(addr, level);
u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
struct kvm_mmu_page *shadow_page;
u64 shadow_pte;
int metaphysical;
gfn_t table_gfn;
if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
if (level == PT_PAGE_TABLE_LEVEL)
return shadow_ent;
shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
prev_shadow_ent = shadow_ent;
continue;
}
if (level == PT_PAGE_TABLE_LEVEL) {
if (walker->level == PT_DIRECTORY_LEVEL) {
if (prev_shadow_ent)
*prev_shadow_ent |= PT_SHADOW_PS_MARK;
FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
walker->inherited_ar,
walker->gfn);
} else {
ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
walker->inherited_ar,
walker->gfn);
}
return shadow_ent;
}
if (level - 1 == PT_PAGE_TABLE_LEVEL
&& walker->level == PT_DIRECTORY_LEVEL) {
metaphysical = 1;
table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
>> PAGE_SHIFT;
} else {
metaphysical = 0;
table_gfn = walker->table_gfn[level - 2];
}
shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
metaphysical, shadow_ent);
shadow_addr = shadow_page->page_hpa;
shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
| PT_WRITABLE_MASK | PT_USER_MASK;
*shadow_ent = shadow_pte;
prev_shadow_ent = shadow_ent;
}
}
/*
* The guest faulted for write. We need to
*
* - check write permissions
* - update the guest pte dirty bit
* - update our own dirty page tracking structures
*/
static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
u64 *shadow_ent,
struct guest_walker *walker,
gva_t addr,
int user,
int *write_pt)
{
pt_element_t *guest_ent;
int writable_shadow;
gfn_t gfn;
struct kvm_mmu_page *page;
if (is_writeble_pte(*shadow_ent))
return 0;
writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
if (user) {
/*
* User mode access. Fail if it's a kernel page or a read-only
* page.
*/
if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
return 0;
ASSERT(*shadow_ent & PT_USER_MASK);
} else
/*
* Kernel mode access. Fail if it's a read-only page and
* supervisor write protection is enabled.
*/
if (!writable_shadow) {
if (is_write_protection(vcpu))
return 0;
*shadow_ent &= ~PT_USER_MASK;
}
guest_ent = walker->ptep;
if (!is_present_pte(*guest_ent)) {
*shadow_ent = 0;
return 0;
}
gfn = walker->gfn;
if (user) {
/*
* Usermode page faults won't be for page table updates.
*/
while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
pgprintk("%s: zap %lx %x\n",
__FUNCTION__, gfn, page->role.word);
kvm_mmu_zap_page(vcpu, page);
}
} else if (kvm_mmu_lookup_page(vcpu, gfn)) {
pgprintk("%s: found shadow page for %lx, marking ro\n",
__FUNCTION__, gfn);
*guest_ent |= PT_DIRTY_MASK;
*write_pt = 1;
return 0;
}
mark_page_dirty(vcpu->kvm, gfn);
*shadow_ent |= PT_WRITABLE_MASK;
*guest_ent |= PT_DIRTY_MASK;
rmap_add(vcpu, shadow_ent);
return 1;
}
/*
* Page fault handler. There are several causes for a page fault:
* - there is no shadow pte for the guest pte
* - write access through a shadow pte marked read only so that we can set
* the dirty bit
* - write access to a shadow pte marked read only so we can update the page
* dirty bitmap, when userspace requests it
* - mmio access; in this case we will never install a present shadow pte
* - normal guest page fault due to the guest pte marked not present, not
* writable, or not executable
*
* Returns: 1 if we need to emulate the instruction, 0 otherwise, or
* a negative value on error.
*/
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
u32 error_code)
{
int write_fault = error_code & PFERR_WRITE_MASK;
int pte_present = error_code & PFERR_PRESENT_MASK;
int user_fault = error_code & PFERR_USER_MASK;
struct guest_walker walker;
u64 *shadow_pte;
int fixed;
int write_pt = 0;
int r;
pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
kvm_mmu_audit(vcpu, "pre page fault");
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
/*
* Look up the shadow pte for the faulting address.
*/
FNAME(walk_addr)(&walker, vcpu, addr);
shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
/*
* The page is not mapped by the guest. Let the guest handle it.
*/
if (!shadow_pte) {
pgprintk("%s: not mapped\n", __FUNCTION__);
inject_page_fault(vcpu, addr, error_code);
FNAME(release_walker)(&walker);
return 0;
}
pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
shadow_pte, *shadow_pte);
/*
* Update the shadow pte.
*/
if (write_fault)
fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
user_fault, &write_pt);
else
fixed = fix_read_pf(shadow_pte);
pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
shadow_pte, *shadow_pte);
FNAME(release_walker)(&walker);
/*
* mmio: emulate if accessible, otherwise its a guest fault.
*/
if (is_io_pte(*shadow_pte)) {
if (may_access(*shadow_pte, write_fault, user_fault))
return 1;
pgprintk("%s: io work, no access\n", __FUNCTION__);
inject_page_fault(vcpu, addr,
error_code | PFERR_PRESENT_MASK);
kvm_mmu_audit(vcpu, "post page fault (io)");
return 0;
}
/*
* pte not present, guest page fault.
*/
if (pte_present && !fixed && !write_pt) {
inject_page_fault(vcpu, addr, error_code);
kvm_mmu_audit(vcpu, "post page fault (guest)");
return 0;
}
++kvm_stat.pf_fixed;
kvm_mmu_audit(vcpu, "post page fault (fixed)");
return write_pt;
}
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
{
struct guest_walker walker;
pt_element_t guest_pte;
gpa_t gpa;
FNAME(walk_addr)(&walker, vcpu, vaddr);
guest_pte = *walker.ptep;
FNAME(release_walker)(&walker);
if (!is_present_pte(guest_pte))
return UNMAPPED_GVA;
if (walker.level == PT_DIRECTORY_LEVEL) {
ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
ASSERT(PTTYPE == 64 || is_pse(vcpu));
gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
(PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
if (PTTYPE == 32 && is_cpuid_PSE36())
gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
(32 - PT32_DIR_PSE36_SHIFT);
} else {
gpa = (guest_pte & PT_BASE_ADDR_MASK);
gpa |= (vaddr & ~PAGE_MASK);
}
return gpa;
}
#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
#undef SHADOW_PT_INDEX
#undef PT_LEVEL_MASK
#undef PT_PTE_COPY_MASK
#undef PT_NON_PTE_COPY_MASK
#undef PT_DIR_BASE_ADDR_MASK
#undef PT_MAX_FULL_LEVELS