| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * |
| * Transmit and frame generation functions. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/skbuff.h> |
| #include <linux/etherdevice.h> |
| #include <linux/bitmap.h> |
| #include <linux/rcupdate.h> |
| #include <net/net_namespace.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <net/cfg80211.h> |
| #include <net/mac80211.h> |
| #include <asm/unaligned.h> |
| |
| #include "ieee80211_i.h" |
| #include "ieee80211_led.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "wme.h" |
| #include "ieee80211_rate.h" |
| |
| #define IEEE80211_TX_OK 0 |
| #define IEEE80211_TX_AGAIN 1 |
| #define IEEE80211_TX_FRAG_AGAIN 2 |
| |
| /* misc utils */ |
| |
| static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_hdr *hdr) |
| { |
| /* Set the sequence number for this frame. */ |
| hdr->seq_ctrl = cpu_to_le16(sdata->sequence); |
| |
| /* Increase the sequence number. */ |
| sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; |
| } |
| |
| #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP |
| static void ieee80211_dump_frame(const char *ifname, const char *title, |
| const struct sk_buff *skb) |
| { |
| const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| u16 fc; |
| int hdrlen; |
| DECLARE_MAC_BUF(mac); |
| |
| printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); |
| if (skb->len < 4) { |
| printk("\n"); |
| return; |
| } |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| hdrlen = ieee80211_get_hdrlen(fc); |
| if (hdrlen > skb->len) |
| hdrlen = skb->len; |
| if (hdrlen >= 4) |
| printk(" FC=0x%04x DUR=0x%04x", |
| fc, le16_to_cpu(hdr->duration_id)); |
| if (hdrlen >= 10) |
| printk(" A1=%s", print_mac(mac, hdr->addr1)); |
| if (hdrlen >= 16) |
| printk(" A2=%s", print_mac(mac, hdr->addr2)); |
| if (hdrlen >= 24) |
| printk(" A3=%s", print_mac(mac, hdr->addr3)); |
| if (hdrlen >= 30) |
| printk(" A4=%s", print_mac(mac, hdr->addr4)); |
| printk("\n"); |
| } |
| #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| static inline void ieee80211_dump_frame(const char *ifname, const char *title, |
| struct sk_buff *skb) |
| { |
| } |
| #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| |
| static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, |
| int next_frag_len) |
| { |
| int rate, mrate, erp, dur, i; |
| struct ieee80211_rate *txrate = tx->u.tx.rate; |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| |
| erp = txrate->flags & IEEE80211_RATE_ERP; |
| |
| /* |
| * data and mgmt (except PS Poll): |
| * - during CFP: 32768 |
| * - during contention period: |
| * if addr1 is group address: 0 |
| * if more fragments = 0 and addr1 is individual address: time to |
| * transmit one ACK plus SIFS |
| * if more fragments = 1 and addr1 is individual address: time to |
| * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| * |
| * IEEE 802.11, 9.6: |
| * - control response frame (CTS or ACK) shall be transmitted using the |
| * same rate as the immediately previous frame in the frame exchange |
| * sequence, if this rate belongs to the PHY mandatory rates, or else |
| * at the highest possible rate belonging to the PHY rates in the |
| * BSSBasicRateSet |
| */ |
| |
| if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { |
| /* TODO: These control frames are not currently sent by |
| * 80211.o, but should they be implemented, this function |
| * needs to be updated to support duration field calculation. |
| * |
| * RTS: time needed to transmit pending data/mgmt frame plus |
| * one CTS frame plus one ACK frame plus 3 x SIFS |
| * CTS: duration of immediately previous RTS minus time |
| * required to transmit CTS and its SIFS |
| * ACK: 0 if immediately previous directed data/mgmt had |
| * more=0, with more=1 duration in ACK frame is duration |
| * from previous frame minus time needed to transmit ACK |
| * and its SIFS |
| * PS Poll: BIT(15) | BIT(14) | aid |
| */ |
| return 0; |
| } |
| |
| /* data/mgmt */ |
| if (0 /* FIX: data/mgmt during CFP */) |
| return 32768; |
| |
| if (group_addr) /* Group address as the destination - no ACK */ |
| return 0; |
| |
| /* Individual destination address: |
| * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| * CTS and ACK frames shall be transmitted using the highest rate in |
| * basic rate set that is less than or equal to the rate of the |
| * immediately previous frame and that is using the same modulation |
| * (CCK or OFDM). If no basic rate set matches with these requirements, |
| * the highest mandatory rate of the PHY that is less than or equal to |
| * the rate of the previous frame is used. |
| * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| */ |
| rate = -1; |
| mrate = 10; /* use 1 Mbps if everything fails */ |
| for (i = 0; i < mode->num_rates; i++) { |
| struct ieee80211_rate *r = &mode->rates[i]; |
| if (r->rate > txrate->rate) |
| break; |
| |
| if (IEEE80211_RATE_MODULATION(txrate->flags) != |
| IEEE80211_RATE_MODULATION(r->flags)) |
| continue; |
| |
| if (r->flags & IEEE80211_RATE_BASIC) |
| rate = r->rate; |
| else if (r->flags & IEEE80211_RATE_MANDATORY) |
| mrate = r->rate; |
| } |
| if (rate == -1) { |
| /* No matching basic rate found; use highest suitable mandatory |
| * PHY rate */ |
| rate = mrate; |
| } |
| |
| /* Time needed to transmit ACK |
| * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| * to closest integer */ |
| |
| dur = ieee80211_frame_duration(local, 10, rate, erp, |
| tx->sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE); |
| |
| if (next_frag_len) { |
| /* Frame is fragmented: duration increases with time needed to |
| * transmit next fragment plus ACK and 2 x SIFS. */ |
| dur *= 2; /* ACK + SIFS */ |
| /* next fragment */ |
| dur += ieee80211_frame_duration(local, next_frag_len, |
| txrate->rate, erp, |
| tx->sdata->flags & |
| IEEE80211_SDATA_SHORT_PREAMBLE); |
| } |
| |
| return dur; |
| } |
| |
| static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, |
| int queue) |
| { |
| return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); |
| } |
| |
| static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, |
| int queue) |
| { |
| return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); |
| } |
| |
| static int inline is_ieee80211_device(struct net_device *dev, |
| struct net_device *master) |
| { |
| return (wdev_priv(dev->ieee80211_ptr) == |
| wdev_priv(master->ieee80211_ptr)); |
| } |
| |
| /* tx handlers */ |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) |
| { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| u32 sta_flags; |
| |
| if (unlikely(tx->local->sta_scanning != 0) && |
| ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) |
| return TXRX_DROP; |
| |
| if (tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED) |
| return TXRX_CONTINUE; |
| |
| sta_flags = tx->sta ? tx->sta->flags : 0; |
| |
| if (likely(tx->flags & IEEE80211_TXRXD_TXUNICAST)) { |
| if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && |
| tx->sdata->type != IEEE80211_IF_TYPE_IBSS && |
| (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| DECLARE_MAC_BUF(mac); |
| printk(KERN_DEBUG "%s: dropped data frame to not " |
| "associated station %s\n", |
| tx->dev->name, print_mac(mac, hdr->addr1)); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| return TXRX_DROP; |
| } |
| } else { |
| if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| tx->local->num_sta == 0 && |
| tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) { |
| /* |
| * No associated STAs - no need to send multicast |
| * frames. |
| */ |
| return TXRX_DROP; |
| } |
| return TXRX_CONTINUE; |
| } |
| |
| if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x && |
| !(sta_flags & WLAN_STA_AUTHORIZED))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| DECLARE_MAC_BUF(mac); |
| printk(KERN_DEBUG "%s: dropped frame to %s" |
| " (unauthorized port)\n", tx->dev->name, |
| print_mac(mac, hdr->addr1)); |
| #endif |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); |
| return TXRX_DROP; |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| |
| if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) |
| ieee80211_include_sequence(tx->sdata, hdr); |
| |
| return TXRX_CONTINUE; |
| } |
| |
| /* This function is called whenever the AP is about to exceed the maximum limit |
| * of buffered frames for power saving STAs. This situation should not really |
| * happen often during normal operation, so dropping the oldest buffered packet |
| * from each queue should be OK to make some room for new frames. */ |
| static void purge_old_ps_buffers(struct ieee80211_local *local) |
| { |
| int total = 0, purged = 0; |
| struct sk_buff *skb; |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| |
| /* |
| * virtual interfaces are protected by RCU |
| */ |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| struct ieee80211_if_ap *ap; |
| if (sdata->dev == local->mdev || |
| sdata->type != IEEE80211_IF_TYPE_AP) |
| continue; |
| ap = &sdata->u.ap; |
| skb = skb_dequeue(&ap->ps_bc_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&ap->ps_bc_buf); |
| } |
| rcu_read_unlock(); |
| |
| read_lock_bh(&local->sta_lock); |
| list_for_each_entry(sta, &local->sta_list, list) { |
| skb = skb_dequeue(&sta->ps_tx_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&sta->ps_tx_buf); |
| } |
| read_unlock_bh(&local->sta_lock); |
| |
| local->total_ps_buffered = total; |
| printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", |
| wiphy_name(local->hw.wiphy), purged); |
| } |
| |
| static inline ieee80211_txrx_result |
| ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| /* broadcast/multicast frame */ |
| /* If any of the associated stations is in power save mode, |
| * the frame is buffered to be sent after DTIM beacon frame */ |
| if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) && |
| tx->sdata->type != IEEE80211_IF_TYPE_WDS && |
| tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && |
| !(tx->fc & IEEE80211_FCTL_ORDER)) { |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= |
| AP_MAX_BC_BUFFER) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: BC TX buffer full - " |
| "dropping the oldest frame\n", |
| tx->dev->name); |
| } |
| dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); |
| } else |
| tx->local->total_ps_buffered++; |
| skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); |
| return TXRX_QUEUED; |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static inline ieee80211_txrx_result |
| ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| struct sta_info *sta = tx->sta; |
| DECLARE_MAC_BUF(mac); |
| |
| if (unlikely(!sta || |
| ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && |
| (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) |
| return TXRX_CONTINUE; |
| |
| if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { |
| struct ieee80211_tx_packet_data *pkt_data; |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries " |
| "before %d)\n", |
| print_mac(mac, sta->addr), sta->aid, |
| skb_queue_len(&sta->ps_tx_buf)); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| sta->flags |= WLAN_STA_TIM; |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { |
| struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: STA %s TX " |
| "buffer full - dropping oldest frame\n", |
| tx->dev->name, print_mac(mac, sta->addr)); |
| } |
| dev_kfree_skb(old); |
| } else |
| tx->local->total_ps_buffered++; |
| /* Queue frame to be sent after STA sends an PS Poll frame */ |
| if (skb_queue_empty(&sta->ps_tx_buf)) { |
| if (tx->local->ops->set_tim) |
| tx->local->ops->set_tim(local_to_hw(tx->local), |
| sta->aid, 1); |
| if (tx->sdata->bss) |
| bss_tim_set(tx->local, tx->sdata->bss, sta->aid); |
| } |
| pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; |
| pkt_data->jiffies = jiffies; |
| skb_queue_tail(&sta->ps_tx_buf, tx->skb); |
| return TXRX_QUEUED; |
| } |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| else if (unlikely(sta->flags & WLAN_STA_PS)) { |
| printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll " |
| "set -> send frame\n", tx->dev->name, |
| print_mac(mac, sta->addr)); |
| } |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| sta->pspoll = 0; |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| if (unlikely(tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED)) |
| return TXRX_CONTINUE; |
| |
| if (tx->flags & IEEE80211_TXRXD_TXUNICAST) |
| return ieee80211_tx_h_unicast_ps_buf(tx); |
| else |
| return ieee80211_tx_h_multicast_ps_buf(tx); |
| } |
| |
| |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_key *key; |
| |
| if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) |
| tx->key = NULL; |
| else if (tx->sta && (key = rcu_dereference(tx->sta->key))) |
| tx->key = key; |
| else if ((key = rcu_dereference(tx->sdata->default_key))) |
| tx->key = key; |
| else if (tx->sdata->drop_unencrypted && |
| !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); |
| return TXRX_DROP; |
| } else { |
| tx->key = NULL; |
| tx->u.tx.control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; |
| } |
| |
| if (tx->key) { |
| tx->key->tx_rx_count++; |
| /* TODO: add threshold stuff again */ |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| size_t hdrlen, per_fragm, num_fragm, payload_len, left; |
| struct sk_buff **frags, *first, *frag; |
| int i; |
| u16 seq; |
| u8 *pos; |
| int frag_threshold = tx->local->fragmentation_threshold; |
| |
| if (!(tx->flags & IEEE80211_TXRXD_FRAGMENTED)) |
| return TXRX_CONTINUE; |
| |
| first = tx->skb; |
| |
| hdrlen = ieee80211_get_hdrlen(tx->fc); |
| payload_len = first->len - hdrlen; |
| per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| num_fragm = DIV_ROUND_UP(payload_len, per_fragm); |
| |
| frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); |
| if (!frags) |
| goto fail; |
| |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; |
| pos = first->data + hdrlen + per_fragm; |
| left = payload_len - per_fragm; |
| for (i = 0; i < num_fragm - 1; i++) { |
| struct ieee80211_hdr *fhdr; |
| size_t copylen; |
| |
| if (left <= 0) |
| goto fail; |
| |
| /* reserve enough extra head and tail room for possible |
| * encryption */ |
| frag = frags[i] = |
| dev_alloc_skb(tx->local->tx_headroom + |
| frag_threshold + |
| IEEE80211_ENCRYPT_HEADROOM + |
| IEEE80211_ENCRYPT_TAILROOM); |
| if (!frag) |
| goto fail; |
| /* Make sure that all fragments use the same priority so |
| * that they end up using the same TX queue */ |
| frag->priority = first->priority; |
| skb_reserve(frag, tx->local->tx_headroom + |
| IEEE80211_ENCRYPT_HEADROOM); |
| fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); |
| memcpy(fhdr, first->data, hdrlen); |
| if (i == num_fragm - 2) |
| fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); |
| fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); |
| copylen = left > per_fragm ? per_fragm : left; |
| memcpy(skb_put(frag, copylen), pos, copylen); |
| |
| pos += copylen; |
| left -= copylen; |
| } |
| skb_trim(first, hdrlen + per_fragm); |
| |
| tx->u.tx.num_extra_frag = num_fragm - 1; |
| tx->u.tx.extra_frag = frags; |
| |
| return TXRX_CONTINUE; |
| |
| fail: |
| printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); |
| if (frags) { |
| for (i = 0; i < num_fragm - 1; i++) |
| if (frags[i]) |
| dev_kfree_skb(frags[i]); |
| kfree(frags); |
| } |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); |
| return TXRX_DROP; |
| } |
| |
| static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb) |
| { |
| if (!(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) { |
| if (ieee80211_wep_encrypt(tx->local, skb, tx->key)) |
| return -1; |
| } else { |
| tx->u.tx.control->key_idx = tx->key->conf.hw_key_idx; |
| if (tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) { |
| if (!ieee80211_wep_add_iv(tx->local, skb, tx->key)) |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| u16 fc; |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| if (!tx->key || tx->key->conf.alg != ALG_WEP || |
| ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) |
| return TXRX_CONTINUE; |
| |
| tx->u.tx.control->iv_len = WEP_IV_LEN; |
| tx->u.tx.control->icv_len = WEP_ICV_LEN; |
| ieee80211_tx_set_iswep(tx); |
| |
| if (wep_encrypt_skb(tx, tx->skb) < 0) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); |
| return TXRX_DROP; |
| } |
| |
| if (tx->u.tx.extra_frag) { |
| int i; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) { |
| I802_DEBUG_INC(tx->local-> |
| tx_handlers_drop_wep); |
| return TXRX_DROP; |
| } |
| } |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) |
| { |
| struct rate_control_extra extra; |
| |
| memset(&extra, 0, sizeof(extra)); |
| extra.mode = tx->u.tx.mode; |
| extra.mgmt_data = tx->sdata && |
| tx->sdata->type == IEEE80211_IF_TYPE_MGMT; |
| extra.ethertype = tx->ethertype; |
| |
| tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb, |
| &extra); |
| if (unlikely(extra.probe != NULL)) { |
| tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; |
| tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; |
| tx->u.tx.rate = extra.probe; |
| } else { |
| tx->u.tx.control->alt_retry_rate = -1; |
| } |
| if (!tx->u.tx.rate) |
| return TXRX_DROP; |
| if (tx->u.tx.mode->mode == MODE_IEEE80211G && |
| (tx->sdata->flags & IEEE80211_SDATA_USE_PROTECTION) && |
| (tx->flags & IEEE80211_TXRXD_FRAGMENTED) && extra.nonerp) { |
| tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| if (extra.probe) |
| tx->flags &= ~IEEE80211_TXRXD_TXPROBE_LAST_FRAG; |
| else |
| tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; |
| tx->u.tx.rate = extra.nonerp; |
| tx->u.tx.control->rate = extra.nonerp; |
| tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| } else { |
| tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| tx->u.tx.control->rate = tx->u.tx.rate; |
| } |
| tx->u.tx.control->tx_rate = tx->u.tx.rate->val; |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| u16 fc = le16_to_cpu(hdr->frame_control); |
| u16 dur; |
| struct ieee80211_tx_control *control = tx->u.tx.control; |
| struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| |
| if (!is_multicast_ether_addr(hdr->addr1)) { |
| if (tx->skb->len + FCS_LEN > tx->local->rts_threshold && |
| tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) { |
| control->flags |= IEEE80211_TXCTL_USE_RTS_CTS; |
| control->flags |= IEEE80211_TXCTL_LONG_RETRY_LIMIT; |
| control->retry_limit = |
| tx->local->long_retry_limit; |
| } else { |
| control->retry_limit = |
| tx->local->short_retry_limit; |
| } |
| } else { |
| control->retry_limit = 1; |
| } |
| |
| if (tx->flags & IEEE80211_TXRXD_FRAGMENTED) { |
| /* Do not use multiple retry rates when sending fragmented |
| * frames. |
| * TODO: The last fragment could still use multiple retry |
| * rates. */ |
| control->alt_retry_rate = -1; |
| } |
| |
| /* Use CTS protection for unicast frames sent using extended rates if |
| * there are associated non-ERP stations and RTS/CTS is not configured |
| * for the frame. */ |
| if (mode->mode == MODE_IEEE80211G && |
| (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && |
| (tx->flags & IEEE80211_TXRXD_TXUNICAST) && |
| (tx->sdata->flags & IEEE80211_SDATA_USE_PROTECTION) && |
| !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) |
| control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; |
| |
| /* Transmit data frames using short preambles if the driver supports |
| * short preambles at the selected rate and short preambles are |
| * available on the network at the current point in time. */ |
| if (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) && |
| (tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && |
| (tx->sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) && |
| (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { |
| tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; |
| } |
| |
| /* Setup duration field for the first fragment of the frame. Duration |
| * for remaining fragments will be updated when they are being sent |
| * to low-level driver in ieee80211_tx(). */ |
| dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), |
| (tx->flags & IEEE80211_TXRXD_FRAGMENTED) ? |
| tx->u.tx.extra_frag[0]->len : 0); |
| hdr->duration_id = cpu_to_le16(dur); |
| |
| if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || |
| (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { |
| struct ieee80211_rate *rate; |
| |
| /* Do not use multiple retry rates when using RTS/CTS */ |
| control->alt_retry_rate = -1; |
| |
| /* Use min(data rate, max base rate) as CTS/RTS rate */ |
| rate = tx->u.tx.rate; |
| while (rate > mode->rates && |
| !(rate->flags & IEEE80211_RATE_BASIC)) |
| rate--; |
| |
| control->rts_cts_rate = rate->val; |
| control->rts_rate = rate; |
| } |
| |
| if (tx->sta) { |
| tx->sta->tx_packets++; |
| tx->sta->tx_fragments++; |
| tx->sta->tx_bytes += tx->skb->len; |
| if (tx->u.tx.extra_frag) { |
| int i; |
| tx->sta->tx_fragments += tx->u.tx.num_extra_frag; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| tx->sta->tx_bytes += |
| tx->u.tx.extra_frag[i]->len; |
| } |
| } |
| } |
| |
| /* |
| * Tell hardware to not encrypt when we had sw crypto. |
| * Because we use the same flag to internally indicate that |
| * no (software) encryption should be done, we have to set it |
| * after all crypto handlers. |
| */ |
| if (tx->key && !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| tx->u.tx.control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| u32 load = 0, hdrtime; |
| |
| /* TODO: this could be part of tx_status handling, so that the number |
| * of retries would be known; TX rate should in that case be stored |
| * somewhere with the packet */ |
| |
| /* Estimate total channel use caused by this frame */ |
| |
| /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, |
| * 1 usec = 1/8 * (1080 / 10) = 13.5 */ |
| |
| if (mode->mode == MODE_IEEE80211A || |
| (mode->mode == MODE_IEEE80211G && |
| tx->u.tx.rate->flags & IEEE80211_RATE_ERP)) |
| hdrtime = CHAN_UTIL_HDR_SHORT; |
| else |
| hdrtime = CHAN_UTIL_HDR_LONG; |
| |
| load = hdrtime; |
| if (!is_multicast_ether_addr(hdr->addr1)) |
| load += hdrtime; |
| |
| if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS) |
| load += 2 * hdrtime; |
| else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) |
| load += hdrtime; |
| |
| load += skb->len * tx->u.tx.rate->rate_inv; |
| |
| if (tx->u.tx.extra_frag) { |
| int i; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| load += 2 * hdrtime; |
| load += tx->u.tx.extra_frag[i]->len * |
| tx->u.tx.rate->rate; |
| } |
| } |
| |
| /* Divide channel_use by 8 to avoid wrapping around the counter */ |
| load >>= CHAN_UTIL_SHIFT; |
| local->channel_use_raw += load; |
| if (tx->sta) |
| tx->sta->channel_use_raw += load; |
| tx->sdata->channel_use_raw += load; |
| |
| return TXRX_CONTINUE; |
| } |
| |
| /* TODO: implement register/unregister functions for adding TX/RX handlers |
| * into ordered list */ |
| |
| ieee80211_tx_handler ieee80211_tx_handlers[] = |
| { |
| ieee80211_tx_h_check_assoc, |
| ieee80211_tx_h_sequence, |
| ieee80211_tx_h_ps_buf, |
| ieee80211_tx_h_select_key, |
| ieee80211_tx_h_michael_mic_add, |
| ieee80211_tx_h_fragment, |
| ieee80211_tx_h_tkip_encrypt, |
| ieee80211_tx_h_ccmp_encrypt, |
| ieee80211_tx_h_wep_encrypt, |
| ieee80211_tx_h_rate_ctrl, |
| ieee80211_tx_h_misc, |
| ieee80211_tx_h_load_stats, |
| NULL |
| }; |
| |
| /* actual transmit path */ |
| |
| /* |
| * deal with packet injection down monitor interface |
| * with Radiotap Header -- only called for monitor mode interface |
| */ |
| static ieee80211_txrx_result |
| __ieee80211_parse_tx_radiotap( |
| struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, struct ieee80211_tx_control *control) |
| { |
| /* |
| * this is the moment to interpret and discard the radiotap header that |
| * must be at the start of the packet injected in Monitor mode |
| * |
| * Need to take some care with endian-ness since radiotap |
| * args are little-endian |
| */ |
| |
| struct ieee80211_radiotap_iterator iterator; |
| struct ieee80211_radiotap_header *rthdr = |
| (struct ieee80211_radiotap_header *) skb->data; |
| struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode; |
| int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); |
| |
| /* |
| * default control situation for all injected packets |
| * FIXME: this does not suit all usage cases, expand to allow control |
| */ |
| |
| control->retry_limit = 1; /* no retry */ |
| control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| IEEE80211_TXCTL_USE_CTS_PROTECT); |
| control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT | |
| IEEE80211_TXCTL_NO_ACK; |
| control->antenna_sel_tx = 0; /* default to default antenna */ |
| |
| /* |
| * for every radiotap entry that is present |
| * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| * entries present, or -EINVAL on error) |
| */ |
| |
| while (!ret) { |
| int i, target_rate; |
| |
| ret = ieee80211_radiotap_iterator_next(&iterator); |
| |
| if (ret) |
| continue; |
| |
| /* see if this argument is something we can use */ |
| switch (iterator.this_arg_index) { |
| /* |
| * You must take care when dereferencing iterator.this_arg |
| * for multibyte types... the pointer is not aligned. Use |
| * get_unaligned((type *)iterator.this_arg) to dereference |
| * iterator.this_arg for type "type" safely on all arches. |
| */ |
| case IEEE80211_RADIOTAP_RATE: |
| /* |
| * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps |
| * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps |
| */ |
| target_rate = (*iterator.this_arg) * 5; |
| for (i = 0; i < mode->num_rates; i++) { |
| struct ieee80211_rate *r = &mode->rates[i]; |
| |
| if (r->rate > target_rate) |
| continue; |
| |
| control->rate = r; |
| |
| if (r->flags & IEEE80211_RATE_PREAMBLE2) |
| control->tx_rate = r->val2; |
| else |
| control->tx_rate = r->val; |
| |
| /* end on exact match */ |
| if (r->rate == target_rate) |
| i = mode->num_rates; |
| } |
| break; |
| |
| case IEEE80211_RADIOTAP_ANTENNA: |
| /* |
| * radiotap uses 0 for 1st ant, mac80211 is 1 for |
| * 1st ant |
| */ |
| control->antenna_sel_tx = (*iterator.this_arg) + 1; |
| break; |
| |
| case IEEE80211_RADIOTAP_DBM_TX_POWER: |
| control->power_level = *iterator.this_arg; |
| break; |
| |
| case IEEE80211_RADIOTAP_FLAGS: |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| /* |
| * this indicates that the skb we have been |
| * handed has the 32-bit FCS CRC at the end... |
| * we should react to that by snipping it off |
| * because it will be recomputed and added |
| * on transmission |
| */ |
| if (skb->len < (iterator.max_length + FCS_LEN)) |
| return TXRX_DROP; |
| |
| skb_trim(skb, skb->len - FCS_LEN); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| return TXRX_DROP; |
| |
| /* |
| * remove the radiotap header |
| * iterator->max_length was sanity-checked against |
| * skb->len by iterator init |
| */ |
| skb_pull(skb, iterator.max_length); |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result inline |
| __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, |
| struct net_device *dev, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_sub_if_data *sdata; |
| ieee80211_txrx_result res = TXRX_CONTINUE; |
| |
| int hdrlen; |
| |
| memset(tx, 0, sizeof(*tx)); |
| tx->skb = skb; |
| tx->dev = dev; /* use original interface */ |
| tx->local = local; |
| tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| /* |
| * set defaults for things that can be set by |
| * injected radiotap headers |
| */ |
| control->power_level = local->hw.conf.power_level; |
| control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| |
| /* process and remove the injection radiotap header */ |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { |
| if (__ieee80211_parse_tx_radiotap(tx, skb, control) == |
| TXRX_DROP) { |
| return TXRX_DROP; |
| } |
| /* |
| * we removed the radiotap header after this point, |
| * we filled control with what we could use |
| * set to the actual ieee header now |
| */ |
| hdr = (struct ieee80211_hdr *) skb->data; |
| res = TXRX_QUEUED; /* indication it was monitor packet */ |
| } |
| |
| tx->sta = sta_info_get(local, hdr->addr1); |
| tx->fc = le16_to_cpu(hdr->frame_control); |
| tx->u.tx.control = control; |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| tx->flags &= ~IEEE80211_TXRXD_TXUNICAST; |
| control->flags |= IEEE80211_TXCTL_NO_ACK; |
| } else { |
| tx->flags |= IEEE80211_TXRXD_TXUNICAST; |
| control->flags &= ~IEEE80211_TXCTL_NO_ACK; |
| } |
| if (local->fragmentation_threshold < IEEE80211_MAX_FRAG_THRESHOLD && |
| (tx->flags & IEEE80211_TXRXD_TXUNICAST) && |
| skb->len + FCS_LEN > local->fragmentation_threshold && |
| !local->ops->set_frag_threshold) |
| tx->flags |= IEEE80211_TXRXD_FRAGMENTED; |
| else |
| tx->flags &= ~IEEE80211_TXRXD_FRAGMENTED; |
| if (!tx->sta) |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| else if (tx->sta->clear_dst_mask) { |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| tx->sta->clear_dst_mask = 0; |
| } |
| hdrlen = ieee80211_get_hdrlen(tx->fc); |
| if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { |
| u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; |
| tx->ethertype = (pos[0] << 8) | pos[1]; |
| } |
| control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; |
| |
| return res; |
| } |
| |
| /* Device in tx->dev has a reference added; use dev_put(tx->dev) when |
| * finished with it. */ |
| static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, |
| struct net_device *mdev, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct net_device *dev; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| dev = dev_get_by_index(&init_net, pkt_data->ifindex); |
| if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { |
| dev_put(dev); |
| dev = NULL; |
| } |
| if (unlikely(!dev)) |
| return -ENODEV; |
| __ieee80211_tx_prepare(tx, skb, dev, control); |
| return 0; |
| } |
| |
| static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, |
| struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_tx_control *control = tx->u.tx.control; |
| int ret, i; |
| |
| if (!ieee80211_qdisc_installed(local->mdev) && |
| __ieee80211_queue_stopped(local, 0)) { |
| netif_stop_queue(local->mdev); |
| return IEEE80211_TX_AGAIN; |
| } |
| if (skb) { |
| ieee80211_dump_frame(wiphy_name(local->hw.wiphy), |
| "TX to low-level driver", skb); |
| ret = local->ops->tx(local_to_hw(local), skb, control); |
| if (ret) |
| return IEEE80211_TX_AGAIN; |
| local->mdev->trans_start = jiffies; |
| ieee80211_led_tx(local, 1); |
| } |
| if (tx->u.tx.extra_frag) { |
| control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| IEEE80211_TXCTL_USE_CTS_PROTECT | |
| IEEE80211_TXCTL_CLEAR_DST_MASK | |
| IEEE80211_TXCTL_FIRST_FRAGMENT); |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| if (!tx->u.tx.extra_frag[i]) |
| continue; |
| if (__ieee80211_queue_stopped(local, control->queue)) |
| return IEEE80211_TX_FRAG_AGAIN; |
| if (i == tx->u.tx.num_extra_frag) { |
| control->tx_rate = tx->u.tx.last_frag_hwrate; |
| control->rate = tx->u.tx.last_frag_rate; |
| if (tx->flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG) |
| control->flags |= |
| IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| else |
| control->flags &= |
| ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| } |
| |
| ieee80211_dump_frame(wiphy_name(local->hw.wiphy), |
| "TX to low-level driver", |
| tx->u.tx.extra_frag[i]); |
| ret = local->ops->tx(local_to_hw(local), |
| tx->u.tx.extra_frag[i], |
| control); |
| if (ret) |
| return IEEE80211_TX_FRAG_AGAIN; |
| local->mdev->trans_start = jiffies; |
| ieee80211_led_tx(local, 1); |
| tx->u.tx.extra_frag[i] = NULL; |
| } |
| kfree(tx->u.tx.extra_frag); |
| tx->u.tx.extra_frag = NULL; |
| } |
| return IEEE80211_TX_OK; |
| } |
| |
| static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, |
| struct ieee80211_tx_control *control, int mgmt) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct sta_info *sta; |
| ieee80211_tx_handler *handler; |
| struct ieee80211_txrx_data tx; |
| ieee80211_txrx_result res = TXRX_DROP, res_prepare; |
| int ret, i; |
| |
| WARN_ON(__ieee80211_queue_pending(local, control->queue)); |
| |
| if (unlikely(skb->len < 10)) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); |
| |
| if (res_prepare == TXRX_DROP) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| /* |
| * key references are protected using RCU and this requires that |
| * we are in a read-site RCU section during receive processing |
| */ |
| rcu_read_lock(); |
| |
| sta = tx.sta; |
| tx.u.tx.mgmt_interface = mgmt; |
| tx.u.tx.mode = local->hw.conf.mode; |
| |
| if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */ |
| res = TXRX_CONTINUE; |
| } else { |
| for (handler = local->tx_handlers; *handler != NULL; |
| handler++) { |
| res = (*handler)(&tx); |
| if (res != TXRX_CONTINUE) |
| break; |
| } |
| } |
| |
| skb = tx.skb; /* handlers are allowed to change skb */ |
| |
| if (sta) |
| sta_info_put(sta); |
| |
| if (unlikely(res == TXRX_DROP)) { |
| I802_DEBUG_INC(local->tx_handlers_drop); |
| goto drop; |
| } |
| |
| if (unlikely(res == TXRX_QUEUED)) { |
| I802_DEBUG_INC(local->tx_handlers_queued); |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| if (tx.u.tx.extra_frag) { |
| for (i = 0; i < tx.u.tx.num_extra_frag; i++) { |
| int next_len, dur; |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) |
| tx.u.tx.extra_frag[i]->data; |
| |
| if (i + 1 < tx.u.tx.num_extra_frag) { |
| next_len = tx.u.tx.extra_frag[i + 1]->len; |
| } else { |
| next_len = 0; |
| tx.u.tx.rate = tx.u.tx.last_frag_rate; |
| tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val; |
| } |
| dur = ieee80211_duration(&tx, 0, next_len); |
| hdr->duration_id = cpu_to_le16(dur); |
| } |
| } |
| |
| retry: |
| ret = __ieee80211_tx(local, skb, &tx); |
| if (ret) { |
| struct ieee80211_tx_stored_packet *store = |
| &local->pending_packet[control->queue]; |
| |
| if (ret == IEEE80211_TX_FRAG_AGAIN) |
| skb = NULL; |
| set_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[control->queue]); |
| smp_mb(); |
| /* When the driver gets out of buffers during sending of |
| * fragments and calls ieee80211_stop_queue, there is |
| * a small window between IEEE80211_LINK_STATE_XOFF and |
| * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer |
| * gets available in that window (i.e. driver calls |
| * ieee80211_wake_queue), we would end up with ieee80211_tx |
| * called with IEEE80211_LINK_STATE_PENDING. Prevent this by |
| * continuing transmitting here when that situation is |
| * possible to have happened. */ |
| if (!__ieee80211_queue_stopped(local, control->queue)) { |
| clear_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[control->queue]); |
| goto retry; |
| } |
| memcpy(&store->control, control, |
| sizeof(struct ieee80211_tx_control)); |
| store->skb = skb; |
| store->extra_frag = tx.u.tx.extra_frag; |
| store->num_extra_frag = tx.u.tx.num_extra_frag; |
| store->last_frag_hwrate = tx.u.tx.last_frag_hwrate; |
| store->last_frag_rate = tx.u.tx.last_frag_rate; |
| store->last_frag_rate_ctrl_probe = |
| !!(tx.flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG); |
| } |
| rcu_read_unlock(); |
| return 0; |
| |
| drop: |
| if (skb) |
| dev_kfree_skb(skb); |
| for (i = 0; i < tx.u.tx.num_extra_frag; i++) |
| if (tx.u.tx.extra_frag[i]) |
| dev_kfree_skb(tx.u.tx.extra_frag[i]); |
| kfree(tx.u.tx.extra_frag); |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* device xmit handlers */ |
| |
| int ieee80211_master_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_tx_control control; |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct net_device *odev = NULL; |
| struct ieee80211_sub_if_data *osdata; |
| int headroom; |
| int ret; |
| |
| /* |
| * copy control out of the skb so other people can use skb->cb |
| */ |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(&control, 0, sizeof(struct ieee80211_tx_control)); |
| |
| if (pkt_data->ifindex) |
| odev = dev_get_by_index(&init_net, pkt_data->ifindex); |
| if (unlikely(odev && !is_ieee80211_device(odev, dev))) { |
| dev_put(odev); |
| odev = NULL; |
| } |
| if (unlikely(!odev)) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: Discarded packet with nonexistent " |
| "originating device\n", dev->name); |
| #endif |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| osdata = IEEE80211_DEV_TO_SUB_IF(odev); |
| |
| headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; |
| if (skb_headroom(skb) < headroom) { |
| if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| dev_put(odev); |
| return 0; |
| } |
| } |
| |
| control.ifindex = odev->ifindex; |
| control.type = osdata->type; |
| if (pkt_data->flags & IEEE80211_TXPD_REQ_TX_STATUS) |
| control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; |
| if (pkt_data->flags & IEEE80211_TXPD_DO_NOT_ENCRYPT) |
| control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; |
| if (pkt_data->flags & IEEE80211_TXPD_REQUEUE) |
| control.flags |= IEEE80211_TXCTL_REQUEUE; |
| control.queue = pkt_data->queue; |
| |
| ret = ieee80211_tx(odev, skb, &control, |
| control.type == IEEE80211_IF_TYPE_MGMT); |
| dev_put(odev); |
| |
| return ret; |
| } |
| |
| int ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_radiotap_header *prthdr = |
| (struct ieee80211_radiotap_header *)skb->data; |
| u16 len_rthdr; |
| |
| /* check for not even having the fixed radiotap header part */ |
| if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) |
| goto fail; /* too short to be possibly valid */ |
| |
| /* is it a header version we can trust to find length from? */ |
| if (unlikely(prthdr->it_version)) |
| goto fail; /* only version 0 is supported */ |
| |
| /* then there must be a radiotap header with a length we can use */ |
| len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| |
| /* does the skb contain enough to deliver on the alleged length? */ |
| if (unlikely(skb->len < len_rthdr)) |
| goto fail; /* skb too short for claimed rt header extent */ |
| |
| skb->dev = local->mdev; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(pkt_data, 0, sizeof(*pkt_data)); |
| /* needed because we set skb device to master */ |
| pkt_data->ifindex = dev->ifindex; |
| |
| pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; |
| |
| /* |
| * fix up the pointers accounting for the radiotap |
| * header still being in there. We are being given |
| * a precooked IEEE80211 header so no need for |
| * normal processing |
| */ |
| skb_set_mac_header(skb, len_rthdr); |
| /* |
| * these are just fixed to the end of the rt area since we |
| * don't have any better information and at this point, nobody cares |
| */ |
| skb_set_network_header(skb, len_rthdr); |
| skb_set_transport_header(skb, len_rthdr); |
| |
| /* pass the radiotap header up to the next stage intact */ |
| dev_queue_xmit(skb); |
| return NETDEV_TX_OK; |
| |
| fail: |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; /* meaning, we dealt with the skb */ |
| } |
| |
| /** |
| * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type |
| * subinterfaces (wlan#, WDS, and VLAN interfaces) |
| * @skb: packet to be sent |
| * @dev: incoming interface |
| * |
| * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will |
| * not be freed, and caller is responsible for either retrying later or freeing |
| * skb). |
| * |
| * This function takes in an Ethernet header and encapsulates it with suitable |
| * IEEE 802.11 header based on which interface the packet is coming in. The |
| * encapsulated packet will then be passed to master interface, wlan#.11, for |
| * transmission (through low-level driver). |
| */ |
| int ieee80211_subif_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_sub_if_data *sdata; |
| int ret = 1, head_need; |
| u16 ethertype, hdrlen, fc; |
| struct ieee80211_hdr hdr; |
| const u8 *encaps_data; |
| int encaps_len, skip_header_bytes; |
| int nh_pos, h_pos; |
| struct sta_info *sta; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| if (unlikely(skb->len < ETH_HLEN)) { |
| printk(KERN_DEBUG "%s: short skb (len=%d)\n", |
| dev->name, skb->len); |
| ret = 0; |
| goto fail; |
| } |
| |
| nh_pos = skb_network_header(skb) - skb->data; |
| h_pos = skb_transport_header(skb) - skb->data; |
| |
| /* convert Ethernet header to proper 802.11 header (based on |
| * operation mode) */ |
| ethertype = (skb->data[12] << 8) | skb->data[13]; |
| /* TODO: handling for 802.1x authorized/unauthorized port */ |
| fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; |
| |
| switch (sdata->type) { |
| case IEEE80211_IF_TYPE_AP: |
| case IEEE80211_IF_TYPE_VLAN: |
| fc |= IEEE80211_FCTL_FROMDS; |
| /* DA BSSID SA */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 24; |
| break; |
| case IEEE80211_IF_TYPE_WDS: |
| fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| break; |
| case IEEE80211_IF_TYPE_STA: |
| fc |= IEEE80211_FCTL_TODS; |
| /* BSSID SA DA */ |
| memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| hdrlen = 24; |
| break; |
| case IEEE80211_IF_TYPE_IBSS: |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); |
| hdrlen = 24; |
| break; |
| default: |
| ret = 0; |
| goto fail; |
| } |
| |
| /* receiver is QoS enabled, use a QoS type frame */ |
| sta = sta_info_get(local, hdr.addr1); |
| if (sta) { |
| if (sta->flags & WLAN_STA_WME) { |
| fc |= IEEE80211_STYPE_QOS_DATA; |
| hdrlen += 2; |
| } |
| sta_info_put(sta); |
| } |
| |
| hdr.frame_control = cpu_to_le16(fc); |
| hdr.duration_id = 0; |
| hdr.seq_ctrl = 0; |
| |
| skip_header_bytes = ETH_HLEN; |
| if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| encaps_data = bridge_tunnel_header; |
| encaps_len = sizeof(bridge_tunnel_header); |
| skip_header_bytes -= 2; |
| } else if (ethertype >= 0x600) { |
| encaps_data = rfc1042_header; |
| encaps_len = sizeof(rfc1042_header); |
| skip_header_bytes -= 2; |
| } else { |
| encaps_data = NULL; |
| encaps_len = 0; |
| } |
| |
| skb_pull(skb, skip_header_bytes); |
| nh_pos -= skip_header_bytes; |
| h_pos -= skip_header_bytes; |
| |
| /* TODO: implement support for fragments so that there is no need to |
| * reallocate and copy payload; it might be enough to support one |
| * extra fragment that would be copied in the beginning of the frame |
| * data.. anyway, it would be nice to include this into skb structure |
| * somehow |
| * |
| * There are few options for this: |
| * use skb->cb as an extra space for 802.11 header |
| * allocate new buffer if not enough headroom |
| * make sure that there is enough headroom in every skb by increasing |
| * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and |
| * alloc_skb() (net/core/skbuff.c) |
| */ |
| head_need = hdrlen + encaps_len + local->tx_headroom; |
| head_need -= skb_headroom(skb); |
| |
| /* We are going to modify skb data, so make a copy of it if happens to |
| * be cloned. This could happen, e.g., with Linux bridge code passing |
| * us broadcast frames. */ |
| |
| if (head_need > 0 || skb_cloned(skb)) { |
| #if 0 |
| printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " |
| "of headroom\n", dev->name, head_need); |
| #endif |
| |
| if (skb_cloned(skb)) |
| I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| else |
| I802_DEBUG_INC(local->tx_expand_skb_head); |
| /* Since we have to reallocate the buffer, make sure that there |
| * is enough room for possible WEP IV/ICV and TKIP (8 bytes |
| * before payload and 12 after). */ |
| if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), |
| 12, GFP_ATOMIC)) { |
| printk(KERN_DEBUG "%s: failed to reallocate TX buffer" |
| "\n", dev->name); |
| goto fail; |
| } |
| } |
| |
| if (encaps_data) { |
| memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| nh_pos += encaps_len; |
| h_pos += encaps_len; |
| } |
| |
| if (fc & IEEE80211_STYPE_QOS_DATA) { |
| __le16 *qos_control; |
| |
| qos_control = (__le16*) skb_push(skb, 2); |
| memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); |
| /* |
| * Maybe we could actually set some fields here, for now just |
| * initialise to zero to indicate no special operation. |
| */ |
| *qos_control = 0; |
| } else |
| memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| |
| nh_pos += hdrlen; |
| h_pos += hdrlen; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| pkt_data->ifindex = dev->ifindex; |
| if (sdata->type == IEEE80211_IF_TYPE_MGMT) |
| pkt_data->flags |= IEEE80211_TXPD_MGMT_IFACE; |
| |
| skb->dev = local->mdev; |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| |
| /* Update skb pointers to various headers since this modified frame |
| * is going to go through Linux networking code that may potentially |
| * need things like pointer to IP header. */ |
| skb_set_mac_header(skb, 0); |
| skb_set_network_header(skb, nh_pos); |
| skb_set_transport_header(skb, h_pos); |
| |
| dev->trans_start = jiffies; |
| dev_queue_xmit(skb); |
| |
| return 0; |
| |
| fail: |
| if (!ret) |
| dev_kfree_skb(skb); |
| |
| return ret; |
| } |
| |
| /* |
| * This is the transmit routine for the 802.11 type interfaces |
| * called by upper layers of the linux networking |
| * stack when it has a frame to transmit |
| */ |
| int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_hdr *hdr; |
| u16 fc; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| if (skb->len < 10) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| if (skb_headroom(skb) < sdata->local->tx_headroom) { |
| if (pskb_expand_head(skb, sdata->local->tx_headroom, |
| 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| } |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| pkt_data->ifindex = sdata->dev->ifindex; |
| if (sdata->type == IEEE80211_IF_TYPE_MGMT) |
| pkt_data->flags |= IEEE80211_TXPD_MGMT_IFACE; |
| |
| skb->priority = 20; /* use hardcoded priority for mgmt TX queue */ |
| skb->dev = sdata->local->mdev; |
| |
| /* |
| * We're using the protocol field of the the frame control header |
| * to request TX callback for hostapd. BIT(1) is checked. |
| */ |
| if ((fc & BIT(1)) == BIT(1)) { |
| pkt_data->flags |= IEEE80211_TXPD_REQ_TX_STATUS; |
| fc &= ~BIT(1); |
| hdr->frame_control = cpu_to_le16(fc); |
| } |
| |
| if (!(fc & IEEE80211_FCTL_PROTECTED)) |
| pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; |
| |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| |
| dev_queue_xmit(skb); |
| |
| return 0; |
| } |
| |
| /* helper functions for pending packets for when queues are stopped */ |
| |
| void ieee80211_clear_tx_pending(struct ieee80211_local *local) |
| { |
| int i, j; |
| struct ieee80211_tx_stored_packet *store; |
| |
| for (i = 0; i < local->hw.queues; i++) { |
| if (!__ieee80211_queue_pending(local, i)) |
| continue; |
| store = &local->pending_packet[i]; |
| kfree_skb(store->skb); |
| for (j = 0; j < store->num_extra_frag; j++) |
| kfree_skb(store->extra_frag[j]); |
| kfree(store->extra_frag); |
| clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); |
| } |
| } |
| |
| void ieee80211_tx_pending(unsigned long data) |
| { |
| struct ieee80211_local *local = (struct ieee80211_local *)data; |
| struct net_device *dev = local->mdev; |
| struct ieee80211_tx_stored_packet *store; |
| struct ieee80211_txrx_data tx; |
| int i, ret, reschedule = 0; |
| |
| netif_tx_lock_bh(dev); |
| for (i = 0; i < local->hw.queues; i++) { |
| if (__ieee80211_queue_stopped(local, i)) |
| continue; |
| if (!__ieee80211_queue_pending(local, i)) { |
| reschedule = 1; |
| continue; |
| } |
| store = &local->pending_packet[i]; |
| tx.u.tx.control = &store->control; |
| tx.u.tx.extra_frag = store->extra_frag; |
| tx.u.tx.num_extra_frag = store->num_extra_frag; |
| tx.u.tx.last_frag_hwrate = store->last_frag_hwrate; |
| tx.u.tx.last_frag_rate = store->last_frag_rate; |
| tx.flags = 0; |
| if (store->last_frag_rate_ctrl_probe) |
| tx.flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; |
| ret = __ieee80211_tx(local, store->skb, &tx); |
| if (ret) { |
| if (ret == IEEE80211_TX_FRAG_AGAIN) |
| store->skb = NULL; |
| } else { |
| clear_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[i]); |
| reschedule = 1; |
| } |
| } |
| netif_tx_unlock_bh(dev); |
| if (reschedule) { |
| if (!ieee80211_qdisc_installed(dev)) { |
| if (!__ieee80211_queue_stopped(local, 0)) |
| netif_wake_queue(dev); |
| } else |
| netif_schedule(dev); |
| } |
| } |
| |
| /* functions for drivers to get certain frames */ |
| |
| static void ieee80211_beacon_add_tim(struct ieee80211_local *local, |
| struct ieee80211_if_ap *bss, |
| struct sk_buff *skb) |
| { |
| u8 *pos, *tim; |
| int aid0 = 0; |
| int i, have_bits = 0, n1, n2; |
| |
| /* Generate bitmap for TIM only if there are any STAs in power save |
| * mode. */ |
| read_lock_bh(&local->sta_lock); |
| if (atomic_read(&bss->num_sta_ps) > 0) |
| /* in the hope that this is faster than |
| * checking byte-for-byte */ |
| have_bits = !bitmap_empty((unsigned long*)bss->tim, |
| IEEE80211_MAX_AID+1); |
| |
| if (bss->dtim_count == 0) |
| bss->dtim_count = bss->dtim_period - 1; |
| else |
| bss->dtim_count--; |
| |
| tim = pos = (u8 *) skb_put(skb, 6); |
| *pos++ = WLAN_EID_TIM; |
| *pos++ = 4; |
| *pos++ = bss->dtim_count; |
| *pos++ = bss->dtim_period; |
| |
| if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) |
| aid0 = 1; |
| |
| if (have_bits) { |
| /* Find largest even number N1 so that bits numbered 1 through |
| * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits |
| * (N2 + 1) x 8 through 2007 are 0. */ |
| n1 = 0; |
| for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { |
| if (bss->tim[i]) { |
| n1 = i & 0xfe; |
| break; |
| } |
| } |
| n2 = n1; |
| for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { |
| if (bss->tim[i]) { |
| n2 = i; |
| break; |
| } |
| } |
| |
| /* Bitmap control */ |
| *pos++ = n1 | aid0; |
| /* Part Virt Bitmap */ |
| memcpy(pos, bss->tim + n1, n2 - n1 + 1); |
| |
| tim[1] = n2 - n1 + 4; |
| skb_put(skb, n2 - n1); |
| } else { |
| *pos++ = aid0; /* Bitmap control */ |
| *pos++ = 0; /* Part Virt Bitmap */ |
| } |
| read_unlock_bh(&local->sta_lock); |
| } |
| |
| struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb; |
| struct net_device *bdev; |
| struct ieee80211_sub_if_data *sdata = NULL; |
| struct ieee80211_if_ap *ap = NULL; |
| struct ieee80211_rate *rate; |
| struct rate_control_extra extra; |
| u8 *b_head, *b_tail; |
| int bh_len, bt_len; |
| |
| bdev = dev_get_by_index(&init_net, if_id); |
| if (bdev) { |
| sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| ap = &sdata->u.ap; |
| dev_put(bdev); |
| } |
| |
| if (!ap || sdata->type != IEEE80211_IF_TYPE_AP || |
| !ap->beacon_head) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "no beacon data avail for idx=%d " |
| "(%s)\n", if_id, bdev ? bdev->name : "N/A"); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| return NULL; |
| } |
| |
| /* Assume we are generating the normal beacon locally */ |
| b_head = ap->beacon_head; |
| b_tail = ap->beacon_tail; |
| bh_len = ap->beacon_head_len; |
| bt_len = ap->beacon_tail_len; |
| |
| skb = dev_alloc_skb(local->tx_headroom + |
| bh_len + bt_len + 256 /* maximum TIM len */); |
| if (!skb) |
| return NULL; |
| |
| skb_reserve(skb, local->tx_headroom); |
| memcpy(skb_put(skb, bh_len), b_head, bh_len); |
| |
| ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data); |
| |
| ieee80211_beacon_add_tim(local, ap, skb); |
| |
| if (b_tail) { |
| memcpy(skb_put(skb, bt_len), b_tail, bt_len); |
| } |
| |
| if (control) { |
| memset(&extra, 0, sizeof(extra)); |
| extra.mode = local->oper_hw_mode; |
| |
| rate = rate_control_get_rate(local, local->mdev, skb, &extra); |
| if (!rate) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " |
| "found\n", wiphy_name(local->hw.wiphy)); |
| } |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| |
| control->tx_rate = |
| ((sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) && |
| (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? |
| rate->val2 : rate->val; |
| control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| control->power_level = local->hw.conf.power_level; |
| control->flags |= IEEE80211_TXCTL_NO_ACK; |
| control->retry_limit = 1; |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| } |
| |
| ap->num_beacons++; |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_beacon_get); |
| |
| void ieee80211_rts_get(struct ieee80211_hw *hw, int if_id, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_rts *rts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| u16 fctl; |
| |
| fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; |
| rts->frame_control = cpu_to_le16(fctl); |
| rts->duration = ieee80211_rts_duration(hw, if_id, frame_len, frame_txctl); |
| memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); |
| memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); |
| } |
| EXPORT_SYMBOL(ieee80211_rts_get); |
| |
| void ieee80211_ctstoself_get(struct ieee80211_hw *hw, int if_id, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_cts *cts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| u16 fctl; |
| |
| fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; |
| cts->frame_control = cpu_to_le16(fctl); |
| cts->duration = ieee80211_ctstoself_duration(hw, if_id, frame_len, frame_txctl); |
| memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); |
| } |
| EXPORT_SYMBOL(ieee80211_ctstoself_get); |
| |
| struct sk_buff * |
| ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb; |
| struct sta_info *sta; |
| ieee80211_tx_handler *handler; |
| struct ieee80211_txrx_data tx; |
| ieee80211_txrx_result res = TXRX_DROP; |
| struct net_device *bdev; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_if_ap *bss = NULL; |
| |
| bdev = dev_get_by_index(&init_net, if_id); |
| if (bdev) { |
| sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| bss = &sdata->u.ap; |
| dev_put(bdev); |
| } |
| if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head) |
| return NULL; |
| |
| if (bss->dtim_count != 0) |
| return NULL; /* send buffered bc/mc only after DTIM beacon */ |
| memset(control, 0, sizeof(*control)); |
| while (1) { |
| skb = skb_dequeue(&bss->ps_bc_buf); |
| if (!skb) |
| return NULL; |
| local->total_ps_buffered--; |
| |
| if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) skb->data; |
| /* more buffered multicast/broadcast frames ==> set |
| * MoreData flag in IEEE 802.11 header to inform PS |
| * STAs */ |
| hdr->frame_control |= |
| cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| } |
| |
| if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0) |
| break; |
| dev_kfree_skb_any(skb); |
| } |
| sta = tx.sta; |
| tx.flags |= IEEE80211_TXRXD_TXPS_BUFFERED; |
| tx.u.tx.mode = local->hw.conf.mode; |
| |
| for (handler = local->tx_handlers; *handler != NULL; handler++) { |
| res = (*handler)(&tx); |
| if (res == TXRX_DROP || res == TXRX_QUEUED) |
| break; |
| } |
| dev_put(tx.dev); |
| skb = tx.skb; /* handlers are allowed to change skb */ |
| |
| if (res == TXRX_DROP) { |
| I802_DEBUG_INC(local->tx_handlers_drop); |
| dev_kfree_skb(skb); |
| skb = NULL; |
| } else if (res == TXRX_QUEUED) { |
| I802_DEBUG_INC(local->tx_handlers_queued); |
| skb = NULL; |
| } |
| |
| if (sta) |
| sta_info_put(sta); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_get_buffered_bc); |