| #ifndef _LINUX_MM_H |
| #define _LINUX_MM_H |
| |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/capability.h> |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/config.h> |
| #include <linux/gfp.h> |
| #include <linux/list.h> |
| #include <linux/mmzone.h> |
| #include <linux/rbtree.h> |
| #include <linux/prio_tree.h> |
| #include <linux/fs.h> |
| #include <linux/mutex.h> |
| |
| struct mempolicy; |
| struct anon_vma; |
| |
| #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ |
| extern unsigned long max_mapnr; |
| #endif |
| |
| extern unsigned long num_physpages; |
| extern void * high_memory; |
| extern unsigned long vmalloc_earlyreserve; |
| extern int page_cluster; |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_legacy_va_layout; |
| #else |
| #define sysctl_legacy_va_layout 0 |
| #endif |
| |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/atomic.h> |
| |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
| |
| /* |
| * Linux kernel virtual memory manager primitives. |
| * The idea being to have a "virtual" mm in the same way |
| * we have a virtual fs - giving a cleaner interface to the |
| * mm details, and allowing different kinds of memory mappings |
| * (from shared memory to executable loading to arbitrary |
| * mmap() functions). |
| */ |
| |
| /* |
| * This struct defines a memory VMM memory area. There is one of these |
| * per VM-area/task. A VM area is any part of the process virtual memory |
| * space that has a special rule for the page-fault handlers (ie a shared |
| * library, the executable area etc). |
| */ |
| struct vm_area_struct { |
| struct mm_struct * vm_mm; /* The address space we belong to. */ |
| unsigned long vm_start; /* Our start address within vm_mm. */ |
| unsigned long vm_end; /* The first byte after our end address |
| within vm_mm. */ |
| |
| /* linked list of VM areas per task, sorted by address */ |
| struct vm_area_struct *vm_next; |
| |
| pgprot_t vm_page_prot; /* Access permissions of this VMA. */ |
| unsigned long vm_flags; /* Flags, listed below. */ |
| |
| struct rb_node vm_rb; |
| |
| /* |
| * For areas with an address space and backing store, |
| * linkage into the address_space->i_mmap prio tree, or |
| * linkage to the list of like vmas hanging off its node, or |
| * linkage of vma in the address_space->i_mmap_nonlinear list. |
| */ |
| union { |
| struct { |
| struct list_head list; |
| void *parent; /* aligns with prio_tree_node parent */ |
| struct vm_area_struct *head; |
| } vm_set; |
| |
| struct raw_prio_tree_node prio_tree_node; |
| } shared; |
| |
| /* |
| * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma |
| * list, after a COW of one of the file pages. A MAP_SHARED vma |
| * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack |
| * or brk vma (with NULL file) can only be in an anon_vma list. |
| */ |
| struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ |
| struct anon_vma *anon_vma; /* Serialized by page_table_lock */ |
| |
| /* Function pointers to deal with this struct. */ |
| struct vm_operations_struct * vm_ops; |
| |
| /* Information about our backing store: */ |
| unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE |
| units, *not* PAGE_CACHE_SIZE */ |
| struct file * vm_file; /* File we map to (can be NULL). */ |
| void * vm_private_data; /* was vm_pte (shared mem) */ |
| unsigned long vm_truncate_count;/* truncate_count or restart_addr */ |
| |
| #ifndef CONFIG_MMU |
| atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ |
| #endif |
| #ifdef CONFIG_NUMA |
| struct mempolicy *vm_policy; /* NUMA policy for the VMA */ |
| #endif |
| }; |
| |
| /* |
| * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is |
| * disabled, then there's a single shared list of VMAs maintained by the |
| * system, and mm's subscribe to these individually |
| */ |
| struct vm_list_struct { |
| struct vm_list_struct *next; |
| struct vm_area_struct *vma; |
| }; |
| |
| #ifndef CONFIG_MMU |
| extern struct rb_root nommu_vma_tree; |
| extern struct rw_semaphore nommu_vma_sem; |
| |
| extern unsigned int kobjsize(const void *objp); |
| #endif |
| |
| /* |
| * vm_flags.. |
| */ |
| #define VM_READ 0x00000001 /* currently active flags */ |
| #define VM_WRITE 0x00000002 |
| #define VM_EXEC 0x00000004 |
| #define VM_SHARED 0x00000008 |
| |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
| #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
| #define VM_MAYWRITE 0x00000020 |
| #define VM_MAYEXEC 0x00000040 |
| #define VM_MAYSHARE 0x00000080 |
| |
| #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
| #define VM_GROWSUP 0x00000200 |
| #define VM_SHM 0x00000000 /* Means nothing: delete it later */ |
| #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
| #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ |
| |
| #define VM_EXECUTABLE 0x00001000 |
| #define VM_LOCKED 0x00002000 |
| #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
| |
| /* Used by sys_madvise() */ |
| #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
| #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
| |
| #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
| #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
| #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ |
| #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
| #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
| #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ |
| #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ |
| #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ |
| |
| #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
| #endif |
| |
| #ifdef CONFIG_STACK_GROWSUP |
| #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| #else |
| #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| #endif |
| |
| #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) |
| #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK |
| #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) |
| #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) |
| #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) |
| |
| /* |
| * mapping from the currently active vm_flags protection bits (the |
| * low four bits) to a page protection mask.. |
| */ |
| extern pgprot_t protection_map[16]; |
| |
| |
| /* |
| * These are the virtual MM functions - opening of an area, closing and |
| * unmapping it (needed to keep files on disk up-to-date etc), pointer |
| * to the functions called when a no-page or a wp-page exception occurs. |
| */ |
| struct vm_operations_struct { |
| void (*open)(struct vm_area_struct * area); |
| void (*close)(struct vm_area_struct * area); |
| struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); |
| int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); |
| #ifdef CONFIG_NUMA |
| int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
| struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
| unsigned long addr); |
| #endif |
| }; |
| |
| struct mmu_gather; |
| struct inode; |
| |
| /* |
| * Each physical page in the system has a struct page associated with |
| * it to keep track of whatever it is we are using the page for at the |
| * moment. Note that we have no way to track which tasks are using |
| * a page. |
| */ |
| struct page { |
| unsigned long flags; /* Atomic flags, some possibly |
| * updated asynchronously */ |
| atomic_t _count; /* Usage count, see below. */ |
| atomic_t _mapcount; /* Count of ptes mapped in mms, |
| * to show when page is mapped |
| * & limit reverse map searches. |
| */ |
| union { |
| struct { |
| unsigned long private; /* Mapping-private opaque data: |
| * usually used for buffer_heads |
| * if PagePrivate set; used for |
| * swp_entry_t if PageSwapCache; |
| * indicates order in the buddy |
| * system if PG_buddy is set. |
| */ |
| struct address_space *mapping; /* If low bit clear, points to |
| * inode address_space, or NULL. |
| * If page mapped as anonymous |
| * memory, low bit is set, and |
| * it points to anon_vma object: |
| * see PAGE_MAPPING_ANON below. |
| */ |
| }; |
| #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS |
| spinlock_t ptl; |
| #endif |
| }; |
| pgoff_t index; /* Our offset within mapping. */ |
| struct list_head lru; /* Pageout list, eg. active_list |
| * protected by zone->lru_lock ! |
| */ |
| /* |
| * On machines where all RAM is mapped into kernel address space, |
| * we can simply calculate the virtual address. On machines with |
| * highmem some memory is mapped into kernel virtual memory |
| * dynamically, so we need a place to store that address. |
| * Note that this field could be 16 bits on x86 ... ;) |
| * |
| * Architectures with slow multiplication can define |
| * WANT_PAGE_VIRTUAL in asm/page.h |
| */ |
| #if defined(WANT_PAGE_VIRTUAL) |
| void *virtual; /* Kernel virtual address (NULL if |
| not kmapped, ie. highmem) */ |
| #endif /* WANT_PAGE_VIRTUAL */ |
| }; |
| |
| #define page_private(page) ((page)->private) |
| #define set_page_private(page, v) ((page)->private = (v)) |
| |
| /* |
| * FIXME: take this include out, include page-flags.h in |
| * files which need it (119 of them) |
| */ |
| #include <linux/page-flags.h> |
| |
| /* |
| * Methods to modify the page usage count. |
| * |
| * What counts for a page usage: |
| * - cache mapping (page->mapping) |
| * - private data (page->private) |
| * - page mapped in a task's page tables, each mapping |
| * is counted separately |
| * |
| * Also, many kernel routines increase the page count before a critical |
| * routine so they can be sure the page doesn't go away from under them. |
| */ |
| |
| /* |
| * Drop a ref, return true if the logical refcount fell to zero (the page has |
| * no users) |
| */ |
| static inline int put_page_testzero(struct page *page) |
| { |
| BUG_ON(atomic_read(&page->_count) == 0); |
| return atomic_dec_and_test(&page->_count); |
| } |
| |
| /* |
| * Try to grab a ref unless the page has a refcount of zero, return false if |
| * that is the case. |
| */ |
| static inline int get_page_unless_zero(struct page *page) |
| { |
| return atomic_inc_not_zero(&page->_count); |
| } |
| |
| extern void FASTCALL(__page_cache_release(struct page *)); |
| |
| static inline int page_count(struct page *page) |
| { |
| if (unlikely(PageCompound(page))) |
| page = (struct page *)page_private(page); |
| return atomic_read(&page->_count); |
| } |
| |
| static inline void get_page(struct page *page) |
| { |
| if (unlikely(PageCompound(page))) |
| page = (struct page *)page_private(page); |
| atomic_inc(&page->_count); |
| } |
| |
| /* |
| * Setup the page count before being freed into the page allocator for |
| * the first time (boot or memory hotplug) |
| */ |
| static inline void init_page_count(struct page *page) |
| { |
| atomic_set(&page->_count, 1); |
| } |
| |
| void put_page(struct page *page); |
| |
| void split_page(struct page *page, unsigned int order); |
| |
| /* |
| * Multiple processes may "see" the same page. E.g. for untouched |
| * mappings of /dev/null, all processes see the same page full of |
| * zeroes, and text pages of executables and shared libraries have |
| * only one copy in memory, at most, normally. |
| * |
| * For the non-reserved pages, page_count(page) denotes a reference count. |
| * page_count() == 0 means the page is free. page->lru is then used for |
| * freelist management in the buddy allocator. |
| * page_count() == 1 means the page is used for exactly one purpose |
| * (e.g. a private data page of one process). |
| * |
| * A page may be used for kmalloc() or anyone else who does a |
| * __get_free_page(). In this case the page_count() is at least 1, and |
| * all other fields are unused but should be 0 or NULL. The |
| * management of this page is the responsibility of the one who uses |
| * it. |
| * |
| * The other pages (we may call them "process pages") are completely |
| * managed by the Linux memory manager: I/O, buffers, swapping etc. |
| * The following discussion applies only to them. |
| * |
| * A page may belong to an inode's memory mapping. In this case, |
| * page->mapping is the pointer to the inode, and page->index is the |
| * file offset of the page, in units of PAGE_CACHE_SIZE. |
| * |
| * A page contains an opaque `private' member, which belongs to the |
| * page's address_space. Usually, this is the address of a circular |
| * list of the page's disk buffers. |
| * |
| * For pages belonging to inodes, the page_count() is the number of |
| * attaches, plus 1 if `private' contains something, plus one for |
| * the page cache itself. |
| * |
| * Instead of keeping dirty/clean pages in per address-space lists, we instead |
| * now tag pages as dirty/under writeback in the radix tree. |
| * |
| * There is also a per-mapping radix tree mapping index to the page |
| * in memory if present. The tree is rooted at mapping->root. |
| * |
| * All process pages can do I/O: |
| * - inode pages may need to be read from disk, |
| * - inode pages which have been modified and are MAP_SHARED may need |
| * to be written to disk, |
| * - private pages which have been modified may need to be swapped out |
| * to swap space and (later) to be read back into memory. |
| */ |
| |
| /* |
| * The zone field is never updated after free_area_init_core() |
| * sets it, so none of the operations on it need to be atomic. |
| */ |
| |
| |
| /* |
| * page->flags layout: |
| * |
| * There are three possibilities for how page->flags get |
| * laid out. The first is for the normal case, without |
| * sparsemem. The second is for sparsemem when there is |
| * plenty of space for node and section. The last is when |
| * we have run out of space and have to fall back to an |
| * alternate (slower) way of determining the node. |
| * |
| * No sparsemem: | NODE | ZONE | ... | FLAGS | |
| * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | |
| * no space for node: | SECTION | ZONE | ... | FLAGS | |
| */ |
| #ifdef CONFIG_SPARSEMEM |
| #define SECTIONS_WIDTH SECTIONS_SHIFT |
| #else |
| #define SECTIONS_WIDTH 0 |
| #endif |
| |
| #define ZONES_WIDTH ZONES_SHIFT |
| |
| #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED |
| #define NODES_WIDTH NODES_SHIFT |
| #else |
| #define NODES_WIDTH 0 |
| #endif |
| |
| /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ |
| #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) |
| #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) |
| #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) |
| |
| /* |
| * We are going to use the flags for the page to node mapping if its in |
| * there. This includes the case where there is no node, so it is implicit. |
| */ |
| #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) |
| |
| #ifndef PFN_SECTION_SHIFT |
| #define PFN_SECTION_SHIFT 0 |
| #endif |
| |
| /* |
| * Define the bit shifts to access each section. For non-existant |
| * sections we define the shift as 0; that plus a 0 mask ensures |
| * the compiler will optimise away reference to them. |
| */ |
| #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) |
| #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) |
| #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) |
| |
| /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ |
| #if FLAGS_HAS_NODE |
| #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) |
| #else |
| #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) |
| #endif |
| #define ZONETABLE_PGSHIFT ZONES_PGSHIFT |
| |
| #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED |
| #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED |
| #endif |
| |
| #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) |
| #define NODES_MASK ((1UL << NODES_WIDTH) - 1) |
| #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) |
| #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) |
| |
| static inline unsigned long page_zonenum(struct page *page) |
| { |
| return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; |
| } |
| |
| struct zone; |
| extern struct zone *zone_table[]; |
| |
| static inline struct zone *page_zone(struct page *page) |
| { |
| return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & |
| ZONETABLE_MASK]; |
| } |
| |
| static inline unsigned long page_to_nid(struct page *page) |
| { |
| if (FLAGS_HAS_NODE) |
| return (page->flags >> NODES_PGSHIFT) & NODES_MASK; |
| else |
| return page_zone(page)->zone_pgdat->node_id; |
| } |
| static inline unsigned long page_to_section(struct page *page) |
| { |
| return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
| } |
| |
| static inline void set_page_zone(struct page *page, unsigned long zone) |
| { |
| page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
| page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
| } |
| static inline void set_page_node(struct page *page, unsigned long node) |
| { |
| page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
| page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
| } |
| static inline void set_page_section(struct page *page, unsigned long section) |
| { |
| page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
| page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
| } |
| |
| static inline void set_page_links(struct page *page, unsigned long zone, |
| unsigned long node, unsigned long pfn) |
| { |
| set_page_zone(page, zone); |
| set_page_node(page, node); |
| set_page_section(page, pfn_to_section_nr(pfn)); |
| } |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| /* The array of struct pages - for discontigmem use pgdat->lmem_map */ |
| extern struct page *mem_map; |
| #endif |
| |
| static __always_inline void *lowmem_page_address(struct page *page) |
| { |
| return __va(page_to_pfn(page) << PAGE_SHIFT); |
| } |
| |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
| #define HASHED_PAGE_VIRTUAL |
| #endif |
| |
| #if defined(WANT_PAGE_VIRTUAL) |
| #define page_address(page) ((page)->virtual) |
| #define set_page_address(page, address) \ |
| do { \ |
| (page)->virtual = (address); \ |
| } while(0) |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| #if defined(HASHED_PAGE_VIRTUAL) |
| void *page_address(struct page *page); |
| void set_page_address(struct page *page, void *virtual); |
| void page_address_init(void); |
| #endif |
| |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
| #define page_address(page) lowmem_page_address(page) |
| #define set_page_address(page, address) do { } while(0) |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| /* |
| * On an anonymous page mapped into a user virtual memory area, |
| * page->mapping points to its anon_vma, not to a struct address_space; |
| * with the PAGE_MAPPING_ANON bit set to distinguish it. |
| * |
| * Please note that, confusingly, "page_mapping" refers to the inode |
| * address_space which maps the page from disk; whereas "page_mapped" |
| * refers to user virtual address space into which the page is mapped. |
| */ |
| #define PAGE_MAPPING_ANON 1 |
| |
| extern struct address_space swapper_space; |
| static inline struct address_space *page_mapping(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| |
| if (unlikely(PageSwapCache(page))) |
| mapping = &swapper_space; |
| else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) |
| mapping = NULL; |
| return mapping; |
| } |
| |
| static inline int PageAnon(struct page *page) |
| { |
| return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; |
| } |
| |
| /* |
| * Return the pagecache index of the passed page. Regular pagecache pages |
| * use ->index whereas swapcache pages use ->private |
| */ |
| static inline pgoff_t page_index(struct page *page) |
| { |
| if (unlikely(PageSwapCache(page))) |
| return page_private(page); |
| return page->index; |
| } |
| |
| /* |
| * The atomic page->_mapcount, like _count, starts from -1: |
| * so that transitions both from it and to it can be tracked, |
| * using atomic_inc_and_test and atomic_add_negative(-1). |
| */ |
| static inline void reset_page_mapcount(struct page *page) |
| { |
| atomic_set(&(page)->_mapcount, -1); |
| } |
| |
| static inline int page_mapcount(struct page *page) |
| { |
| return atomic_read(&(page)->_mapcount) + 1; |
| } |
| |
| /* |
| * Return true if this page is mapped into pagetables. |
| */ |
| static inline int page_mapped(struct page *page) |
| { |
| return atomic_read(&(page)->_mapcount) >= 0; |
| } |
| |
| /* |
| * Error return values for the *_nopage functions |
| */ |
| #define NOPAGE_SIGBUS (NULL) |
| #define NOPAGE_OOM ((struct page *) (-1)) |
| |
| /* |
| * Different kinds of faults, as returned by handle_mm_fault(). |
| * Used to decide whether a process gets delivered SIGBUS or |
| * just gets major/minor fault counters bumped up. |
| */ |
| #define VM_FAULT_OOM 0x00 |
| #define VM_FAULT_SIGBUS 0x01 |
| #define VM_FAULT_MINOR 0x02 |
| #define VM_FAULT_MAJOR 0x03 |
| |
| /* |
| * Special case for get_user_pages. |
| * Must be in a distinct bit from the above VM_FAULT_ flags. |
| */ |
| #define VM_FAULT_WRITE 0x10 |
| |
| #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
| |
| extern void show_free_areas(void); |
| |
| #ifdef CONFIG_SHMEM |
| struct page *shmem_nopage(struct vm_area_struct *vma, |
| unsigned long address, int *type); |
| int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); |
| struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, |
| unsigned long addr); |
| int shmem_lock(struct file *file, int lock, struct user_struct *user); |
| #else |
| #define shmem_nopage filemap_nopage |
| |
| static inline int shmem_lock(struct file *file, int lock, |
| struct user_struct *user) |
| { |
| return 0; |
| } |
| |
| static inline int shmem_set_policy(struct vm_area_struct *vma, |
| struct mempolicy *new) |
| { |
| return 0; |
| } |
| |
| static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| return NULL; |
| } |
| #endif |
| struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); |
| extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); |
| |
| int shmem_zero_setup(struct vm_area_struct *); |
| |
| #ifndef CONFIG_MMU |
| extern unsigned long shmem_get_unmapped_area(struct file *file, |
| unsigned long addr, |
| unsigned long len, |
| unsigned long pgoff, |
| unsigned long flags); |
| #endif |
| |
| static inline int can_do_mlock(void) |
| { |
| if (capable(CAP_IPC_LOCK)) |
| return 1; |
| if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) |
| return 1; |
| return 0; |
| } |
| extern int user_shm_lock(size_t, struct user_struct *); |
| extern void user_shm_unlock(size_t, struct user_struct *); |
| |
| /* |
| * Parameter block passed down to zap_pte_range in exceptional cases. |
| */ |
| struct zap_details { |
| struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ |
| struct address_space *check_mapping; /* Check page->mapping if set */ |
| pgoff_t first_index; /* Lowest page->index to unmap */ |
| pgoff_t last_index; /* Highest page->index to unmap */ |
| spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ |
| unsigned long truncate_count; /* Compare vm_truncate_count */ |
| }; |
| |
| struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); |
| unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
| unsigned long size, struct zap_details *); |
| unsigned long unmap_vmas(struct mmu_gather **tlb, |
| struct vm_area_struct *start_vma, unsigned long start_addr, |
| unsigned long end_addr, unsigned long *nr_accounted, |
| struct zap_details *); |
| void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, |
| unsigned long end, unsigned long floor, unsigned long ceiling); |
| void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, |
| unsigned long floor, unsigned long ceiling); |
| int copy_page_range(struct mm_struct *dst, struct mm_struct *src, |
| struct vm_area_struct *vma); |
| int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, |
| unsigned long size, pgprot_t prot); |
| void unmap_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen, int even_cows); |
| |
| static inline void unmap_shared_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen) |
| { |
| unmap_mapping_range(mapping, holebegin, holelen, 0); |
| } |
| |
| extern int vmtruncate(struct inode * inode, loff_t offset); |
| extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); |
| extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); |
| extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); |
| |
| #ifdef CONFIG_MMU |
| extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, |
| unsigned long address, int write_access); |
| |
| static inline int handle_mm_fault(struct mm_struct *mm, |
| struct vm_area_struct *vma, unsigned long address, |
| int write_access) |
| { |
| return __handle_mm_fault(mm, vma, address, write_access) & |
| (~VM_FAULT_WRITE); |
| } |
| #else |
| static inline int handle_mm_fault(struct mm_struct *mm, |
| struct vm_area_struct *vma, unsigned long address, |
| int write_access) |
| { |
| /* should never happen if there's no MMU */ |
| BUG(); |
| return VM_FAULT_SIGBUS; |
| } |
| #endif |
| |
| extern int make_pages_present(unsigned long addr, unsigned long end); |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); |
| void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); |
| |
| int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, |
| int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); |
| void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); |
| |
| int __set_page_dirty_buffers(struct page *page); |
| int __set_page_dirty_nobuffers(struct page *page); |
| int redirty_page_for_writepage(struct writeback_control *wbc, |
| struct page *page); |
| int FASTCALL(set_page_dirty(struct page *page)); |
| int set_page_dirty_lock(struct page *page); |
| int clear_page_dirty_for_io(struct page *page); |
| |
| extern unsigned long do_mremap(unsigned long addr, |
| unsigned long old_len, unsigned long new_len, |
| unsigned long flags, unsigned long new_addr); |
| |
| /* |
| * Prototype to add a shrinker callback for ageable caches. |
| * |
| * These functions are passed a count `nr_to_scan' and a gfpmask. They should |
| * scan `nr_to_scan' objects, attempting to free them. |
| * |
| * The callback must return the number of objects which remain in the cache. |
| * |
| * The callback will be passed nr_to_scan == 0 when the VM is querying the |
| * cache size, so a fastpath for that case is appropriate. |
| */ |
| typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); |
| |
| /* |
| * Add an aging callback. The int is the number of 'seeks' it takes |
| * to recreate one of the objects that these functions age. |
| */ |
| |
| #define DEFAULT_SEEKS 2 |
| struct shrinker; |
| extern struct shrinker *set_shrinker(int, shrinker_t); |
| extern void remove_shrinker(struct shrinker *shrinker); |
| |
| extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); |
| |
| int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
| int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); |
| int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); |
| |
| /* |
| * The following ifdef needed to get the 4level-fixup.h header to work. |
| * Remove it when 4level-fixup.h has been removed. |
| */ |
| #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) |
| static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
| { |
| return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? |
| NULL: pud_offset(pgd, address); |
| } |
| |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| { |
| return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
| NULL: pmd_offset(pud, address); |
| } |
| #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ |
| |
| #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS |
| /* |
| * We tuck a spinlock to guard each pagetable page into its struct page, |
| * at page->private, with BUILD_BUG_ON to make sure that this will not |
| * overflow into the next struct page (as it might with DEBUG_SPINLOCK). |
| * When freeing, reset page->mapping so free_pages_check won't complain. |
| */ |
| #define __pte_lockptr(page) &((page)->ptl) |
| #define pte_lock_init(_page) do { \ |
| spin_lock_init(__pte_lockptr(_page)); \ |
| } while (0) |
| #define pte_lock_deinit(page) ((page)->mapping = NULL) |
| #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) |
| #else |
| /* |
| * We use mm->page_table_lock to guard all pagetable pages of the mm. |
| */ |
| #define pte_lock_init(page) do {} while (0) |
| #define pte_lock_deinit(page) do {} while (0) |
| #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) |
| #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ |
| |
| #define pte_offset_map_lock(mm, pmd, address, ptlp) \ |
| ({ \ |
| spinlock_t *__ptl = pte_lockptr(mm, pmd); \ |
| pte_t *__pte = pte_offset_map(pmd, address); \ |
| *(ptlp) = __ptl; \ |
| spin_lock(__ptl); \ |
| __pte; \ |
| }) |
| |
| #define pte_unmap_unlock(pte, ptl) do { \ |
| spin_unlock(ptl); \ |
| pte_unmap(pte); \ |
| } while (0) |
| |
| #define pte_alloc_map(mm, pmd, address) \ |
| ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ |
| NULL: pte_offset_map(pmd, address)) |
| |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
| ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ |
| NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) |
| |
| #define pte_alloc_kernel(pmd, address) \ |
| ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ |
| NULL: pte_offset_kernel(pmd, address)) |
| |
| extern void free_area_init(unsigned long * zones_size); |
| extern void free_area_init_node(int nid, pg_data_t *pgdat, |
| unsigned long * zones_size, unsigned long zone_start_pfn, |
| unsigned long *zholes_size); |
| extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); |
| extern void setup_per_zone_pages_min(void); |
| extern void mem_init(void); |
| extern void show_mem(void); |
| extern void si_meminfo(struct sysinfo * val); |
| extern void si_meminfo_node(struct sysinfo *val, int nid); |
| |
| #ifdef CONFIG_NUMA |
| extern void setup_per_cpu_pageset(void); |
| #else |
| static inline void setup_per_cpu_pageset(void) {} |
| #endif |
| |
| /* prio_tree.c */ |
| void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); |
| void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); |
| void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); |
| struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, |
| struct prio_tree_iter *iter); |
| |
| #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ |
| for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ |
| (vma = vma_prio_tree_next(vma, iter)); ) |
| |
| static inline void vma_nonlinear_insert(struct vm_area_struct *vma, |
| struct list_head *list) |
| { |
| vma->shared.vm_set.parent = NULL; |
| list_add_tail(&vma->shared.vm_set.list, list); |
| } |
| |
| /* mmap.c */ |
| extern int __vm_enough_memory(long pages, int cap_sys_admin); |
| extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); |
| extern struct vm_area_struct *vma_merge(struct mm_struct *, |
| struct vm_area_struct *prev, unsigned long addr, unsigned long end, |
| unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, |
| struct mempolicy *); |
| extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); |
| extern int split_vma(struct mm_struct *, |
| struct vm_area_struct *, unsigned long addr, int new_below); |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
| extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, |
| struct rb_node **, struct rb_node *); |
| extern void unlink_file_vma(struct vm_area_struct *); |
| extern struct vm_area_struct *copy_vma(struct vm_area_struct **, |
| unsigned long addr, unsigned long len, pgoff_t pgoff); |
| extern void exit_mmap(struct mm_struct *); |
| extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); |
| |
| extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
| |
| extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long prot, |
| unsigned long flag, unsigned long pgoff); |
| |
| static inline unsigned long do_mmap(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long prot, |
| unsigned long flag, unsigned long offset) |
| { |
| unsigned long ret = -EINVAL; |
| if ((offset + PAGE_ALIGN(len)) < offset) |
| goto out; |
| if (!(offset & ~PAGE_MASK)) |
| ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
| out: |
| return ret; |
| } |
| |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t); |
| |
| extern unsigned long do_brk(unsigned long, unsigned long); |
| |
| /* filemap.c */ |
| extern unsigned long page_unuse(struct page *); |
| extern void truncate_inode_pages(struct address_space *, loff_t); |
| extern void truncate_inode_pages_range(struct address_space *, |
| loff_t lstart, loff_t lend); |
| |
| /* generic vm_area_ops exported for stackable file systems */ |
| extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); |
| extern int filemap_populate(struct vm_area_struct *, unsigned long, |
| unsigned long, pgprot_t, unsigned long, int); |
| |
| /* mm/page-writeback.c */ |
| int write_one_page(struct page *page, int wait); |
| |
| /* readahead.c */ |
| #define VM_MAX_READAHEAD 128 /* kbytes */ |
| #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ |
| #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before |
| * turning readahead off */ |
| |
| int do_page_cache_readahead(struct address_space *mapping, struct file *filp, |
| pgoff_t offset, unsigned long nr_to_read); |
| int force_page_cache_readahead(struct address_space *mapping, struct file *filp, |
| pgoff_t offset, unsigned long nr_to_read); |
| unsigned long page_cache_readahead(struct address_space *mapping, |
| struct file_ra_state *ra, |
| struct file *filp, |
| pgoff_t offset, |
| unsigned long size); |
| void handle_ra_miss(struct address_space *mapping, |
| struct file_ra_state *ra, pgoff_t offset); |
| unsigned long max_sane_readahead(unsigned long nr); |
| |
| /* Do stack extension */ |
| extern int expand_stack(struct vm_area_struct *vma, unsigned long address); |
| #ifdef CONFIG_IA64 |
| extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); |
| #endif |
| |
| /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
| struct vm_area_struct **pprev); |
| |
| /* Look up the first VMA which intersects the interval start_addr..end_addr-1, |
| NULL if none. Assume start_addr < end_addr. */ |
| static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) |
| { |
| struct vm_area_struct * vma = find_vma(mm,start_addr); |
| |
| if (vma && end_addr <= vma->vm_start) |
| vma = NULL; |
| return vma; |
| } |
| |
| static inline unsigned long vma_pages(struct vm_area_struct *vma) |
| { |
| return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| } |
| |
| struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); |
| struct page *vmalloc_to_page(void *addr); |
| unsigned long vmalloc_to_pfn(void *addr); |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t); |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
| |
| struct page *follow_page(struct vm_area_struct *, unsigned long address, |
| unsigned int foll_flags); |
| #define FOLL_WRITE 0x01 /* check pte is writable */ |
| #define FOLL_TOUCH 0x02 /* mark page accessed */ |
| #define FOLL_GET 0x04 /* do get_page on page */ |
| #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ |
| |
| #ifdef CONFIG_PROC_FS |
| void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); |
| #else |
| static inline void vm_stat_account(struct mm_struct *mm, |
| unsigned long flags, struct file *file, long pages) |
| { |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| static inline void |
| kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (!PageHighMem(page) && !enable) |
| mutex_debug_check_no_locks_freed(page_address(page), |
| numpages * PAGE_SIZE); |
| } |
| #endif |
| |
| extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); |
| #ifdef __HAVE_ARCH_GATE_AREA |
| int in_gate_area_no_task(unsigned long addr); |
| int in_gate_area(struct task_struct *task, unsigned long addr); |
| #else |
| int in_gate_area_no_task(unsigned long addr); |
| #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) |
| #endif /* __HAVE_ARCH_GATE_AREA */ |
| |
| /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ |
| #define OOM_DISABLE -17 |
| |
| int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, |
| void __user *, size_t *, loff_t *); |
| unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
| unsigned long lru_pages); |
| void drop_pagecache(void); |
| void drop_slab(void); |
| |
| #ifndef CONFIG_MMU |
| #define randomize_va_space 0 |
| #else |
| extern int randomize_va_space; |
| #endif |
| |
| #endif /* __KERNEL__ */ |
| #endif /* _LINUX_MM_H */ |