| /* |
| * CRIS pgtable.h - macros and functions to manipulate page tables. |
| */ |
| |
| #ifndef _CRIS_PGTABLE_H |
| #define _CRIS_PGTABLE_H |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/config.h> |
| #include <linux/sched.h> |
| #include <asm/mmu.h> |
| #endif |
| #include <asm/arch/pgtable.h> |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. On |
| * CRIS, we use that, but "fold" the mid level into the top-level page |
| * table. Since the MMU TLB is software loaded through an interrupt, it |
| * supports any page table structure, so we could have used a three-level |
| * setup, but for the amounts of memory we normally use, a two-level is |
| * probably more efficient. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the CRIS page table tree. |
| */ |
| #ifndef __ASSEMBLY__ |
| extern void paging_init(void); |
| #endif |
| |
| /* Certain architectures need to do special things when pte's |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| |
| /* |
| * (pmds are folded into pgds so this doesn't get actually called, |
| * but the define is needed for a generic inline function.) |
| */ |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) |
| |
| /* PMD_SHIFT determines the size of the area a second-level page table can |
| * map. It is equal to the page size times the number of PTE's that fit in |
| * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number. |
| */ |
| |
| #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* PGDIR_SHIFT determines what a third-level page table entry can map. |
| * Since we fold into a two-level structure, this is the same as PMD_SHIFT. |
| */ |
| |
| #define PGDIR_SHIFT PMD_SHIFT |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: we use a two-level, so |
| * we don't really have any PMD directory physically. |
| * pointers are 4 bytes so we can use the page size and |
| * divide it by 4 (shift by 2). |
| */ |
| #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) |
| |
| /* calculate how many PGD entries a user-level program can use |
| * the first mappable virtual address is 0 |
| * (TASK_SIZE is the maximum virtual address space) |
| */ |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| /* zero page used for uninitialized stuff */ |
| #ifndef __ASSEMBLY__ |
| extern unsigned long empty_zero_page; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| #endif |
| |
| /* number of bits that fit into a memory pointer */ |
| #define BITS_PER_PTR (8*sizeof(unsigned long)) |
| |
| /* to align the pointer to a pointer address */ |
| #define PTR_MASK (~(sizeof(void*)-1)) |
| |
| /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ |
| /* 64-bit machines, beware! SRB. */ |
| #define SIZEOF_PTR_LOG2 2 |
| |
| /* to find an entry in a page-table */ |
| #define PAGE_PTR(address) \ |
| ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) |
| |
| /* to set the page-dir */ |
| #define SET_PAGE_DIR(tsk,pgdir) |
| |
| #define pte_none(x) (!pte_val(x)) |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) |
| |
| #define pmd_none(x) (!pmd_val(x)) |
| /* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad |
| * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries. |
| */ |
| #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE) |
| #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| extern inline int pgd_none(pgd_t pgd) { return 0; } |
| extern inline int pgd_bad(pgd_t pgd) { return 0; } |
| extern inline int pgd_present(pgd_t pgd) { return 1; } |
| extern inline void pgd_clear(pgd_t * pgdp) { } |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| |
| extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } |
| extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| |
| extern inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); |
| return pte; |
| } |
| |
| extern inline pte_t pte_rdprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); |
| return pte; |
| } |
| |
| extern inline pte_t pte_exprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkclean(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkold(pte_t pte) |
| { |
| pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_WRITE; |
| if (pte_val(pte) & _PAGE_MODIFIED) |
| pte_val(pte) |= _PAGE_SILENT_WRITE; |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkread(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_READ; |
| if (pte_val(pte) & _PAGE_ACCESSED) |
| pte_val(pte) |= _PAGE_SILENT_READ; |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkexec(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_READ; |
| if (pte_val(pte) & _PAGE_ACCESSED) |
| pte_val(pte) |= _PAGE_SILENT_READ; |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkdirty(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_MODIFIED; |
| if (pte_val(pte) & _PAGE_WRITE) |
| pte_val(pte) |= _PAGE_SILENT_WRITE; |
| return pte; |
| } |
| |
| extern inline pte_t pte_mkyoung(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_ACCESSED; |
| if (pte_val(pte) & _PAGE_READ) |
| { |
| pte_val(pte) |= _PAGE_SILENT_READ; |
| if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) == |
| (_PAGE_WRITE | _PAGE_MODIFIED)) |
| pte_val(pte) |= _PAGE_SILENT_WRITE; |
| } |
| return pte; |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| /* What actually goes as arguments to the various functions is less than |
| * obvious, but a rule of thumb is that struct page's goes as struct page *, |
| * really physical DRAM addresses are unsigned long's, and DRAM "virtual" |
| * addresses (the 0xc0xxxxxx's) goes as void *'s. |
| */ |
| |
| extern inline pte_t __mk_pte(void * page, pgprot_t pgprot) |
| { |
| pte_t pte; |
| /* the PTE needs a physical address */ |
| pte_val(pte) = __pa(page) | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) |
| |
| #define mk_pte_phys(physpage, pgprot) \ |
| ({ \ |
| pte_t __pte; \ |
| \ |
| pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ |
| __pte; \ |
| }) |
| |
| extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } |
| |
| |
| /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval |
| * __pte_page(pte_val) refers to the "virtual" DRAM interval |
| * pte_pagenr refers to the page-number counted starting from the virtual DRAM start |
| */ |
| |
| extern inline unsigned long __pte_page(pte_t pte) |
| { |
| /* the PTE contains a physical address */ |
| return (unsigned long)__va(pte_val(pte) & PAGE_MASK); |
| } |
| |
| #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) |
| |
| /* permanent address of a page */ |
| |
| #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) |
| #define pte_page(pte) (mem_map+pte_pagenr(pte)) |
| |
| /* only the pte's themselves need to point to physical DRAM (see above) |
| * the pagetable links are purely handled within the kernel SW and thus |
| * don't need the __pa and __va transformations. |
| */ |
| |
| extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) |
| { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; } |
| |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| |
| /* to find an entry in a page-table-directory. */ |
| #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| |
| /* to find an entry in a page-table-directory */ |
| extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) |
| { |
| return mm->pgd + pgd_index(address); |
| } |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* Find an entry in the second-level page table.. */ |
| extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) |
| { |
| return (pmd_t *) dir; |
| } |
| |
| /* Find an entry in the third-level page table.. */ |
| #define __pte_offset(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) |
| #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) |
| |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| #define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT) |
| #define pfn_pte(pfn, prot) __pte((__pa((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) |
| |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ |
| |
| /* |
| * CRIS doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| * |
| * Actually I am not sure on what this could be used for. |
| */ |
| extern inline void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t pte) |
| { |
| } |
| |
| /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ |
| /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ |
| |
| #define __swp_type(x) (((x).val >> 5) & 0x7f) |
| #define __swp_offset(x) ((x).val >> 12) |
| #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define kern_addr_valid(addr) (1) |
| |
| #include <asm-generic/pgtable.h> |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| #define pte_to_pgoff(x) (pte_val(x) >> 6) |
| #define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE) |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _CRIS_PGTABLE_H */ |