| /* |
| * linux/drivers/video/pxafb.c |
| * |
| * Copyright (C) 1999 Eric A. Thomas. |
| * Copyright (C) 2004 Jean-Frederic Clere. |
| * Copyright (C) 2004 Ian Campbell. |
| * Copyright (C) 2004 Jeff Lackey. |
| * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas |
| * which in turn is |
| * Based on acornfb.c Copyright (C) Russell King. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive for |
| * more details. |
| * |
| * Intel PXA250/210 LCD Controller Frame Buffer Driver |
| * |
| * Please direct your questions and comments on this driver to the following |
| * email address: |
| * |
| * linux-arm-kernel@lists.arm.linux.org.uk |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/cpufreq.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/hardware.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/div64.h> |
| #include <asm/arch/pxa-regs.h> |
| #include <asm/arch/bitfield.h> |
| #include <asm/arch/pxafb.h> |
| |
| /* |
| * Complain if VAR is out of range. |
| */ |
| #define DEBUG_VAR 1 |
| |
| #include "pxafb.h" |
| |
| /* Bits which should not be set in machine configuration structures */ |
| #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB) |
| #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP) |
| |
| static void (*pxafb_backlight_power)(int); |
| static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *); |
| |
| static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *); |
| static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); |
| |
| #ifdef CONFIG_FB_PXA_PARAMETERS |
| #define PXAFB_OPTIONS_SIZE 256 |
| static char g_options[PXAFB_OPTIONS_SIZE] __initdata = ""; |
| #endif |
| |
| static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| /* |
| * We need to handle two requests being made at the same time. |
| * There are two important cases: |
| * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) |
| * We must perform the unblanking, which will do our REENABLE for us. |
| * 2. When we are blanking, but immediately unblank before we have |
| * blanked. We do the "REENABLE" thing here as well, just to be sure. |
| */ |
| if (fbi->task_state == C_ENABLE && state == C_REENABLE) |
| state = (u_int) -1; |
| if (fbi->task_state == C_DISABLE && state == C_ENABLE) |
| state = C_REENABLE; |
| |
| if (state != (u_int)-1) { |
| fbi->task_state = state; |
| schedule_work(&fbi->task); |
| } |
| local_irq_restore(flags); |
| } |
| |
| static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) |
| { |
| chan &= 0xffff; |
| chan >>= 16 - bf->length; |
| return chan << bf->offset; |
| } |
| |
| static int |
| pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| u_int val, ret = 1; |
| |
| if (regno < fbi->palette_size) { |
| if (fbi->fb.var.grayscale) { |
| val = ((blue >> 8) & 0x00ff); |
| } else { |
| val = ((red >> 0) & 0xf800); |
| val |= ((green >> 5) & 0x07e0); |
| val |= ((blue >> 11) & 0x001f); |
| } |
| fbi->palette_cpu[regno] = val; |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int |
| pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| unsigned int val; |
| int ret = 1; |
| |
| /* |
| * If inverse mode was selected, invert all the colours |
| * rather than the register number. The register number |
| * is what you poke into the framebuffer to produce the |
| * colour you requested. |
| */ |
| if (fbi->cmap_inverse) { |
| red = 0xffff - red; |
| green = 0xffff - green; |
| blue = 0xffff - blue; |
| } |
| |
| /* |
| * If greyscale is true, then we convert the RGB value |
| * to greyscale no matter what visual we are using. |
| */ |
| if (fbi->fb.var.grayscale) |
| red = green = blue = (19595 * red + 38470 * green + |
| 7471 * blue) >> 16; |
| |
| switch (fbi->fb.fix.visual) { |
| case FB_VISUAL_TRUECOLOR: |
| /* |
| * 16-bit True Colour. We encode the RGB value |
| * according to the RGB bitfield information. |
| */ |
| if (regno < 16) { |
| u32 *pal = fbi->fb.pseudo_palette; |
| |
| val = chan_to_field(red, &fbi->fb.var.red); |
| val |= chan_to_field(green, &fbi->fb.var.green); |
| val |= chan_to_field(blue, &fbi->fb.var.blue); |
| |
| pal[regno] = val; |
| ret = 0; |
| } |
| break; |
| |
| case FB_VISUAL_STATIC_PSEUDOCOLOR: |
| case FB_VISUAL_PSEUDOCOLOR: |
| ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * pxafb_bpp_to_lccr3(): |
| * Convert a bits per pixel value to the correct bit pattern for LCCR3 |
| */ |
| static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var) |
| { |
| int ret = 0; |
| switch (var->bits_per_pixel) { |
| case 1: ret = LCCR3_1BPP; break; |
| case 2: ret = LCCR3_2BPP; break; |
| case 4: ret = LCCR3_4BPP; break; |
| case 8: ret = LCCR3_8BPP; break; |
| case 16: ret = LCCR3_16BPP; break; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * pxafb_display_dma_period() |
| * Calculate the minimum period (in picoseconds) between two DMA |
| * requests for the LCD controller. If we hit this, it means we're |
| * doing nothing but LCD DMA. |
| */ |
| static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) |
| { |
| /* |
| * Period = pixclock * bits_per_byte * bytes_per_transfer |
| * / memory_bits_per_pixel; |
| */ |
| return var->pixclock * 8 * 16 / var->bits_per_pixel; |
| } |
| |
| extern unsigned int get_clk_frequency_khz(int info); |
| #endif |
| |
| /* |
| * Select the smallest mode that allows the desired resolution to be |
| * displayed. If desired parameters can be rounded up. |
| */ |
| static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var) |
| { |
| struct pxafb_mode_info *mode = NULL; |
| struct pxafb_mode_info *modelist = mach->modes; |
| unsigned int best_x = 0xffffffff, best_y = 0xffffffff; |
| unsigned int i; |
| |
| for (i = 0 ; i < mach->num_modes ; i++) { |
| if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres && |
| modelist[i].xres < best_x && modelist[i].yres < best_y && |
| modelist[i].bpp >= var->bits_per_pixel ) { |
| best_x = modelist[i].xres; |
| best_y = modelist[i].yres; |
| mode = &modelist[i]; |
| } |
| } |
| |
| return mode; |
| } |
| |
| static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode) |
| { |
| var->xres = mode->xres; |
| var->yres = mode->yres; |
| var->bits_per_pixel = mode->bpp; |
| var->pixclock = mode->pixclock; |
| var->hsync_len = mode->hsync_len; |
| var->left_margin = mode->left_margin; |
| var->right_margin = mode->right_margin; |
| var->vsync_len = mode->vsync_len; |
| var->upper_margin = mode->upper_margin; |
| var->lower_margin = mode->lower_margin; |
| var->sync = mode->sync; |
| var->grayscale = mode->cmap_greyscale; |
| var->xres_virtual = var->xres; |
| var->yres_virtual = var->yres; |
| } |
| |
| /* |
| * pxafb_check_var(): |
| * Get the video params out of 'var'. If a value doesn't fit, round it up, |
| * if it's too big, return -EINVAL. |
| * |
| * Round up in the following order: bits_per_pixel, xres, |
| * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, |
| * bitfields, horizontal timing, vertical timing. |
| */ |
| static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| struct pxafb_mach_info *inf = fbi->dev->platform_data; |
| |
| if (var->xres < MIN_XRES) |
| var->xres = MIN_XRES; |
| if (var->yres < MIN_YRES) |
| var->yres = MIN_YRES; |
| |
| if (inf->fixed_modes) { |
| struct pxafb_mode_info *mode; |
| |
| mode = pxafb_getmode(inf, var); |
| if (!mode) |
| return -EINVAL; |
| pxafb_setmode(var, mode); |
| } else { |
| if (var->xres > inf->modes->xres) |
| return -EINVAL; |
| if (var->yres > inf->modes->yres) |
| return -EINVAL; |
| if (var->bits_per_pixel > inf->modes->bpp) |
| return -EINVAL; |
| } |
| |
| var->xres_virtual = |
| max(var->xres_virtual, var->xres); |
| var->yres_virtual = |
| max(var->yres_virtual, var->yres); |
| |
| /* |
| * Setup the RGB parameters for this display. |
| * |
| * The pixel packing format is described on page 7-11 of the |
| * PXA2XX Developer's Manual. |
| */ |
| if (var->bits_per_pixel == 16) { |
| var->red.offset = 11; var->red.length = 5; |
| var->green.offset = 5; var->green.length = 6; |
| var->blue.offset = 0; var->blue.length = 5; |
| var->transp.offset = var->transp.length = 0; |
| } else { |
| var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0; |
| var->red.length = 8; |
| var->green.length = 8; |
| var->blue.length = 8; |
| var->transp.length = 0; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n", |
| pxafb_display_dma_period(var), |
| get_clk_frequency_khz(0)); |
| #endif |
| |
| return 0; |
| } |
| |
| static inline void pxafb_set_truecolor(u_int is_true_color) |
| { |
| pr_debug("pxafb: true_color = %d\n", is_true_color); |
| // do your machine-specific setup if needed |
| } |
| |
| /* |
| * pxafb_set_par(): |
| * Set the user defined part of the display for the specified console |
| */ |
| static int pxafb_set_par(struct fb_info *info) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| struct fb_var_screeninfo *var = &info->var; |
| unsigned long palette_mem_size; |
| |
| pr_debug("pxafb: set_par\n"); |
| |
| if (var->bits_per_pixel == 16) |
| fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; |
| else if (!fbi->cmap_static) |
| fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; |
| else { |
| /* |
| * Some people have weird ideas about wanting static |
| * pseudocolor maps. I suspect their user space |
| * applications are broken. |
| */ |
| fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; |
| } |
| |
| fbi->fb.fix.line_length = var->xres_virtual * |
| var->bits_per_pixel / 8; |
| if (var->bits_per_pixel == 16) |
| fbi->palette_size = 0; |
| else |
| fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel; |
| |
| palette_mem_size = fbi->palette_size * sizeof(u16); |
| |
| pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size); |
| |
| fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); |
| fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; |
| |
| /* |
| * Set (any) board control register to handle new color depth |
| */ |
| pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR); |
| |
| if (fbi->fb.var.bits_per_pixel == 16) |
| fb_dealloc_cmap(&fbi->fb.cmap); |
| else |
| fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); |
| |
| pxafb_activate_var(var, fbi); |
| |
| return 0; |
| } |
| |
| /* |
| * Formal definition of the VESA spec: |
| * On |
| * This refers to the state of the display when it is in full operation |
| * Stand-By |
| * This defines an optional operating state of minimal power reduction with |
| * the shortest recovery time |
| * Suspend |
| * This refers to a level of power management in which substantial power |
| * reduction is achieved by the display. The display can have a longer |
| * recovery time from this state than from the Stand-by state |
| * Off |
| * This indicates that the display is consuming the lowest level of power |
| * and is non-operational. Recovery from this state may optionally require |
| * the user to manually power on the monitor |
| * |
| * Now, the fbdev driver adds an additional state, (blank), where they |
| * turn off the video (maybe by colormap tricks), but don't mess with the |
| * video itself: think of it semantically between on and Stand-By. |
| * |
| * So here's what we should do in our fbdev blank routine: |
| * |
| * VESA_NO_BLANKING (mode 0) Video on, front/back light on |
| * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off |
| * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off |
| * VESA_POWERDOWN (mode 3) Video off, front/back light off |
| * |
| * This will match the matrox implementation. |
| */ |
| |
| /* |
| * pxafb_blank(): |
| * Blank the display by setting all palette values to zero. Note, the |
| * 16 bpp mode does not really use the palette, so this will not |
| * blank the display in all modes. |
| */ |
| static int pxafb_blank(int blank, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| int i; |
| |
| pr_debug("pxafb: blank=%d\n", blank); |
| |
| switch (blank) { |
| case FB_BLANK_POWERDOWN: |
| case FB_BLANK_VSYNC_SUSPEND: |
| case FB_BLANK_HSYNC_SUSPEND: |
| case FB_BLANK_NORMAL: |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| for (i = 0; i < fbi->palette_size; i++) |
| pxafb_setpalettereg(i, 0, 0, 0, 0, info); |
| |
| pxafb_schedule_work(fbi, C_DISABLE); |
| //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); |
| break; |
| |
| case FB_BLANK_UNBLANK: |
| //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| fb_set_cmap(&fbi->fb.cmap, info); |
| pxafb_schedule_work(fbi, C_ENABLE); |
| } |
| return 0; |
| } |
| |
| static int pxafb_mmap(struct fb_info *info, |
| struct vm_area_struct *vma) |
| { |
| struct pxafb_info *fbi = (struct pxafb_info *)info; |
| unsigned long off = vma->vm_pgoff << PAGE_SHIFT; |
| |
| if (off < info->fix.smem_len) { |
| vma->vm_pgoff += 1; |
| return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu, |
| fbi->map_dma, fbi->map_size); |
| } |
| return -EINVAL; |
| } |
| |
| static struct fb_ops pxafb_ops = { |
| .owner = THIS_MODULE, |
| .fb_check_var = pxafb_check_var, |
| .fb_set_par = pxafb_set_par, |
| .fb_setcolreg = pxafb_setcolreg, |
| .fb_fillrect = cfb_fillrect, |
| .fb_copyarea = cfb_copyarea, |
| .fb_imageblit = cfb_imageblit, |
| .fb_blank = pxafb_blank, |
| .fb_mmap = pxafb_mmap, |
| }; |
| |
| /* |
| * Calculate the PCD value from the clock rate (in picoseconds). |
| * We take account of the PPCR clock setting. |
| * From PXA Developer's Manual: |
| * |
| * PixelClock = LCLK |
| * ------------- |
| * 2 ( PCD + 1 ) |
| * |
| * PCD = LCLK |
| * ------------- - 1 |
| * 2(PixelClock) |
| * |
| * Where: |
| * LCLK = LCD/Memory Clock |
| * PCD = LCCR3[7:0] |
| * |
| * PixelClock here is in Hz while the pixclock argument given is the |
| * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) |
| * |
| * The function get_lclk_frequency_10khz returns LCLK in units of |
| * 10khz. Calling the result of this function lclk gives us the |
| * following |
| * |
| * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) |
| * -------------------------------------- - 1 |
| * 2 |
| * |
| * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. |
| */ |
| static inline unsigned int get_pcd(unsigned int pixclock) |
| { |
| unsigned long long pcd; |
| |
| /* FIXME: Need to take into account Double Pixel Clock mode |
| * (DPC) bit? or perhaps set it based on the various clock |
| * speeds */ |
| |
| pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock; |
| do_div(pcd, 100000000 * 2); |
| /* no need for this, since we should subtract 1 anyway. they cancel */ |
| /* pcd += 1; */ /* make up for integer math truncations */ |
| return (unsigned int)pcd; |
| } |
| |
| /* |
| * Some touchscreens need hsync information from the video driver to |
| * function correctly. We export it here. |
| */ |
| static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) |
| { |
| unsigned long long htime; |
| |
| if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { |
| fbi->hsync_time=0; |
| return; |
| } |
| |
| htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000; |
| do_div(htime, pcd * fbi->fb.var.hsync_len); |
| fbi->hsync_time = htime; |
| } |
| |
| unsigned long pxafb_get_hsync_time(struct device *dev) |
| { |
| struct pxafb_info *fbi = dev_get_drvdata(dev); |
| |
| /* If display is blanked/suspended, hsync isn't active */ |
| if (!fbi || (fbi->state != C_ENABLE)) |
| return 0; |
| |
| return fbi->hsync_time; |
| } |
| EXPORT_SYMBOL(pxafb_get_hsync_time); |
| |
| /* |
| * pxafb_activate_var(): |
| * Configures LCD Controller based on entries in var parameter. Settings are |
| * only written to the controller if changes were made. |
| */ |
| static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi) |
| { |
| struct pxafb_lcd_reg new_regs; |
| u_long flags; |
| u_int lines_per_panel, pcd = get_pcd(var->pixclock); |
| |
| pr_debug("pxafb: Configuring PXA LCD\n"); |
| |
| pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n", |
| var->xres, var->hsync_len, |
| var->left_margin, var->right_margin); |
| pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n", |
| var->yres, var->vsync_len, |
| var->upper_margin, var->lower_margin); |
| pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd); |
| |
| #if DEBUG_VAR |
| if (var->xres < 16 || var->xres > 1024) |
| printk(KERN_ERR "%s: invalid xres %d\n", |
| fbi->fb.fix.id, var->xres); |
| switch(var->bits_per_pixel) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| case 16: |
| break; |
| default: |
| printk(KERN_ERR "%s: invalid bit depth %d\n", |
| fbi->fb.fix.id, var->bits_per_pixel); |
| break; |
| } |
| if (var->hsync_len < 1 || var->hsync_len > 64) |
| printk(KERN_ERR "%s: invalid hsync_len %d\n", |
| fbi->fb.fix.id, var->hsync_len); |
| if (var->left_margin < 1 || var->left_margin > 255) |
| printk(KERN_ERR "%s: invalid left_margin %d\n", |
| fbi->fb.fix.id, var->left_margin); |
| if (var->right_margin < 1 || var->right_margin > 255) |
| printk(KERN_ERR "%s: invalid right_margin %d\n", |
| fbi->fb.fix.id, var->right_margin); |
| if (var->yres < 1 || var->yres > 1024) |
| printk(KERN_ERR "%s: invalid yres %d\n", |
| fbi->fb.fix.id, var->yres); |
| if (var->vsync_len < 1 || var->vsync_len > 64) |
| printk(KERN_ERR "%s: invalid vsync_len %d\n", |
| fbi->fb.fix.id, var->vsync_len); |
| if (var->upper_margin < 0 || var->upper_margin > 255) |
| printk(KERN_ERR "%s: invalid upper_margin %d\n", |
| fbi->fb.fix.id, var->upper_margin); |
| if (var->lower_margin < 0 || var->lower_margin > 255) |
| printk(KERN_ERR "%s: invalid lower_margin %d\n", |
| fbi->fb.fix.id, var->lower_margin); |
| #endif |
| |
| new_regs.lccr0 = fbi->lccr0 | |
| (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | |
| LCCR0_QDM | LCCR0_BM | LCCR0_OUM); |
| |
| new_regs.lccr1 = |
| LCCR1_DisWdth(var->xres) + |
| LCCR1_HorSnchWdth(var->hsync_len) + |
| LCCR1_BegLnDel(var->left_margin) + |
| LCCR1_EndLnDel(var->right_margin); |
| |
| /* |
| * If we have a dual scan LCD, we need to halve |
| * the YRES parameter. |
| */ |
| lines_per_panel = var->yres; |
| if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| lines_per_panel /= 2; |
| |
| new_regs.lccr2 = |
| LCCR2_DisHght(lines_per_panel) + |
| LCCR2_VrtSnchWdth(var->vsync_len) + |
| LCCR2_BegFrmDel(var->upper_margin) + |
| LCCR2_EndFrmDel(var->lower_margin); |
| |
| new_regs.lccr3 = fbi->lccr3 | |
| pxafb_bpp_to_lccr3(var) | |
| (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | |
| (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); |
| |
| if (pcd) |
| new_regs.lccr3 |= LCCR3_PixClkDiv(pcd); |
| |
| pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0); |
| pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1); |
| pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2); |
| pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3); |
| |
| /* Update shadow copy atomically */ |
| local_irq_save(flags); |
| |
| /* setup dma descriptors */ |
| fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16); |
| fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16); |
| fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16); |
| |
| fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16; |
| fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16; |
| fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16; |
| |
| #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length) |
| |
| /* populate descriptors */ |
| fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma; |
| fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL; |
| fbi->dmadesc_fblow_cpu->fidr = 0; |
| fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL; |
| |
| fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */ |
| |
| fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma; |
| fbi->dmadesc_fbhigh_cpu->fidr = 0; |
| fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL; |
| |
| fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma; |
| fbi->dmadesc_palette_cpu->fidr = 0; |
| fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL; |
| |
| if (var->bits_per_pixel == 16) { |
| /* palette shouldn't be loaded in true-color mode */ |
| fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma; |
| fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */ |
| /* init it to something, even though we won't be using it */ |
| fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma; |
| } else { |
| fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma; |
| fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma; |
| fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */ |
| } |
| |
| #if 0 |
| pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu); |
| pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu); |
| pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu); |
| pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma); |
| pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma); |
| pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma); |
| |
| pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr); |
| pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr); |
| pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr); |
| |
| pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr); |
| pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr); |
| pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr); |
| |
| pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd); |
| pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd); |
| pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd); |
| #endif |
| |
| fbi->reg_lccr0 = new_regs.lccr0; |
| fbi->reg_lccr1 = new_regs.lccr1; |
| fbi->reg_lccr2 = new_regs.lccr2; |
| fbi->reg_lccr3 = new_regs.lccr3; |
| set_hsync_time(fbi, pcd); |
| local_irq_restore(flags); |
| |
| /* |
| * Only update the registers if the controller is enabled |
| * and something has changed. |
| */ |
| if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) || |
| (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) || |
| (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1)) |
| pxafb_schedule_work(fbi, C_REENABLE); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE! The following functions are purely helpers for set_ctrlr_state. |
| * Do not call them directly; set_ctrlr_state does the correct serialisation |
| * to ensure that things happen in the right way 100% of time time. |
| * -- rmk |
| */ |
| static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) |
| { |
| pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); |
| |
| if (pxafb_backlight_power) |
| pxafb_backlight_power(on); |
| } |
| |
| static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) |
| { |
| pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); |
| |
| if (pxafb_lcd_power) |
| pxafb_lcd_power(on, &fbi->fb.var); |
| } |
| |
| static void pxafb_setup_gpio(struct pxafb_info *fbi) |
| { |
| int gpio, ldd_bits; |
| unsigned int lccr0 = fbi->lccr0; |
| |
| /* |
| * setup is based on type of panel supported |
| */ |
| |
| /* 4 bit interface */ |
| if ((lccr0 & LCCR0_CMS) == LCCR0_Mono && |
| (lccr0 & LCCR0_SDS) == LCCR0_Sngl && |
| (lccr0 & LCCR0_DPD) == LCCR0_4PixMono) |
| ldd_bits = 4; |
| |
| /* 8 bit interface */ |
| else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono && |
| ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) || |
| ((lccr0 & LCCR0_CMS) == LCCR0_Color && |
| (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl)) |
| ldd_bits = 8; |
| |
| /* 16 bit interface */ |
| else if ((lccr0 & LCCR0_CMS) == LCCR0_Color && |
| ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act)) |
| ldd_bits = 16; |
| |
| else { |
| printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n"); |
| return; |
| } |
| |
| for (gpio = 58; ldd_bits; gpio++, ldd_bits--) |
| pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT); |
| pxa_gpio_mode(GPIO74_LCD_FCLK_MD); |
| pxa_gpio_mode(GPIO75_LCD_LCLK_MD); |
| pxa_gpio_mode(GPIO76_LCD_PCLK_MD); |
| pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD); |
| } |
| |
| static void pxafb_enable_controller(struct pxafb_info *fbi) |
| { |
| pr_debug("pxafb: Enabling LCD controller\n"); |
| pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0); |
| pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1); |
| pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); |
| pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); |
| pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); |
| pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); |
| |
| /* enable LCD controller clock */ |
| pxa_set_cken(CKEN16_LCD, 1); |
| |
| /* Sequence from 11.7.10 */ |
| LCCR3 = fbi->reg_lccr3; |
| LCCR2 = fbi->reg_lccr2; |
| LCCR1 = fbi->reg_lccr1; |
| LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB; |
| |
| FDADR0 = fbi->fdadr0; |
| FDADR1 = fbi->fdadr1; |
| LCCR0 |= LCCR0_ENB; |
| |
| pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0); |
| pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1); |
| pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0); |
| pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1); |
| pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2); |
| pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3); |
| } |
| |
| static void pxafb_disable_controller(struct pxafb_info *fbi) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| pr_debug("pxafb: disabling LCD controller\n"); |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&fbi->ctrlr_wait, &wait); |
| |
| LCSR = 0xffffffff; /* Clear LCD Status Register */ |
| LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ |
| LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */ |
| |
| schedule_timeout(200 * HZ / 1000); |
| remove_wait_queue(&fbi->ctrlr_wait, &wait); |
| |
| /* disable LCD controller clock */ |
| pxa_set_cken(CKEN16_LCD, 0); |
| } |
| |
| /* |
| * pxafb_handle_irq: Handle 'LCD DONE' interrupts. |
| */ |
| static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) |
| { |
| struct pxafb_info *fbi = dev_id; |
| unsigned int lcsr = LCSR; |
| |
| if (lcsr & LCSR_LDD) { |
| LCCR0 |= LCCR0_LDM; |
| wake_up(&fbi->ctrlr_wait); |
| } |
| |
| LCSR = lcsr; |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * This function must be called from task context only, since it will |
| * sleep when disabling the LCD controller, or if we get two contending |
| * processes trying to alter state. |
| */ |
| static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) |
| { |
| u_int old_state; |
| |
| down(&fbi->ctrlr_sem); |
| |
| old_state = fbi->state; |
| |
| /* |
| * Hack around fbcon initialisation. |
| */ |
| if (old_state == C_STARTUP && state == C_REENABLE) |
| state = C_ENABLE; |
| |
| switch (state) { |
| case C_DISABLE_CLKCHANGE: |
| /* |
| * Disable controller for clock change. If the |
| * controller is already disabled, then do nothing. |
| */ |
| if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { |
| fbi->state = state; |
| //TODO __pxafb_lcd_power(fbi, 0); |
| pxafb_disable_controller(fbi); |
| } |
| break; |
| |
| case C_DISABLE_PM: |
| case C_DISABLE: |
| /* |
| * Disable controller |
| */ |
| if (old_state != C_DISABLE) { |
| fbi->state = state; |
| __pxafb_backlight_power(fbi, 0); |
| __pxafb_lcd_power(fbi, 0); |
| if (old_state != C_DISABLE_CLKCHANGE) |
| pxafb_disable_controller(fbi); |
| } |
| break; |
| |
| case C_ENABLE_CLKCHANGE: |
| /* |
| * Enable the controller after clock change. Only |
| * do this if we were disabled for the clock change. |
| */ |
| if (old_state == C_DISABLE_CLKCHANGE) { |
| fbi->state = C_ENABLE; |
| pxafb_enable_controller(fbi); |
| //TODO __pxafb_lcd_power(fbi, 1); |
| } |
| break; |
| |
| case C_REENABLE: |
| /* |
| * Re-enable the controller only if it was already |
| * enabled. This is so we reprogram the control |
| * registers. |
| */ |
| if (old_state == C_ENABLE) { |
| __pxafb_lcd_power(fbi, 0); |
| pxafb_disable_controller(fbi); |
| pxafb_setup_gpio(fbi); |
| pxafb_enable_controller(fbi); |
| __pxafb_lcd_power(fbi, 1); |
| } |
| break; |
| |
| case C_ENABLE_PM: |
| /* |
| * Re-enable the controller after PM. This is not |
| * perfect - think about the case where we were doing |
| * a clock change, and we suspended half-way through. |
| */ |
| if (old_state != C_DISABLE_PM) |
| break; |
| /* fall through */ |
| |
| case C_ENABLE: |
| /* |
| * Power up the LCD screen, enable controller, and |
| * turn on the backlight. |
| */ |
| if (old_state != C_ENABLE) { |
| fbi->state = C_ENABLE; |
| pxafb_setup_gpio(fbi); |
| pxafb_enable_controller(fbi); |
| __pxafb_lcd_power(fbi, 1); |
| __pxafb_backlight_power(fbi, 1); |
| } |
| break; |
| } |
| up(&fbi->ctrlr_sem); |
| } |
| |
| /* |
| * Our LCD controller task (which is called when we blank or unblank) |
| * via keventd. |
| */ |
| static void pxafb_task(struct work_struct *work) |
| { |
| struct pxafb_info *fbi = |
| container_of(work, struct pxafb_info, task); |
| u_int state = xchg(&fbi->task_state, -1); |
| |
| set_ctrlr_state(fbi, state); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * CPU clock speed change handler. We need to adjust the LCD timing |
| * parameters when the CPU clock is adjusted by the power management |
| * subsystem. |
| * |
| * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() |
| */ |
| static int |
| pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| struct pxafb_info *fbi = TO_INF(nb, freq_transition); |
| //TODO struct cpufreq_freqs *f = data; |
| u_int pcd; |
| |
| switch (val) { |
| case CPUFREQ_PRECHANGE: |
| set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); |
| break; |
| |
| case CPUFREQ_POSTCHANGE: |
| pcd = get_pcd(fbi->fb.var.pixclock); |
| set_hsync_time(fbi, pcd); |
| fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); |
| set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); |
| break; |
| } |
| return 0; |
| } |
| |
| static int |
| pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| struct pxafb_info *fbi = TO_INF(nb, freq_policy); |
| struct fb_var_screeninfo *var = &fbi->fb.var; |
| struct cpufreq_policy *policy = data; |
| |
| switch (val) { |
| case CPUFREQ_ADJUST: |
| case CPUFREQ_INCOMPATIBLE: |
| printk(KERN_DEBUG "min dma period: %d ps, " |
| "new clock %d kHz\n", pxafb_display_dma_period(var), |
| policy->max); |
| // TODO: fill in min/max values |
| break; |
| #if 0 |
| case CPUFREQ_NOTIFY: |
| printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__); |
| do {} while(0); |
| /* todo: panic if min/max values aren't fulfilled |
| * [can't really happen unless there's a bug in the |
| * CPU policy verification process * |
| */ |
| break; |
| #endif |
| } |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM |
| /* |
| * Power management hooks. Note that we won't be called from IRQ context, |
| * unlike the blank functions above, so we may sleep. |
| */ |
| static int pxafb_suspend(struct platform_device *dev, pm_message_t state) |
| { |
| struct pxafb_info *fbi = platform_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_DISABLE_PM); |
| return 0; |
| } |
| |
| static int pxafb_resume(struct platform_device *dev) |
| { |
| struct pxafb_info *fbi = platform_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_ENABLE_PM); |
| return 0; |
| } |
| #else |
| #define pxafb_suspend NULL |
| #define pxafb_resume NULL |
| #endif |
| |
| /* |
| * pxafb_map_video_memory(): |
| * Allocates the DRAM memory for the frame buffer. This buffer is |
| * remapped into a non-cached, non-buffered, memory region to |
| * allow palette and pixel writes to occur without flushing the |
| * cache. Once this area is remapped, all virtual memory |
| * access to the video memory should occur at the new region. |
| */ |
| static int __init pxafb_map_video_memory(struct pxafb_info *fbi) |
| { |
| u_long palette_mem_size; |
| |
| /* |
| * We reserve one page for the palette, plus the size |
| * of the framebuffer. |
| */ |
| fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); |
| fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size, |
| &fbi->map_dma, GFP_KERNEL); |
| |
| if (fbi->map_cpu) { |
| /* prevent initial garbage on screen */ |
| memset(fbi->map_cpu, 0, fbi->map_size); |
| fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; |
| fbi->screen_dma = fbi->map_dma + PAGE_SIZE; |
| /* |
| * FIXME: this is actually the wrong thing to place in |
| * smem_start. But fbdev suffers from the problem that |
| * it needs an API which doesn't exist (in this case, |
| * dma_writecombine_mmap) |
| */ |
| fbi->fb.fix.smem_start = fbi->screen_dma; |
| |
| fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16; |
| |
| palette_mem_size = fbi->palette_size * sizeof(u16); |
| pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size); |
| |
| fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); |
| fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; |
| } |
| |
| return fbi->map_cpu ? 0 : -ENOMEM; |
| } |
| |
| static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev) |
| { |
| struct pxafb_info *fbi; |
| void *addr; |
| struct pxafb_mach_info *inf = dev->platform_data; |
| struct pxafb_mode_info *mode = inf->modes; |
| int i, smemlen; |
| |
| /* Alloc the pxafb_info and pseudo_palette in one step */ |
| fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); |
| if (!fbi) |
| return NULL; |
| |
| memset(fbi, 0, sizeof(struct pxafb_info)); |
| fbi->dev = dev; |
| |
| strcpy(fbi->fb.fix.id, PXA_NAME); |
| |
| fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| fbi->fb.fix.type_aux = 0; |
| fbi->fb.fix.xpanstep = 0; |
| fbi->fb.fix.ypanstep = 0; |
| fbi->fb.fix.ywrapstep = 0; |
| fbi->fb.fix.accel = FB_ACCEL_NONE; |
| |
| fbi->fb.var.nonstd = 0; |
| fbi->fb.var.activate = FB_ACTIVATE_NOW; |
| fbi->fb.var.height = -1; |
| fbi->fb.var.width = -1; |
| fbi->fb.var.accel_flags = 0; |
| fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; |
| |
| fbi->fb.fbops = &pxafb_ops; |
| fbi->fb.flags = FBINFO_DEFAULT; |
| fbi->fb.node = -1; |
| |
| addr = fbi; |
| addr = addr + sizeof(struct pxafb_info); |
| fbi->fb.pseudo_palette = addr; |
| |
| pxafb_setmode(&fbi->fb.var, mode); |
| |
| fbi->cmap_inverse = inf->cmap_inverse; |
| fbi->cmap_static = inf->cmap_static; |
| |
| fbi->lccr0 = inf->lccr0; |
| fbi->lccr3 = inf->lccr3; |
| fbi->state = C_STARTUP; |
| fbi->task_state = (u_char)-1; |
| |
| for (i = 0; i < inf->num_modes; i++) { |
| smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8; |
| if (smemlen > fbi->fb.fix.smem_len) |
| fbi->fb.fix.smem_len = smemlen; |
| } |
| |
| init_waitqueue_head(&fbi->ctrlr_wait); |
| INIT_WORK(&fbi->task, pxafb_task); |
| init_MUTEX(&fbi->ctrlr_sem); |
| |
| return fbi; |
| } |
| |
| #ifdef CONFIG_FB_PXA_PARAMETERS |
| static int __init pxafb_parse_options(struct device *dev, char *options) |
| { |
| struct pxafb_mach_info *inf = dev->platform_data; |
| char *this_opt; |
| |
| if (!options || !*options) |
| return 0; |
| |
| dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); |
| |
| /* could be made table driven or similar?... */ |
| while ((this_opt = strsep(&options, ",")) != NULL) { |
| if (!strncmp(this_opt, "mode:", 5)) { |
| const char *name = this_opt+5; |
| unsigned int namelen = strlen(name); |
| int res_specified = 0, bpp_specified = 0; |
| unsigned int xres = 0, yres = 0, bpp = 0; |
| int yres_specified = 0; |
| int i; |
| for (i = namelen-1; i >= 0; i--) { |
| switch (name[i]) { |
| case '-': |
| namelen = i; |
| if (!bpp_specified && !yres_specified) { |
| bpp = simple_strtoul(&name[i+1], NULL, 0); |
| bpp_specified = 1; |
| } else |
| goto done; |
| break; |
| case 'x': |
| if (!yres_specified) { |
| yres = simple_strtoul(&name[i+1], NULL, 0); |
| yres_specified = 1; |
| } else |
| goto done; |
| break; |
| case '0'...'9': |
| break; |
| default: |
| goto done; |
| } |
| } |
| if (i < 0 && yres_specified) { |
| xres = simple_strtoul(name, NULL, 0); |
| res_specified = 1; |
| } |
| done: |
| if (res_specified) { |
| dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); |
| inf->xres = xres; inf->yres = yres; |
| } |
| if (bpp_specified) |
| switch (bpp) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| case 16: |
| inf->bpp = bpp; |
| dev_info(dev, "overriding bit depth: %d\n", bpp); |
| break; |
| default: |
| dev_err(dev, "Depth %d is not valid\n", bpp); |
| } |
| } else if (!strncmp(this_opt, "pixclock:", 9)) { |
| inf->pixclock = simple_strtoul(this_opt+9, NULL, 0); |
| dev_info(dev, "override pixclock: %ld\n", inf->pixclock); |
| } else if (!strncmp(this_opt, "left:", 5)) { |
| inf->left_margin = simple_strtoul(this_opt+5, NULL, 0); |
| dev_info(dev, "override left: %u\n", inf->left_margin); |
| } else if (!strncmp(this_opt, "right:", 6)) { |
| inf->right_margin = simple_strtoul(this_opt+6, NULL, 0); |
| dev_info(dev, "override right: %u\n", inf->right_margin); |
| } else if (!strncmp(this_opt, "upper:", 6)) { |
| inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0); |
| dev_info(dev, "override upper: %u\n", inf->upper_margin); |
| } else if (!strncmp(this_opt, "lower:", 6)) { |
| inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0); |
| dev_info(dev, "override lower: %u\n", inf->lower_margin); |
| } else if (!strncmp(this_opt, "hsynclen:", 9)) { |
| inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| dev_info(dev, "override hsynclen: %u\n", inf->hsync_len); |
| } else if (!strncmp(this_opt, "vsynclen:", 9)) { |
| inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| dev_info(dev, "override vsynclen: %u\n", inf->vsync_len); |
| } else if (!strncmp(this_opt, "hsync:", 6)) { |
| if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| dev_info(dev, "override hsync: Active Low\n"); |
| inf->sync &= ~FB_SYNC_HOR_HIGH_ACT; |
| } else { |
| dev_info(dev, "override hsync: Active High\n"); |
| inf->sync |= FB_SYNC_HOR_HIGH_ACT; |
| } |
| } else if (!strncmp(this_opt, "vsync:", 6)) { |
| if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| dev_info(dev, "override vsync: Active Low\n"); |
| inf->sync &= ~FB_SYNC_VERT_HIGH_ACT; |
| } else { |
| dev_info(dev, "override vsync: Active High\n"); |
| inf->sync |= FB_SYNC_VERT_HIGH_ACT; |
| } |
| } else if (!strncmp(this_opt, "dpc:", 4)) { |
| if (simple_strtoul(this_opt+4, NULL, 0) == 0) { |
| dev_info(dev, "override double pixel clock: false\n"); |
| inf->lccr3 &= ~LCCR3_DPC; |
| } else { |
| dev_info(dev, "override double pixel clock: true\n"); |
| inf->lccr3 |= LCCR3_DPC; |
| } |
| } else if (!strncmp(this_opt, "outputen:", 9)) { |
| if (simple_strtoul(this_opt+9, NULL, 0) == 0) { |
| dev_info(dev, "override output enable: active low\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; |
| } else { |
| dev_info(dev, "override output enable: active high\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; |
| } |
| } else if (!strncmp(this_opt, "pixclockpol:", 12)) { |
| if (simple_strtoul(this_opt+12, NULL, 0) == 0) { |
| dev_info(dev, "override pixel clock polarity: falling edge\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; |
| } else { |
| dev_info(dev, "override pixel clock polarity: rising edge\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; |
| } |
| } else if (!strncmp(this_opt, "color", 5)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; |
| } else if (!strncmp(this_opt, "mono", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; |
| } else if (!strncmp(this_opt, "active", 6)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; |
| } else if (!strncmp(this_opt, "passive", 7)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; |
| } else if (!strncmp(this_opt, "single", 6)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; |
| } else if (!strncmp(this_opt, "dual", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; |
| } else if (!strncmp(this_opt, "4pix", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; |
| } else if (!strncmp(this_opt, "8pix", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; |
| } else { |
| dev_err(dev, "unknown option: %s\n", this_opt); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| |
| } |
| #endif |
| |
| int __init pxafb_probe(struct platform_device *dev) |
| { |
| struct pxafb_info *fbi; |
| struct pxafb_mach_info *inf; |
| int ret; |
| |
| dev_dbg(&dev->dev, "pxafb_probe\n"); |
| |
| inf = dev->dev.platform_data; |
| ret = -ENOMEM; |
| fbi = NULL; |
| if (!inf) |
| goto failed; |
| |
| #ifdef CONFIG_FB_PXA_PARAMETERS |
| ret = pxafb_parse_options(&dev->dev, g_options); |
| if (ret < 0) |
| goto failed; |
| #endif |
| |
| #ifdef DEBUG_VAR |
| /* Check for various illegal bit-combinations. Currently only |
| * a warning is given. */ |
| |
| if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) |
| dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n", |
| inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); |
| if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) |
| dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n", |
| inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); |
| if (inf->lccr0 & LCCR0_DPD && |
| ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || |
| (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || |
| (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) |
| dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono" |
| " single panel mode\n"); |
| if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && |
| (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| dev_warn(&dev->dev, "Dual panel only valid in passive mode\n"); |
| if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && |
| (inf->modes->upper_margin || inf->modes->lower_margin)) |
| dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n"); |
| #endif |
| |
| dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->modes->xres, inf->modes->yres, inf->modes->bpp); |
| if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) { |
| dev_err(&dev->dev, "Invalid resolution or bit depth\n"); |
| ret = -EINVAL; |
| goto failed; |
| } |
| pxafb_backlight_power = inf->pxafb_backlight_power; |
| pxafb_lcd_power = inf->pxafb_lcd_power; |
| fbi = pxafb_init_fbinfo(&dev->dev); |
| if (!fbi) { |
| dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); |
| ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc |
| goto failed; |
| } |
| |
| /* Initialize video memory */ |
| ret = pxafb_map_video_memory(fbi); |
| if (ret) { |
| dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi); |
| if (ret) { |
| dev_err(&dev->dev, "request_irq failed: %d\n", ret); |
| ret = -EBUSY; |
| goto failed; |
| } |
| |
| /* |
| * This makes sure that our colour bitfield |
| * descriptors are correctly initialised. |
| */ |
| pxafb_check_var(&fbi->fb.var, &fbi->fb); |
| pxafb_set_par(&fbi->fb); |
| |
| platform_set_drvdata(dev, fbi); |
| |
| ret = register_framebuffer(&fbi->fb); |
| if (ret < 0) { |
| dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret); |
| goto failed; |
| } |
| |
| #ifdef CONFIG_PM |
| // TODO |
| #endif |
| |
| #ifdef CONFIG_CPU_FREQ |
| fbi->freq_transition.notifier_call = pxafb_freq_transition; |
| fbi->freq_policy.notifier_call = pxafb_freq_policy; |
| cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); |
| cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); |
| #endif |
| |
| /* |
| * Ok, now enable the LCD controller |
| */ |
| set_ctrlr_state(fbi, C_ENABLE); |
| |
| return 0; |
| |
| failed: |
| platform_set_drvdata(dev, NULL); |
| kfree(fbi); |
| return ret; |
| } |
| |
| static struct platform_driver pxafb_driver = { |
| .probe = pxafb_probe, |
| #ifdef CONFIG_PM |
| .suspend = pxafb_suspend, |
| .resume = pxafb_resume, |
| #endif |
| .driver = { |
| .name = "pxa2xx-fb", |
| }, |
| }; |
| |
| #ifndef MODULE |
| int __devinit pxafb_setup(char *options) |
| { |
| # ifdef CONFIG_FB_PXA_PARAMETERS |
| if (options) |
| strlcpy(g_options, options, sizeof(g_options)); |
| # endif |
| return 0; |
| } |
| #else |
| # ifdef CONFIG_FB_PXA_PARAMETERS |
| module_param_string(options, g_options, sizeof(g_options), 0); |
| MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); |
| # endif |
| #endif |
| |
| int __devinit pxafb_init(void) |
| { |
| #ifndef MODULE |
| char *option = NULL; |
| |
| if (fb_get_options("pxafb", &option)) |
| return -ENODEV; |
| pxafb_setup(option); |
| #endif |
| return platform_driver_register(&pxafb_driver); |
| } |
| |
| module_init(pxafb_init); |
| |
| MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); |
| MODULE_LICENSE("GPL"); |