| /* arch/arm/mach-msm/memory.c |
| * |
| * Copyright (C) 2007 Google, Inc. |
| * Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved. |
| * |
| * This software is licensed under the terms of the GNU General Public |
| * License version 2, as published by the Free Software Foundation, and |
| * may be copied, distributed, and modified under those terms. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/mm_types.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/memory_alloc.h> |
| #include <linux/memblock.h> |
| #include <asm/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/mach/map.h> |
| #include <asm/cacheflush.h> |
| #include <asm/setup.h> |
| #include <asm/mach-types.h> |
| #include <mach/msm_memtypes.h> |
| #include <linux/hardirq.h> |
| #if defined(CONFIG_MSM_NPA_REMOTE) |
| #include "npa_remote.h" |
| #include <linux/completion.h> |
| #include <linux/err.h> |
| #endif |
| #include <linux/android_pmem.h> |
| #include <mach/msm_iomap.h> |
| #include <mach/socinfo.h> |
| #include <../../mm/mm.h> |
| |
| int arch_io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t prot) |
| { |
| unsigned long pfn_addr = pfn << PAGE_SHIFT; |
| if ((pfn_addr >= 0x88000000) && (pfn_addr < 0xD0000000)) { |
| prot = pgprot_device(prot); |
| pr_debug("remapping device %lx\n", prot); |
| } |
| return remap_pfn_range(vma, addr, pfn, size, prot); |
| } |
| |
| void *strongly_ordered_page; |
| char strongly_ordered_mem[PAGE_SIZE*2-4]; |
| |
| /* |
| * The trick of making the zero page strongly ordered no longer |
| * works. We no longer want to make a second alias to the zero |
| * page that is strongly ordered. Manually changing the bits |
| * in the page table for the zero page would have side effects |
| * elsewhere that aren't necessary. The result is that we need |
| * to get a page from else where. Given when the first call |
| * to write_to_strongly_ordered_memory occurs, using bootmem |
| * to get a page makes the most sense. |
| */ |
| void map_page_strongly_ordered(void) |
| { |
| #if defined(CONFIG_ARCH_MSM7X27) && !defined(CONFIG_ARCH_MSM7X27A) |
| long unsigned int phys; |
| struct map_desc map; |
| |
| if (strongly_ordered_page) |
| return; |
| |
| strongly_ordered_page = (void*)PFN_ALIGN((int)&strongly_ordered_mem); |
| phys = __pa(strongly_ordered_page); |
| |
| map.pfn = __phys_to_pfn(phys); |
| map.virtual = MSM_STRONGLY_ORDERED_PAGE; |
| map.length = PAGE_SIZE; |
| map.type = MT_DEVICE_STRONGLY_ORDERED; |
| create_mapping(&map); |
| |
| printk(KERN_ALERT "Initialized strongly ordered page successfully\n"); |
| #endif |
| } |
| EXPORT_SYMBOL(map_page_strongly_ordered); |
| |
| void write_to_strongly_ordered_memory(void) |
| { |
| #if defined(CONFIG_ARCH_MSM7X27) && !defined(CONFIG_ARCH_MSM7X27A) |
| if (!strongly_ordered_page) { |
| if (!in_interrupt()) |
| map_page_strongly_ordered(); |
| else { |
| printk(KERN_ALERT "Cannot map strongly ordered page in " |
| "Interrupt Context\n"); |
| /* capture it here before the allocation fails later */ |
| BUG(); |
| } |
| } |
| *(int *)MSM_STRONGLY_ORDERED_PAGE = 0; |
| #endif |
| } |
| EXPORT_SYMBOL(write_to_strongly_ordered_memory); |
| |
| void flush_axi_bus_buffer(void) |
| { |
| #if defined(CONFIG_ARCH_MSM7X27) && !defined(CONFIG_ARCH_MSM7X27A) |
| __asm__ __volatile__ ("mcr p15, 0, %0, c7, c10, 5" \ |
| : : "r" (0) : "memory"); |
| write_to_strongly_ordered_memory(); |
| #endif |
| } |
| |
| #define CACHE_LINE_SIZE 32 |
| |
| /* These cache related routines make the assumption that the associated |
| * physical memory is contiguous. They will operate on all (L1 |
| * and L2 if present) caches. |
| */ |
| void clean_and_invalidate_caches(unsigned long vstart, |
| unsigned long length, unsigned long pstart) |
| { |
| unsigned long vaddr; |
| |
| for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE) |
| asm ("mcr p15, 0, %0, c7, c14, 1" : : "r" (vaddr)); |
| #ifdef CONFIG_OUTER_CACHE |
| outer_flush_range(pstart, pstart + length); |
| #endif |
| asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); |
| asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0)); |
| |
| flush_axi_bus_buffer(); |
| } |
| |
| void clean_caches(unsigned long vstart, |
| unsigned long length, unsigned long pstart) |
| { |
| unsigned long vaddr; |
| |
| for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE) |
| asm ("mcr p15, 0, %0, c7, c10, 1" : : "r" (vaddr)); |
| #ifdef CONFIG_OUTER_CACHE |
| outer_clean_range(pstart, pstart + length); |
| #endif |
| asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); |
| asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0)); |
| |
| flush_axi_bus_buffer(); |
| } |
| |
| void invalidate_caches(unsigned long vstart, |
| unsigned long length, unsigned long pstart) |
| { |
| unsigned long vaddr; |
| |
| for (vaddr = vstart; vaddr < vstart + length; vaddr += CACHE_LINE_SIZE) |
| asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (vaddr)); |
| #ifdef CONFIG_OUTER_CACHE |
| outer_inv_range(pstart, pstart + length); |
| #endif |
| asm ("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); |
| asm ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0)); |
| |
| flush_axi_bus_buffer(); |
| } |
| |
| void *alloc_bootmem_aligned(unsigned long size, unsigned long alignment) |
| { |
| void *unused_addr = NULL; |
| unsigned long addr, tmp_size, unused_size; |
| |
| /* Allocate maximum size needed, see where it ends up. |
| * Then free it -- in this path there are no other allocators |
| * so we can depend on getting the same address back |
| * when we allocate a smaller piece that is aligned |
| * at the end (if necessary) and the piece we really want, |
| * then free the unused first piece. |
| */ |
| |
| tmp_size = size + alignment - PAGE_SIZE; |
| addr = (unsigned long)alloc_bootmem(tmp_size); |
| free_bootmem(__pa(addr), tmp_size); |
| |
| unused_size = alignment - (addr % alignment); |
| if (unused_size) |
| unused_addr = alloc_bootmem(unused_size); |
| |
| addr = (unsigned long)alloc_bootmem(size); |
| if (unused_size) |
| free_bootmem(__pa(unused_addr), unused_size); |
| |
| return (void *)addr; |
| } |
| |
| int platform_physical_remove_pages(unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| return 1; |
| } |
| |
| int platform_physical_active_pages(unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| return 1; |
| } |
| |
| int platform_physical_low_power_pages(unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| return 1; |
| } |
| |
| |
| char *memtype_name[] = { |
| "SMI_KERNEL", |
| "SMI", |
| "EBI0", |
| "EBI1" |
| }; |
| |
| struct reserve_info *reserve_info; |
| |
| static void __init calculate_reserve_limits(void) |
| { |
| int i; |
| struct membank *mb; |
| int memtype; |
| struct memtype_reserve *mt; |
| |
| for (i = 0, mb = &meminfo.bank[0]; i < meminfo.nr_banks; i++, mb++) { |
| memtype = reserve_info->paddr_to_memtype(mb->start); |
| if (memtype == MEMTYPE_NONE) { |
| pr_warning("unknown memory type for bank at %lx\n", |
| (long unsigned int)mb->start); |
| continue; |
| } |
| mt = &reserve_info->memtype_reserve_table[memtype]; |
| mt->limit = max(mt->limit, mb->size); |
| } |
| } |
| |
| static void __init adjust_reserve_sizes(void) |
| { |
| int i; |
| struct memtype_reserve *mt; |
| |
| mt = &reserve_info->memtype_reserve_table[0]; |
| for (i = 0; i < MEMTYPE_MAX; i++, mt++) { |
| if (mt->flags & MEMTYPE_FLAGS_1M_ALIGN) |
| mt->size = (mt->size + SECTION_SIZE - 1) & SECTION_MASK; |
| if (mt->size > mt->limit) { |
| pr_warning("%lx size for %s too large, setting to %lx\n", |
| mt->size, memtype_name[i], mt->limit); |
| mt->size = mt->limit; |
| } |
| } |
| } |
| |
| static void __init reserve_memory_for_mempools(void) |
| { |
| int i, memtype, membank_type; |
| struct memtype_reserve *mt; |
| struct membank *mb; |
| int ret; |
| |
| mt = &reserve_info->memtype_reserve_table[0]; |
| for (memtype = 0; memtype < MEMTYPE_MAX; memtype++, mt++) { |
| if (mt->flags & MEMTYPE_FLAGS_FIXED || !mt->size) |
| continue; |
| |
| /* We know we will find a memory bank of the proper size |
| * as we have limited the size of the memory pool for |
| * each memory type to the size of the largest memory |
| * bank. Choose the memory bank with the highest physical |
| * address which is large enough, so that we will not |
| * take memory from the lowest memory bank which the kernel |
| * is in (and cause boot problems) and so that we might |
| * be able to steal memory that would otherwise become |
| * highmem. |
| */ |
| for (i = meminfo.nr_banks - 1; i >= 0; i--) { |
| mb = &meminfo.bank[i]; |
| membank_type = |
| reserve_info->paddr_to_memtype(mb->start); |
| if (memtype != membank_type) |
| continue; |
| if (mb->size >= mt->size) { |
| mt->start = mb->start + mb->size - mt->size; |
| ret = memblock_remove(mt->start, mt->size); |
| BUG_ON(ret); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void __init initialize_mempools(void) |
| { |
| struct mem_pool *mpool; |
| int memtype; |
| struct memtype_reserve *mt; |
| |
| mt = &reserve_info->memtype_reserve_table[0]; |
| for (memtype = 0; memtype < MEMTYPE_MAX; memtype++, mt++) { |
| if (!mt->size) |
| continue; |
| mpool = initialize_memory_pool(mt->start, mt->size, memtype); |
| if (!mpool) |
| pr_warning("failed to create %s mempool\n", |
| memtype_name[memtype]); |
| } |
| } |
| |
| void __init msm_reserve(void) |
| { |
| memory_pool_init(); |
| reserve_info->calculate_reserve_sizes(); |
| calculate_reserve_limits(); |
| adjust_reserve_sizes(); |
| reserve_memory_for_mempools(); |
| initialize_mempools(); |
| } |
| |
| static int get_ebi_memtype(void) |
| { |
| /* on 7x30 and 8x55 "EBI1 kernel PMEM" is really on EBI0 */ |
| if (cpu_is_msm7x30() || cpu_is_msm8x55()) |
| return MEMTYPE_EBI0; |
| return MEMTYPE_EBI1; |
| } |
| |
| void *allocate_contiguous_ebi(unsigned long size, |
| unsigned long align, int cached) |
| { |
| return allocate_contiguous_memory(size, get_ebi_memtype(), |
| align, cached); |
| } |
| EXPORT_SYMBOL(allocate_contiguous_ebi); |
| |
| unsigned long allocate_contiguous_ebi_nomap(unsigned long size, |
| unsigned long align) |
| { |
| return allocate_contiguous_memory_nomap(size, get_ebi_memtype(), align); |
| } |
| EXPORT_SYMBOL(allocate_contiguous_ebi_nomap); |
| |
| /* emulation of the deprecated pmem_kalloc and pmem_kfree */ |
| int32_t pmem_kalloc(const size_t size, const uint32_t flags) |
| { |
| int pmem_memtype; |
| int memtype = MEMTYPE_NONE; |
| int ebi1_memtype = MEMTYPE_EBI1; |
| unsigned int align; |
| int32_t paddr; |
| |
| switch (flags & PMEM_ALIGNMENT_MASK) { |
| case PMEM_ALIGNMENT_4K: |
| align = SZ_4K; |
| break; |
| case PMEM_ALIGNMENT_1M: |
| align = SZ_1M; |
| break; |
| default: |
| pr_alert("Invalid alignment %x\n", |
| (flags & PMEM_ALIGNMENT_MASK)); |
| return -EINVAL; |
| } |
| |
| /* on 7x30 and 8x55 "EBI1 kernel PMEM" is really on EBI0 */ |
| if (cpu_is_msm7x30() || cpu_is_msm8x55()) |
| ebi1_memtype = MEMTYPE_EBI0; |
| |
| pmem_memtype = flags & PMEM_MEMTYPE_MASK; |
| if (pmem_memtype == PMEM_MEMTYPE_EBI1) |
| memtype = ebi1_memtype; |
| else if (pmem_memtype == PMEM_MEMTYPE_SMI) |
| memtype = MEMTYPE_SMI_KERNEL; |
| else { |
| pr_alert("Invalid memory type %x\n", |
| flags & PMEM_MEMTYPE_MASK); |
| return -EINVAL; |
| } |
| |
| paddr = allocate_contiguous_memory_nomap(size, memtype, align); |
| if (!paddr && pmem_memtype == PMEM_MEMTYPE_SMI) |
| paddr = allocate_contiguous_memory_nomap(size, |
| ebi1_memtype, align); |
| |
| if (!paddr) |
| return -ENOMEM; |
| return paddr; |
| } |
| EXPORT_SYMBOL(pmem_kalloc); |
| |
| int pmem_kfree(const int32_t physaddr) |
| { |
| free_contiguous_memory_by_paddr(physaddr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(pmem_kfree); |