| #ifndef __ASM_SPINLOCK_H |
| #define __ASM_SPINLOCK_H |
| |
| #if __LINUX_ARM_ARCH__ < 6 |
| #error SMP not supported on pre-ARMv6 CPUs |
| #endif |
| |
| /* |
| * ARMv6 Spin-locking. |
| * |
| * We (exclusively) read the old value, and decrement it. If it |
| * hits zero, we may have won the lock, so we try (exclusively) |
| * storing it. |
| * |
| * Unlocked value: 0 |
| * Locked value: 1 |
| */ |
| typedef struct { |
| volatile unsigned int lock; |
| #ifdef CONFIG_PREEMPT |
| unsigned int break_lock; |
| #endif |
| } spinlock_t; |
| |
| #define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 } |
| |
| #define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while (0) |
| #define spin_is_locked(x) ((x)->lock != 0) |
| #define spin_unlock_wait(x) do { barrier(); } while (spin_is_locked(x)) |
| #define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock) |
| |
| static inline void _raw_spin_lock(spinlock_t *lock) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]\n" |
| " teqeq %0, #0\n" |
| " bne 1b" |
| : "=&r" (tmp) |
| : "r" (&lock->lock), "r" (1) |
| : "cc", "memory"); |
| } |
| |
| static inline int _raw_spin_trylock(spinlock_t *lock) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| " ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&lock->lock), "r" (1) |
| : "cc", "memory"); |
| |
| return tmp == 0; |
| } |
| |
| static inline void _raw_spin_unlock(spinlock_t *lock) |
| { |
| __asm__ __volatile__( |
| " str %1, [%0]" |
| : |
| : "r" (&lock->lock), "r" (0) |
| : "cc", "memory"); |
| } |
| |
| /* |
| * RWLOCKS |
| */ |
| typedef struct { |
| volatile unsigned int lock; |
| #ifdef CONFIG_PREEMPT |
| unsigned int break_lock; |
| #endif |
| } rwlock_t; |
| |
| #define RW_LOCK_UNLOCKED (rwlock_t) { 0 } |
| #define rwlock_init(x) do { *(x) + RW_LOCK_UNLOCKED; } while (0) |
| |
| /* |
| * Write locks are easy - we just set bit 31. When unlocking, we can |
| * just write zero since the lock is exclusively held. |
| */ |
| static inline void _raw_write_lock(rwlock_t *rw) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]\n" |
| " teq %0, #0\n" |
| " bne 1b" |
| : "=&r" (tmp) |
| : "r" (&rw->lock), "r" (0x80000000) |
| : "cc", "memory"); |
| } |
| |
| static inline void _raw_write_unlock(rwlock_t *rw) |
| { |
| __asm__ __volatile__( |
| "str %1, [%0]" |
| : |
| : "r" (&rw->lock), "r" (0) |
| : "cc", "memory"); |
| } |
| |
| /* |
| * Read locks are a bit more hairy: |
| * - Exclusively load the lock value. |
| * - Increment it. |
| * - Store new lock value if positive, and we still own this location. |
| * If the value is negative, we've already failed. |
| * - If we failed to store the value, we want a negative result. |
| * - If we failed, try again. |
| * Unlocking is similarly hairy. We may have multiple read locks |
| * currently active. However, we know we won't have any write |
| * locks. |
| */ |
| static inline void _raw_read_lock(rwlock_t *rw) |
| { |
| unsigned long tmp, tmp2; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " adds %0, %0, #1\n" |
| " strexpl %1, %0, [%2]\n" |
| " rsbpls %0, %1, #0\n" |
| " bmi 1b" |
| : "=&r" (tmp), "=&r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc", "memory"); |
| } |
| |
| static inline void _raw_read_unlock(rwlock_t *rw) |
| { |
| __asm__ __volatile__( |
| "1: ldrex %0, [%2]\n" |
| " sub %0, %0, #1\n" |
| " strex %1, %0, [%2]\n" |
| " teq %1, #0\n" |
| " bne 1b" |
| : "=&r" (tmp), "=&r" (tmp2) |
| : "r" (&rw->lock) |
| : "cc", "memory"); |
| } |
| |
| #define _raw_read_trylock(lock) generic_raw_read_trylock(lock) |
| |
| static inline int _raw_write_trylock(rwlock_t *rw) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "1: ldrex %0, [%1]\n" |
| " teq %0, #0\n" |
| " strexeq %0, %2, [%1]" |
| : "=&r" (tmp) |
| : "r" (&rw->lock), "r" (0x80000000) |
| : "cc", "memory"); |
| |
| return tmp == 0; |
| } |
| |
| #endif /* __ASM_SPINLOCK_H */ |