| /* |
| * Copyright 2007 David Gibson, IBM Corporation. |
| * |
| * Based on earlier code: |
| * Matt Porter <mporter@kernel.crashing.org> |
| * Copyright 2002-2005 MontaVista Software Inc. |
| * |
| * Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net> |
| * Copyright (c) 2003, 2004 Zultys Technologies |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <stddef.h> |
| #include "types.h" |
| #include "string.h" |
| #include "stdio.h" |
| #include "ops.h" |
| #include "reg.h" |
| #include "dcr.h" |
| |
| static unsigned long chip_11_errata(unsigned long memsize) |
| { |
| unsigned long pvr; |
| |
| pvr = mfpvr(); |
| |
| switch (pvr & 0xf0000ff0) { |
| case 0x40000850: |
| case 0x400008d0: |
| case 0x200008d0: |
| memsize -= 4096; |
| break; |
| default: |
| break; |
| } |
| |
| return memsize; |
| } |
| |
| /* Read the 4xx SDRAM controller to get size of system memory. */ |
| void ibm4xx_sdram_fixup_memsize(void) |
| { |
| int i; |
| unsigned long memsize, bank_config; |
| |
| memsize = 0; |
| for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) { |
| bank_config = SDRAM0_READ(sdram_bxcr[i]); |
| if (bank_config & SDRAM_CONFIG_BANK_ENABLE) |
| memsize += SDRAM_CONFIG_BANK_SIZE(bank_config); |
| } |
| |
| memsize = chip_11_errata(memsize); |
| dt_fixup_memory(0, memsize); |
| } |
| |
| /* Read the 440SPe MQ controller to get size of system memory. */ |
| #define DCRN_MQ0_B0BAS 0x40 |
| #define DCRN_MQ0_B1BAS 0x41 |
| #define DCRN_MQ0_B2BAS 0x42 |
| #define DCRN_MQ0_B3BAS 0x43 |
| |
| static u64 ibm440spe_decode_bas(u32 bas) |
| { |
| u64 base = ((u64)(bas & 0xFFE00000u)) << 2; |
| |
| /* open coded because I'm paranoid about invalid values */ |
| switch ((bas >> 4) & 0xFFF) { |
| case 0: |
| return 0; |
| case 0xffc: |
| return base + 0x000800000ull; |
| case 0xff8: |
| return base + 0x001000000ull; |
| case 0xff0: |
| return base + 0x002000000ull; |
| case 0xfe0: |
| return base + 0x004000000ull; |
| case 0xfc0: |
| return base + 0x008000000ull; |
| case 0xf80: |
| return base + 0x010000000ull; |
| case 0xf00: |
| return base + 0x020000000ull; |
| case 0xe00: |
| return base + 0x040000000ull; |
| case 0xc00: |
| return base + 0x080000000ull; |
| case 0x800: |
| return base + 0x100000000ull; |
| } |
| printf("Memory BAS value 0x%08x unsupported !\n", bas); |
| return 0; |
| } |
| |
| void ibm440spe_fixup_memsize(void) |
| { |
| u64 banktop, memsize = 0; |
| |
| /* Ultimately, we should directly construct the memory node |
| * so we are able to handle holes in the memory address space |
| */ |
| banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS)); |
| if (banktop > memsize) |
| memsize = banktop; |
| banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS)); |
| if (banktop > memsize) |
| memsize = banktop; |
| banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS)); |
| if (banktop > memsize) |
| memsize = banktop; |
| banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS)); |
| if (banktop > memsize) |
| memsize = banktop; |
| |
| dt_fixup_memory(0, memsize); |
| } |
| |
| |
| /* 4xx DDR1/2 Denali memory controller support */ |
| /* DDR0 registers */ |
| #define DDR0_02 2 |
| #define DDR0_08 8 |
| #define DDR0_10 10 |
| #define DDR0_14 14 |
| #define DDR0_42 42 |
| #define DDR0_43 43 |
| |
| /* DDR0_02 */ |
| #define DDR_START 0x1 |
| #define DDR_START_SHIFT 0 |
| #define DDR_MAX_CS_REG 0x3 |
| #define DDR_MAX_CS_REG_SHIFT 24 |
| #define DDR_MAX_COL_REG 0xf |
| #define DDR_MAX_COL_REG_SHIFT 16 |
| #define DDR_MAX_ROW_REG 0xf |
| #define DDR_MAX_ROW_REG_SHIFT 8 |
| /* DDR0_08 */ |
| #define DDR_DDR2_MODE 0x1 |
| #define DDR_DDR2_MODE_SHIFT 0 |
| /* DDR0_10 */ |
| #define DDR_CS_MAP 0x3 |
| #define DDR_CS_MAP_SHIFT 8 |
| /* DDR0_14 */ |
| #define DDR_REDUC 0x1 |
| #define DDR_REDUC_SHIFT 16 |
| /* DDR0_42 */ |
| #define DDR_APIN 0x7 |
| #define DDR_APIN_SHIFT 24 |
| /* DDR0_43 */ |
| #define DDR_COL_SZ 0x7 |
| #define DDR_COL_SZ_SHIFT 8 |
| #define DDR_BANK8 0x1 |
| #define DDR_BANK8_SHIFT 0 |
| |
| #define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask)) |
| |
| /* |
| * Some U-Boot versions set the number of chipselects to two |
| * for Sequoia/Rainier boards while they only have one chipselect |
| * hardwired. Hardcode the number of chipselects to one |
| * for sequioa/rainer board models or read the actual value |
| * from the memory controller register DDR0_10 otherwise. |
| */ |
| static inline u32 ibm4xx_denali_get_cs(void) |
| { |
| void *devp; |
| char model[64]; |
| u32 val, cs; |
| |
| devp = finddevice("/"); |
| if (!devp) |
| goto read_cs; |
| |
| if (getprop(devp, "model", model, sizeof(model)) <= 0) |
| goto read_cs; |
| |
| model[sizeof(model)-1] = 0; |
| |
| if (!strcmp(model, "amcc,sequoia") || |
| !strcmp(model, "amcc,rainier")) |
| return 1; |
| |
| read_cs: |
| /* get CS value */ |
| val = SDRAM0_READ(DDR0_10); |
| |
| val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT); |
| cs = 0; |
| while (val) { |
| if (val & 0x1) |
| cs++; |
| val = val >> 1; |
| } |
| return cs; |
| } |
| |
| void ibm4xx_denali_fixup_memsize(void) |
| { |
| u32 val, max_cs, max_col, max_row; |
| u32 cs, col, row, bank, dpath; |
| unsigned long memsize; |
| |
| val = SDRAM0_READ(DDR0_02); |
| if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT)) |
| fatal("DDR controller is not initialized\n"); |
| |
| /* get maximum cs col and row values */ |
| max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT); |
| max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT); |
| max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT); |
| |
| cs = ibm4xx_denali_get_cs(); |
| if (!cs) |
| fatal("No memory installed\n"); |
| if (cs > max_cs) |
| fatal("DDR wrong CS configuration\n"); |
| |
| /* get data path bytes */ |
| val = SDRAM0_READ(DDR0_14); |
| |
| if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT)) |
| dpath = 4; /* 32 bits */ |
| else |
| dpath = 8; /* 64 bits */ |
| |
| /* get address pins (rows) */ |
| val = SDRAM0_READ(DDR0_42); |
| |
| row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT); |
| if (row > max_row) |
| fatal("DDR wrong APIN configuration\n"); |
| row = max_row - row; |
| |
| /* get collomn size and banks */ |
| val = SDRAM0_READ(DDR0_43); |
| |
| col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT); |
| if (col > max_col) |
| fatal("DDR wrong COL configuration\n"); |
| col = max_col - col; |
| |
| if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT)) |
| bank = 8; /* 8 banks */ |
| else |
| bank = 4; /* 4 banks */ |
| |
| memsize = cs * (1 << (col+row)) * bank * dpath; |
| memsize = chip_11_errata(memsize); |
| dt_fixup_memory(0, memsize); |
| } |
| |
| #define SPRN_DBCR0_40X 0x3F2 |
| #define SPRN_DBCR0_44X 0x134 |
| #define DBCR0_RST_SYSTEM 0x30000000 |
| |
| void ibm44x_dbcr_reset(void) |
| { |
| unsigned long tmp; |
| |
| asm volatile ( |
| "mfspr %0,%1\n" |
| "oris %0,%0,%2@h\n" |
| "mtspr %1,%0" |
| : "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM) |
| ); |
| |
| } |
| |
| void ibm40x_dbcr_reset(void) |
| { |
| unsigned long tmp; |
| |
| asm volatile ( |
| "mfspr %0,%1\n" |
| "oris %0,%0,%2@h\n" |
| "mtspr %1,%0" |
| : "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM) |
| ); |
| } |
| |
| #define EMAC_RESET 0x20000000 |
| void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1) |
| { |
| /* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't |
| * do this for us |
| */ |
| if (emac0) |
| *emac0 = EMAC_RESET; |
| if (emac1) |
| *emac1 = EMAC_RESET; |
| |
| mtdcr(DCRN_MAL0_CFG, MAL_RESET); |
| while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET) |
| ; /* loop until reset takes effect */ |
| } |
| |
| /* Read 4xx EBC bus bridge registers to get mappings of the peripheral |
| * banks into the OPB address space */ |
| void ibm4xx_fixup_ebc_ranges(const char *ebc) |
| { |
| void *devp; |
| u32 bxcr; |
| u32 ranges[EBC_NUM_BANKS*4]; |
| u32 *p = ranges; |
| int i; |
| |
| for (i = 0; i < EBC_NUM_BANKS; i++) { |
| mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i)); |
| bxcr = mfdcr(DCRN_EBC0_CFGDATA); |
| |
| if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) { |
| *p++ = i; |
| *p++ = 0; |
| *p++ = bxcr & EBC_BXCR_BAS; |
| *p++ = EBC_BXCR_BANK_SIZE(bxcr); |
| } |
| } |
| |
| devp = finddevice(ebc); |
| if (! devp) |
| fatal("Couldn't locate EBC node %s\n\r", ebc); |
| |
| setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32)); |
| } |
| |
| /* Calculate 440GP clocks */ |
| void ibm440gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk) |
| { |
| u32 sys0 = mfdcr(DCRN_CPC0_SYS0); |
| u32 cr0 = mfdcr(DCRN_CPC0_CR0); |
| u32 cpu, plb, opb, ebc, tb, uart0, uart1, m; |
| u32 opdv = CPC0_SYS0_OPDV(sys0); |
| u32 epdv = CPC0_SYS0_EPDV(sys0); |
| |
| if (sys0 & CPC0_SYS0_BYPASS) { |
| /* Bypass system PLL */ |
| cpu = plb = sys_clk; |
| } else { |
| if (sys0 & CPC0_SYS0_EXTSL) |
| /* PerClk */ |
| m = CPC0_SYS0_FWDVB(sys0) * opdv * epdv; |
| else |
| /* CPU clock */ |
| m = CPC0_SYS0_FBDV(sys0) * CPC0_SYS0_FWDVA(sys0); |
| cpu = sys_clk * m / CPC0_SYS0_FWDVA(sys0); |
| plb = sys_clk * m / CPC0_SYS0_FWDVB(sys0); |
| } |
| |
| opb = plb / opdv; |
| ebc = opb / epdv; |
| |
| /* FIXME: Check if this is for all 440GP, or just Ebony */ |
| if ((mfpvr() & 0xf0000fff) == 0x40000440) |
| /* Rev. B 440GP, use external system clock */ |
| tb = sys_clk; |
| else |
| /* Rev. C 440GP, errata force us to use internal clock */ |
| tb = cpu; |
| |
| if (cr0 & CPC0_CR0_U0EC) |
| /* External UART clock */ |
| uart0 = ser_clk; |
| else |
| /* Internal UART clock */ |
| uart0 = plb / CPC0_CR0_UDIV(cr0); |
| |
| if (cr0 & CPC0_CR0_U1EC) |
| /* External UART clock */ |
| uart1 = ser_clk; |
| else |
| /* Internal UART clock */ |
| uart1 = plb / CPC0_CR0_UDIV(cr0); |
| |
| printf("PPC440GP: SysClk = %dMHz (%x)\n\r", |
| (sys_clk + 500000) / 1000000, sys_clk); |
| |
| dt_fixup_cpu_clocks(cpu, tb, 0); |
| |
| dt_fixup_clock("/plb", plb); |
| dt_fixup_clock("/plb/opb", opb); |
| dt_fixup_clock("/plb/opb/ebc", ebc); |
| dt_fixup_clock("/plb/opb/serial@40000200", uart0); |
| dt_fixup_clock("/plb/opb/serial@40000300", uart1); |
| } |
| |
| #define SPRN_CCR1 0x378 |
| |
| static inline u32 __fix_zero(u32 v, u32 def) |
| { |
| return v ? v : def; |
| } |
| |
| static unsigned int __ibm440eplike_fixup_clocks(unsigned int sys_clk, |
| unsigned int tmr_clk, |
| int per_clk_from_opb) |
| { |
| /* PLL config */ |
| u32 pllc = CPR0_READ(DCRN_CPR0_PLLC); |
| u32 plld = CPR0_READ(DCRN_CPR0_PLLD); |
| |
| /* Dividers */ |
| u32 fbdv = __fix_zero((plld >> 24) & 0x1f, 32); |
| u32 fwdva = __fix_zero((plld >> 16) & 0xf, 16); |
| u32 fwdvb = __fix_zero((plld >> 8) & 7, 8); |
| u32 lfbdv = __fix_zero(plld & 0x3f, 64); |
| u32 pradv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMAD) >> 24) & 7, 8); |
| u32 prbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMBD) >> 24) & 7, 8); |
| u32 opbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_OPBD) >> 24) & 3, 4); |
| u32 perdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PERD) >> 24) & 3, 4); |
| |
| /* Input clocks for primary dividers */ |
| u32 clk_a, clk_b; |
| |
| /* Resulting clocks */ |
| u32 cpu, plb, opb, ebc, vco; |
| |
| /* Timebase */ |
| u32 ccr1, tb = tmr_clk; |
| |
| if (pllc & 0x40000000) { |
| u32 m; |
| |
| /* Feedback path */ |
| switch ((pllc >> 24) & 7) { |
| case 0: |
| /* PLLOUTx */ |
| m = ((pllc & 0x20000000) ? fwdvb : fwdva) * lfbdv; |
| break; |
| case 1: |
| /* CPU */ |
| m = fwdva * pradv0; |
| break; |
| case 5: |
| /* PERClk */ |
| m = fwdvb * prbdv0 * opbdv0 * perdv0; |
| break; |
| default: |
| printf("WARNING ! Invalid PLL feedback source !\n"); |
| goto bypass; |
| } |
| m *= fbdv; |
| vco = sys_clk * m; |
| clk_a = vco / fwdva; |
| clk_b = vco / fwdvb; |
| } else { |
| bypass: |
| /* Bypass system PLL */ |
| vco = 0; |
| clk_a = clk_b = sys_clk; |
| } |
| |
| cpu = clk_a / pradv0; |
| plb = clk_b / prbdv0; |
| opb = plb / opbdv0; |
| ebc = (per_clk_from_opb ? opb : plb) / perdv0; |
| |
| /* Figure out timebase. Either CPU or default TmrClk */ |
| ccr1 = mfspr(SPRN_CCR1); |
| |
| /* If passed a 0 tmr_clk, force CPU clock */ |
| if (tb == 0) { |
| ccr1 &= ~0x80u; |
| mtspr(SPRN_CCR1, ccr1); |
| } |
| if ((ccr1 & 0x0080) == 0) |
| tb = cpu; |
| |
| dt_fixup_cpu_clocks(cpu, tb, 0); |
| dt_fixup_clock("/plb", plb); |
| dt_fixup_clock("/plb/opb", opb); |
| dt_fixup_clock("/plb/opb/ebc", ebc); |
| |
| return plb; |
| } |
| |
| static void eplike_fixup_uart_clk(int index, const char *path, |
| unsigned int ser_clk, |
| unsigned int plb_clk) |
| { |
| unsigned int sdr; |
| unsigned int clock; |
| |
| switch (index) { |
| case 0: |
| sdr = SDR0_READ(DCRN_SDR0_UART0); |
| break; |
| case 1: |
| sdr = SDR0_READ(DCRN_SDR0_UART1); |
| break; |
| case 2: |
| sdr = SDR0_READ(DCRN_SDR0_UART2); |
| break; |
| case 3: |
| sdr = SDR0_READ(DCRN_SDR0_UART3); |
| break; |
| default: |
| return; |
| } |
| |
| if (sdr & 0x00800000u) |
| clock = ser_clk; |
| else |
| clock = plb_clk / __fix_zero(sdr & 0xff, 256); |
| |
| dt_fixup_clock(path, clock); |
| } |
| |
| void ibm440ep_fixup_clocks(unsigned int sys_clk, |
| unsigned int ser_clk, |
| unsigned int tmr_clk) |
| { |
| unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 0); |
| |
| /* serial clocks beed fixup based on int/ext */ |
| eplike_fixup_uart_clk(0, "/plb/opb/serial@ef600300", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(1, "/plb/opb/serial@ef600400", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(2, "/plb/opb/serial@ef600500", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(3, "/plb/opb/serial@ef600600", ser_clk, plb_clk); |
| } |
| |
| void ibm440gx_fixup_clocks(unsigned int sys_clk, |
| unsigned int ser_clk, |
| unsigned int tmr_clk) |
| { |
| unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1); |
| |
| /* serial clocks beed fixup based on int/ext */ |
| eplike_fixup_uart_clk(0, "/plb/opb/serial@40000200", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(1, "/plb/opb/serial@40000300", ser_clk, plb_clk); |
| } |
| |
| void ibm440spe_fixup_clocks(unsigned int sys_clk, |
| unsigned int ser_clk, |
| unsigned int tmr_clk) |
| { |
| unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1); |
| |
| /* serial clocks beed fixup based on int/ext */ |
| eplike_fixup_uart_clk(0, "/plb/opb/serial@10000200", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(1, "/plb/opb/serial@10000300", ser_clk, plb_clk); |
| eplike_fixup_uart_clk(2, "/plb/opb/serial@10000600", ser_clk, plb_clk); |
| } |
| |
| void ibm405gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk) |
| { |
| u32 pllmr = mfdcr(DCRN_CPC0_PLLMR); |
| u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0); |
| u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1); |
| u32 psr = mfdcr(DCRN_405_CPC0_PSR); |
| u32 cpu, plb, opb, ebc, tb, uart0, uart1, m; |
| u32 fwdv, fwdvb, fbdv, cbdv, opdv, epdv, ppdv, udiv; |
| |
| fwdv = (8 - ((pllmr & 0xe0000000) >> 29)); |
| fbdv = (pllmr & 0x1e000000) >> 25; |
| if (fbdv == 0) |
| fbdv = 16; |
| cbdv = ((pllmr & 0x00060000) >> 17) + 1; /* CPU:PLB */ |
| opdv = ((pllmr & 0x00018000) >> 15) + 1; /* PLB:OPB */ |
| ppdv = ((pllmr & 0x00001800) >> 13) + 1; /* PLB:PCI */ |
| epdv = ((pllmr & 0x00001800) >> 11) + 2; /* PLB:EBC */ |
| udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1; |
| |
| /* check for 405GPr */ |
| if ((mfpvr() & 0xfffffff0) == (0x50910951 & 0xfffffff0)) { |
| fwdvb = 8 - (pllmr & 0x00000007); |
| if (!(psr & 0x00001000)) /* PCI async mode enable == 0 */ |
| if (psr & 0x00000020) /* New mode enable */ |
| m = fwdvb * 2 * ppdv; |
| else |
| m = fwdvb * cbdv * ppdv; |
| else if (psr & 0x00000020) /* New mode enable */ |
| if (psr & 0x00000800) /* PerClk synch mode */ |
| m = fwdvb * 2 * epdv; |
| else |
| m = fbdv * fwdv; |
| else if (epdv == fbdv) |
| m = fbdv * cbdv * epdv; |
| else |
| m = fbdv * fwdvb * cbdv; |
| |
| cpu = sys_clk * m / fwdv; |
| plb = sys_clk * m / (fwdvb * cbdv); |
| } else { |
| m = fwdv * fbdv * cbdv; |
| cpu = sys_clk * m / fwdv; |
| plb = cpu / cbdv; |
| } |
| opb = plb / opdv; |
| ebc = plb / epdv; |
| |
| if (cpc0_cr0 & 0x80) |
| /* uart0 uses the external clock */ |
| uart0 = ser_clk; |
| else |
| uart0 = cpu / udiv; |
| |
| if (cpc0_cr0 & 0x40) |
| /* uart1 uses the external clock */ |
| uart1 = ser_clk; |
| else |
| uart1 = cpu / udiv; |
| |
| /* setup the timebase clock to tick at the cpu frequency */ |
| cpc0_cr1 = cpc0_cr1 & ~0x00800000; |
| mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1); |
| tb = cpu; |
| |
| dt_fixup_cpu_clocks(cpu, tb, 0); |
| dt_fixup_clock("/plb", plb); |
| dt_fixup_clock("/plb/opb", opb); |
| dt_fixup_clock("/plb/ebc", ebc); |
| dt_fixup_clock("/plb/opb/serial@ef600300", uart0); |
| dt_fixup_clock("/plb/opb/serial@ef600400", uart1); |
| } |
| |
| |
| void ibm405ep_fixup_clocks(unsigned int sys_clk) |
| { |
| u32 pllmr0 = mfdcr(DCRN_CPC0_PLLMR0); |
| u32 pllmr1 = mfdcr(DCRN_CPC0_PLLMR1); |
| u32 cpc0_ucr = mfdcr(DCRN_CPC0_UCR); |
| u32 cpu, plb, opb, ebc, uart0, uart1; |
| u32 fwdva, fwdvb, fbdv, cbdv, opdv, epdv; |
| u32 pllmr0_ccdv, tb, m; |
| |
| fwdva = 8 - ((pllmr1 & 0x00070000) >> 16); |
| fwdvb = 8 - ((pllmr1 & 0x00007000) >> 12); |
| fbdv = (pllmr1 & 0x00f00000) >> 20; |
| if (fbdv == 0) |
| fbdv = 16; |
| |
| cbdv = ((pllmr0 & 0x00030000) >> 16) + 1; /* CPU:PLB */ |
| epdv = ((pllmr0 & 0x00000300) >> 8) + 2; /* PLB:EBC */ |
| opdv = ((pllmr0 & 0x00003000) >> 12) + 1; /* PLB:OPB */ |
| |
| m = fbdv * fwdvb; |
| |
| pllmr0_ccdv = ((pllmr0 & 0x00300000) >> 20) + 1; |
| if (pllmr1 & 0x80000000) |
| cpu = sys_clk * m / (fwdva * pllmr0_ccdv); |
| else |
| cpu = sys_clk / pllmr0_ccdv; |
| |
| plb = cpu / cbdv; |
| opb = plb / opdv; |
| ebc = plb / epdv; |
| tb = cpu; |
| uart0 = cpu / (cpc0_ucr & 0x0000007f); |
| uart1 = cpu / ((cpc0_ucr & 0x00007f00) >> 8); |
| |
| dt_fixup_cpu_clocks(cpu, tb, 0); |
| dt_fixup_clock("/plb", plb); |
| dt_fixup_clock("/plb/opb", opb); |
| dt_fixup_clock("/plb/ebc", ebc); |
| dt_fixup_clock("/plb/opb/serial@ef600300", uart0); |
| dt_fixup_clock("/plb/opb/serial@ef600400", uart1); |
| } |