| /* |
| * Interrupt handling assembler and defines for Linux/CRISv10 |
| */ |
| |
| #ifndef _ASM_ARCH_IRQ_H |
| #define _ASM_ARCH_IRQ_H |
| |
| #include <asm/arch/sv_addr_ag.h> |
| |
| #define NR_IRQS 32 |
| |
| /* The first vector number used for IRQs in v10 is really 0x20 */ |
| /* but all the code and constants are offseted to make 0 the first */ |
| #define FIRST_IRQ 0 |
| |
| #define SOME_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, some) /* 0 ? */ |
| #define NMI_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, nmi) /* 1 */ |
| #define TIMER0_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, timer0) /* 2 */ |
| #define TIMER1_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, timer1) /* 3 */ |
| /* mio, ata, par0, scsi0 on 4 */ |
| /* par1, scsi1 on 5 */ |
| #define NETWORK_STATUS_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, network) /* 6 */ |
| |
| #define SERIAL_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, serial) /* 8 */ |
| #define PA_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, pa) /* 11 */ |
| /* extdma0 and extdma1 is at irq 12 and 13 and/or same as dma5 and dma6 ? */ |
| #define EXTDMA0_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, ext_dma0) |
| #define EXTDMA1_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, ext_dma1) |
| |
| /* dma0-9 is irq 16..25 */ |
| /* 16,17: network */ |
| #define DMA0_TX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma0) |
| #define DMA1_RX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma1) |
| #define NETWORK_DMA_TX_IRQ_NBR DMA0_TX_IRQ_NBR |
| #define NETWORK_DMA_RX_IRQ_NBR DMA1_RX_IRQ_NBR |
| |
| /* 18,19: dma2 and dma3 shared by par0, scsi0, ser2 and ata */ |
| #define DMA2_TX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma2) |
| #define DMA3_RX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma3) |
| #define SER2_DMA_TX_IRQ_NBR DMA2_TX_IRQ_NBR |
| #define SER2_DMA_RX_IRQ_NBR DMA3_RX_IRQ_NBR |
| |
| /* 20,21: dma4 and dma5 shared by par1, scsi1, ser3 and extdma0 */ |
| #define DMA4_TX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma4) |
| #define DMA5_RX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma5) |
| #define SER3_DMA_TX_IRQ_NBR DMA4_TX_IRQ_NBR |
| #define SER3_DMA_RX_IRQ_NBR DMA5_RX_IRQ_NBR |
| |
| /* 22,23: dma6 and dma7 shared by ser0, extdma1 and mem2mem */ |
| #define DMA6_TX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma6) |
| #define DMA7_RX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma7) |
| #define SER0_DMA_TX_IRQ_NBR DMA6_TX_IRQ_NBR |
| #define SER0_DMA_RX_IRQ_NBR DMA7_RX_IRQ_NBR |
| #define MEM2MEM_DMA_TX_IRQ_NBR DMA6_TX_IRQ_NBR |
| #define MEM2MEM_DMA_RX_IRQ_NBR DMA7_RX_IRQ_NBR |
| |
| /* 24,25: dma8 and dma9 shared by ser1 and usb */ |
| #define DMA8_TX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma8) |
| #define DMA9_RX_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, dma9) |
| #define SER1_DMA_TX_IRQ_NBR DMA8_TX_IRQ_NBR |
| #define SER1_DMA_RX_IRQ_NBR DMA9_RX_IRQ_NBR |
| #define USB_DMA_TX_IRQ_NBR DMA8_TX_IRQ_NBR |
| #define USB_DMA_RX_IRQ_NBR DMA9_RX_IRQ_NBR |
| |
| /* usb: controller at irq 31 + uses DMA8 and DMA9 */ |
| #define USB_HC_IRQ_NBR IO_BITNR(R_VECT_MASK_RD, usb) |
| |
| /* our fine, global, etrax irq vector! the pointer lives in the head.S file. */ |
| |
| typedef void (*irqvectptr)(void); |
| |
| struct etrax_interrupt_vector { |
| irqvectptr v[256]; |
| }; |
| |
| extern struct etrax_interrupt_vector *etrax_irv; |
| void set_int_vector(int n, irqvectptr addr, irqvectptr saddr); |
| void set_break_vector(int n, irqvectptr addr); |
| |
| #define mask_irq(irq_nr) (*R_VECT_MASK_CLR = 1 << (irq_nr)); |
| #define unmask_irq(irq_nr) (*R_VECT_MASK_SET = 1 << (irq_nr)); |
| |
| #define __STR(x) #x |
| #define STR(x) __STR(x) |
| |
| /* SAVE_ALL saves registers so they match pt_regs */ |
| |
| #define SAVE_ALL \ |
| "move $irp,[$sp=$sp-16]\n\t" /* push instruction pointer and fake SBFS struct */ \ |
| "push $srp\n\t" /* push subroutine return pointer */ \ |
| "push $dccr\n\t" /* push condition codes */ \ |
| "push $mof\n\t" /* push multiply overflow reg */ \ |
| "di\n\t" /* need to disable irq's at this point */\ |
| "subq 14*4,$sp\n\t" /* make room for r0-r13 */ \ |
| "movem $r13,[$sp]\n\t" /* push the r0-r13 registers */ \ |
| "push $r10\n\t" /* push orig_r10 */ \ |
| "clear.d [$sp=$sp-4]\n\t" /* frametype - this is a normal stackframe */ |
| |
| /* BLOCK_IRQ and UNBLOCK_IRQ do the same as mask_irq and unmask_irq */ |
| |
| #define BLOCK_IRQ(mask,nr) \ |
| "move.d " #mask ",$r0\n\t" \ |
| "move.d $r0,[0xb00000d8]\n\t" |
| |
| #define UNBLOCK_IRQ(mask) \ |
| "move.d " #mask ",$r0\n\t" \ |
| "move.d $r0,[0xb00000dc]\n\t" |
| |
| #define IRQ_NAME2(nr) nr##_interrupt(void) |
| #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr) |
| #define sIRQ_NAME(nr) IRQ_NAME2(sIRQ##nr) |
| #define BAD_IRQ_NAME(nr) IRQ_NAME2(bad_IRQ##nr) |
| |
| /* the asm IRQ handler makes sure the causing IRQ is blocked, then it calls |
| * do_IRQ (with irq disabled still). after that it unblocks and jumps to |
| * ret_from_intr (entry.S) |
| * |
| * The reason the IRQ is blocked is to allow an sti() before the handler which |
| * will acknowledge the interrupt is run. |
| */ |
| |
| #define BUILD_IRQ(nr,mask) \ |
| void IRQ_NAME(nr); \ |
| void sIRQ_NAME(nr); \ |
| void BAD_IRQ_NAME(nr); \ |
| __asm__ ( \ |
| ".text\n\t" \ |
| "IRQ" #nr "_interrupt:\n\t" \ |
| SAVE_ALL \ |
| "sIRQ" #nr "_interrupt:\n\t" /* shortcut for the multiple irq handler */ \ |
| BLOCK_IRQ(mask,nr) /* this must be done to prevent irq loops when we ei later */ \ |
| "moveq "#nr",$r10\n\t" \ |
| "move.d $sp,$r11\n\t" \ |
| "jsr do_IRQ\n\t" /* irq.c, r10 and r11 are arguments */ \ |
| UNBLOCK_IRQ(mask) \ |
| "moveq 0,$r9\n\t" /* make ret_from_intr realise we came from an irq */ \ |
| "jump ret_from_intr\n\t" \ |
| "bad_IRQ" #nr "_interrupt:\n\t" \ |
| "push $r0\n\t" \ |
| BLOCK_IRQ(mask,nr) \ |
| "pop $r0\n\t" \ |
| "reti\n\t" \ |
| "nop\n"); |
| |
| /* This is subtle. The timer interrupt is crucial and it should not be disabled for |
| * too long. However, if it had been a normal interrupt as per BUILD_IRQ, it would |
| * have been BLOCK'ed, and then softirq's are run before we return here to UNBLOCK. |
| * If the softirq's take too much time to run, the timer irq won't run and the |
| * watchdog will kill us. |
| * |
| * Furthermore, if a lot of other irq's occur before we return here, the multiple_irq |
| * handler is run and it prioritizes the timer interrupt. However if we had BLOCK'ed |
| * it here, we would not get the multiple_irq at all. |
| * |
| * The non-blocking here is based on the knowledge that the timer interrupt is |
| * registred as a fast interrupt (SA_INTERRUPT) so that we _know_ there will not |
| * be an sti() before the timer irq handler is run to acknowledge the interrupt. |
| */ |
| |
| #define BUILD_TIMER_IRQ(nr,mask) \ |
| void IRQ_NAME(nr); \ |
| void sIRQ_NAME(nr); \ |
| void BAD_IRQ_NAME(nr); \ |
| __asm__ ( \ |
| ".text\n\t" \ |
| "IRQ" #nr "_interrupt:\n\t" \ |
| SAVE_ALL \ |
| "sIRQ" #nr "_interrupt:\n\t" /* shortcut for the multiple irq handler */ \ |
| "moveq "#nr",$r10\n\t" \ |
| "move.d $sp,$r11\n\t" \ |
| "jsr do_IRQ\n\t" /* irq.c, r10 and r11 are arguments */ \ |
| "moveq 0,$r9\n\t" /* make ret_from_intr realise we came from an irq */ \ |
| "jump ret_from_intr\n\t" \ |
| "bad_IRQ" #nr "_interrupt:\n\t" \ |
| "push $r0\n\t" \ |
| BLOCK_IRQ(mask,nr) \ |
| "pop $r0\n\t" \ |
| "reti\n\t" \ |
| "nop\n"); |
| |
| #endif |