blob: 80cb0ae8c8d33fc200a1127c94fdc866b9c9d8e2 [file] [log] [blame]
/*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2012, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <linux/sort.h>
#include <linux/regulator/consumer.h>
#include <linux/smp.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <mach/clk-provider.h>
#include <asm/cpu.h>
#include "acpuclock.h"
#include "acpuclock-8625q.h"
#define A11S_CLK_CNTL_ADDR (MSM_CSR_BASE + 0x100)
#define A11S_CLK_SEL_ADDR (MSM_CSR_BASE + 0x104)
#define PLL4_L_VAL_ADDR (MSM_CLK_CTL_BASE + 0x378)
#define PLL4_M_VAL_ADDR (MSM_CLK_CTL_BASE + 0x37C)
#define PLL4_N_VAL_ADDR (MSM_CLK_CTL_BASE + 0x380)
#define POWER_COLLAPSE_KHZ 19200
/* Max CPU frequency allowed by hardware while in standby waiting for an irq. */
#define MAX_WAIT_FOR_IRQ_KHZ 128000
/**
* enum - For acpuclock PLL IDs
*/
enum {
ACPU_PLL_0 = 0,
ACPU_PLL_1,
ACPU_PLL_2,
ACPU_PLL_3,
ACPU_PLL_4,
ACPU_PLL_TCXO,
ACPU_PLL_END,
};
struct acpu_clk_src {
struct clk *clk;
const char *name;
};
struct pll_config {
unsigned int l;
unsigned int m;
unsigned int n;
};
static struct acpu_clk_src pll_clk[ACPU_PLL_END] = {
[ACPU_PLL_0] = { .name = "pll0_clk" },
[ACPU_PLL_1] = { .name = "pll1_clk" },
[ACPU_PLL_2] = { .name = "pll2_clk" },
[ACPU_PLL_4] = { .name = "pll4_clk" },
};
static struct pll_config pll4_cfg_tbl[] = {
[0] = { 36, 1, 2 }, /* 700.8 MHz */
[1] = { 52, 1, 2 }, /* 1008 MHz */
[2] = { 63, 0, 1 }, /* 1209.6 MHz */
[3] = { 73, 0, 1 }, /* 1401.6 MHz */
};
struct clock_state {
struct clkctl_acpu_speed *current_speed;
struct mutex lock;
uint32_t max_speed_delta_khz;
struct clk *ebi1_clk;
struct regulator *vreg_cpu;
};
struct clkctl_acpu_speed {
unsigned int use_for_scaling;
unsigned int a11clk_khz;
int pll;
unsigned int a11clk_src_sel;
unsigned int a11clk_src_div;
unsigned int ahbclk_khz;
unsigned int ahbclk_div;
int vdd;
unsigned int axiclk_khz;
struct pll_config *pll_rate;
unsigned long lpj;
};
static struct clock_state drv_state = { 0 };
/* PVS MAX Voltage in uV as per frequencies*/
# define MAX_14GHZ_VOLTAGE 1350000
# define MAX_12GHZ_VOLTAGE 1275000
# define MAX_1GHZ_VOLTAGE 1175000
# define MAX_NOMINAL_VOLTAGE 1150000
/* PVS deltas as per formula*/
# define DELTA_LEVEL_1_UV 0
# define DELTA_LEVEL_2_UV 75000
# define DELTA_LEVEL_3_UV 150000
/*
* The default initialization is according to the requirements of
* SKUD_prime. If the target is quad core, we reinitialize this table using
* the reinitalize_freq_table() function.
*/
static struct clkctl_acpu_speed acpu_freq_tbl_cmn[] = {
{ 0, 19200, ACPU_PLL_TCXO, 0, 0, 2400, 3, 0, 30720 },
{ 1, 245760, ACPU_PLL_1, 1, 0, 30720, 3, MAX_NOMINAL_VOLTAGE, 61440 },
{ 1, 320000, ACPU_PLL_0, 4, 2, 40000, 3, MAX_NOMINAL_VOLTAGE, 122880 },
{ 1, 480000, ACPU_PLL_0, 4, 1, 60000, 3, MAX_NOMINAL_VOLTAGE, 122880 },
{ 0, 600000, ACPU_PLL_2, 2, 1, 75000, 3, 0, 160000 },
{ 1, 700800, ACPU_PLL_4, 6, 0, 87500, 3, MAX_NOMINAL_VOLTAGE, 160000,
&pll4_cfg_tbl[0]},
{ 1, 1008000, ACPU_PLL_4, 6, 0, 126000, 3, MAX_1GHZ_VOLTAGE, 200000,
&pll4_cfg_tbl[1]},
};
static struct clkctl_acpu_speed acpu_freq_tbl_1209[] = {
{ 1, 1209600, ACPU_PLL_4, 6, 0, 151200, 3, MAX_12GHZ_VOLTAGE, 200000,
&pll4_cfg_tbl[2]},
};
static struct clkctl_acpu_speed acpu_freq_tbl_1401[] = {
{ 1, 1401600, ACPU_PLL_4, 6, 0, 175000, 3, MAX_14GHZ_VOLTAGE, 200000,
&pll4_cfg_tbl[3]},
};
/* Entry corresponding to CDMA build*/
static struct clkctl_acpu_speed acpu_freq_tbl_196608[] = {
{ 1, 196608, ACPU_PLL_1, 1, 0, 65536, 2, MAX_NOMINAL_VOLTAGE, 98304 },
};
static struct clkctl_acpu_speed acpu_freq_tbl_null[] = {
{ 0 },
};
static struct clkctl_acpu_speed acpu_freq_tbl[ARRAY_SIZE(acpu_freq_tbl_cmn)
+ ARRAY_SIZE(acpu_freq_tbl_1209)
+ ARRAY_SIZE(acpu_freq_tbl_1401)
+ ARRAY_SIZE(acpu_freq_tbl_null)];
/* Switch to this when reprogramming PLL4 */
static struct clkctl_acpu_speed *backup_s;
#ifdef CONFIG_CPU_FREQ_MSM
static struct cpufreq_frequency_table freq_table[NR_CPUS][20];
static void __devinit cpufreq_table_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
unsigned int i, freq_cnt = 0;
/* Construct the freq_table table from acpu_freq_tbl since
* the freq_table values need to match frequencies specified
* in acpu_freq_tbl and acpu_freq_tbl needs to be fixed up
* during init.
*/
for (i = 0; acpu_freq_tbl[i].a11clk_khz != 0
&& freq_cnt < ARRAY_SIZE(*freq_table)-1; i++) {
if (acpu_freq_tbl[i].use_for_scaling) {
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency
= acpu_freq_tbl[i].a11clk_khz;
freq_cnt++;
}
}
/* freq_table not big enough to store all usable freqs. */
BUG_ON(acpu_freq_tbl[i].a11clk_khz != 0);
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END;
/* Register table with CPUFreq. */
cpufreq_frequency_table_get_attr(freq_table[cpu], cpu);
pr_info("CPU%d: %d scaling frequencies supported.\n",
cpu, freq_cnt);
}
}
#else
static void __devinit cpufreq_table_init(void) { }
#endif
static void update_jiffies(int cpu, unsigned long loops)
{
#ifdef CONFIG_SMP
for_each_possible_cpu(cpu) {
per_cpu(cpu_data, cpu).loops_per_jiffy =
loops;
}
#endif
/* Adjust the global one */
loops_per_jiffy = loops;
}
/* Assumes PLL4 is off and the acpuclock isn't sourced from PLL4 */
static void acpuclk_config_pll4(struct pll_config *pll)
{
/*
* Make sure write to disable PLL_4 has completed
* before reconfiguring that PLL.
*/
mb();
writel_relaxed(pll->l, PLL4_L_VAL_ADDR);
writel_relaxed(pll->m, PLL4_M_VAL_ADDR);
writel_relaxed(pll->n, PLL4_N_VAL_ADDR);
/* Make sure PLL is programmed before returning. */
mb();
}
/* Set proper dividers for the given clock speed. */
static void acpuclk_set_div(const struct clkctl_acpu_speed *hunt_s)
{
uint32_t reg_clkctl, reg_clksel, clk_div, src_sel;
reg_clksel = readl_relaxed(A11S_CLK_SEL_ADDR);
/* AHB_CLK_DIV */
clk_div = (reg_clksel >> 1) & 0x03;
/* CLK_SEL_SRC1NO */
src_sel = reg_clksel & 1;
/*
* If the new clock divider is higher than the previous, then
* program the divider before switching the clock
*/
if (hunt_s->ahbclk_div > clk_div) {
reg_clksel &= ~(0x3 << 1);
reg_clksel |= (hunt_s->ahbclk_div << 1);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
}
/* Program clock source and divider */
reg_clkctl = readl_relaxed(A11S_CLK_CNTL_ADDR);
reg_clkctl &= ~(0xFF << (8 * src_sel));
reg_clkctl |= hunt_s->a11clk_src_sel << (4 + 8 * src_sel);
reg_clkctl |= hunt_s->a11clk_src_div << (0 + 8 * src_sel);
writel_relaxed(reg_clkctl, A11S_CLK_CNTL_ADDR);
/* Program clock source selection */
reg_clksel ^= 1;
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
/* Wait for the clock switch to complete */
mb();
udelay(50);
/*
* If the new clock divider is lower than the previous, then
* program the divider after switching the clock
*/
if (hunt_s->ahbclk_div < clk_div) {
reg_clksel &= ~(0x3 << 1);
reg_clksel |= (hunt_s->ahbclk_div << 1);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
}
}
static int acpuclk_set_vdd_level(int vdd)
{
int rc;
rc = regulator_set_voltage(drv_state.vreg_cpu, vdd, vdd);
if (rc) {
pr_err("failed to set vdd=%d uV\n", vdd);
return rc;
}
return 0;
}
static int acpuclk_8625q_set_rate(int cpu, unsigned long rate,
enum setrate_reason reason)
{
uint32_t reg_clkctl;
struct clkctl_acpu_speed *cur_s, *tgt_s, *strt_s;
int res, rc = 0;
unsigned int plls_enabled = 0, pll;
int delta;
if (reason == SETRATE_CPUFREQ)
mutex_lock(&drv_state.lock);
strt_s = cur_s = drv_state.current_speed;
WARN_ONCE(cur_s == NULL, "%s: not initialized\n", __func__);
if (cur_s == NULL) {
rc = -ENOENT;
goto out;
}
cur_s->vdd = regulator_get_voltage(drv_state.vreg_cpu);
if (cur_s->vdd <= 0)
goto out;
pr_debug("current freq=%dKhz vdd=%duV\n",
cur_s->a11clk_khz, cur_s->vdd);
if (rate == cur_s->a11clk_khz)
goto out;
for (tgt_s = acpu_freq_tbl; tgt_s->a11clk_khz != 0; tgt_s++) {
if (tgt_s->a11clk_khz == rate)
break;
}
if (tgt_s->a11clk_khz == 0) {
rc = -EINVAL;
goto out;
}
/* Choose the highest speed at or below 'rate' with same PLL. */
if (reason != SETRATE_CPUFREQ
&& tgt_s->a11clk_khz < cur_s->a11clk_khz) {
while (tgt_s->pll != ACPU_PLL_TCXO &&
tgt_s->pll != cur_s->pll) {
pr_debug("Intermediate frequency changes: %u\n",
tgt_s->a11clk_khz);
tgt_s--;
}
}
if (strt_s->pll != ACPU_PLL_TCXO)
plls_enabled |= 1 << strt_s->pll;
/* Need to do this when coming out of power collapse since some modem
* firmwares reset the VDD when the application processor enters power
* collapse.
*/
if (reason == SETRATE_CPUFREQ || reason == SETRATE_PC) {
/* Increase VDD if needed. */
if (tgt_s->vdd > cur_s->vdd) {
rc = acpuclk_set_vdd_level(tgt_s->vdd);
if (rc < 0) {
pr_err("Unable to switch ACPU vdd (%d)\n", rc);
goto out;
}
pr_debug("Increased Vdd to %duV\n", tgt_s->vdd);
}
}
/* Set wait states for CPU inbetween frequency changes */
reg_clkctl = readl_relaxed(A11S_CLK_CNTL_ADDR);
reg_clkctl |= (100 << 16); /* set WT_ST_CNT */
writel_relaxed(reg_clkctl, A11S_CLK_CNTL_ADDR);
pr_debug("Switching from ACPU rate %u KHz -> %u KHz\n",
strt_s->a11clk_khz, tgt_s->a11clk_khz);
delta = abs((int)(strt_s->a11clk_khz - tgt_s->a11clk_khz));
if (tgt_s->pll == ACPU_PLL_4) {
if (strt_s->pll == ACPU_PLL_4 ||
delta > drv_state.max_speed_delta_khz) {
/*
* Enable the backup PLL if required
* and switch to it.
*/
clk_enable(pll_clk[backup_s->pll].clk);
acpuclk_set_div(backup_s);
update_jiffies(cpu, backup_s->lpj);
}
/* Make sure PLL4 is off before reprogramming */
if ((plls_enabled & (1 << tgt_s->pll))) {
clk_disable(pll_clk[tgt_s->pll].clk);
plls_enabled &= ~(1 << tgt_s->pll);
}
acpuclk_config_pll4(tgt_s->pll_rate);
pll_clk[tgt_s->pll].clk->rate = tgt_s->a11clk_khz*1000;
} else if (strt_s->pll == ACPU_PLL_4) {
if (delta > drv_state.max_speed_delta_khz) {
/*
* Enable the bcackup PLL if required
* and switch to it.
*/
clk_enable(pll_clk[backup_s->pll].clk);
acpuclk_set_div(backup_s);
update_jiffies(cpu, backup_s->lpj);
}
}
if ((tgt_s->pll != ACPU_PLL_TCXO) &&
!(plls_enabled & (1 << tgt_s->pll))) {
rc = clk_enable(pll_clk[tgt_s->pll].clk);
if (rc < 0) {
pr_err("PLL%d enable failed (%d)\n",
tgt_s->pll, rc);
goto out;
}
plls_enabled |= 1 << tgt_s->pll;
}
acpuclk_set_div(tgt_s);
drv_state.current_speed = tgt_s;
pr_debug("The new clock speed is %u\n", tgt_s->a11clk_khz);
/* Re-adjust lpj for the new clock speed. */
update_jiffies(cpu, tgt_s->lpj);
/* Disable the backup PLL */
if ((delta > drv_state.max_speed_delta_khz)
|| (strt_s->pll == ACPU_PLL_4 &&
tgt_s->pll == ACPU_PLL_4))
clk_disable(pll_clk[backup_s->pll].clk);
/* Nothing else to do for SWFI. */
if (reason == SETRATE_SWFI)
goto out;
/* Change the AXI bus frequency if we can. */
if (reason != SETRATE_PC &&
strt_s->axiclk_khz != tgt_s->axiclk_khz) {
res = clk_set_rate(drv_state.ebi1_clk,
tgt_s->axiclk_khz * 1000);
pr_debug("AXI bus set freq %d\n",
tgt_s->axiclk_khz * 1000);
if (res < 0)
pr_warning("Setting AXI min rate failed (%d)\n", res);
}
/* Disable PLLs we are not using anymore. */
if (tgt_s->pll != ACPU_PLL_TCXO)
plls_enabled &= ~(1 << tgt_s->pll);
for (pll = ACPU_PLL_0; pll < ACPU_PLL_END; pll++)
if (plls_enabled & (1 << pll))
clk_disable(pll_clk[pll].clk);
/* Nothing else to do for power collapse. */
if (reason == SETRATE_PC)
goto out;
/* Drop VDD level if we can. */
if (tgt_s->vdd < strt_s->vdd) {
res = acpuclk_set_vdd_level(tgt_s->vdd);
if (res < 0)
pr_warning("Unable to drop ACPU vdd (%d)\n", res);
pr_debug("Decreased Vdd to %duV\n", tgt_s->vdd);
}
pr_debug("ACPU speed change complete\n");
out:
if (reason == SETRATE_CPUFREQ)
mutex_unlock(&drv_state.lock);
return rc;
}
static int __devinit acpuclk_hw_init(void)
{
struct clkctl_acpu_speed *speed;
uint32_t div, sel, reg_clksel;
int res;
/*
* Prepare all the PLLs because we enable/disable them
* from atomic context and can't always ensure they're
* all prepared in non-atomic context. Same goes for
* ebi1_acpu_clk.
*/
BUG_ON(clk_prepare(pll_clk[ACPU_PLL_0].clk));
BUG_ON(clk_prepare(pll_clk[ACPU_PLL_1].clk));
BUG_ON(clk_prepare(pll_clk[ACPU_PLL_2].clk));
BUG_ON(clk_prepare(pll_clk[ACPU_PLL_4].clk));
BUG_ON(clk_prepare(drv_state.ebi1_clk));
/*
* Determine the rate of ACPU clock
*/
if (!(readl_relaxed(A11S_CLK_SEL_ADDR) & 0x01)) { /* CLK_SEL_SRC1N0 */
/* CLK_SRC0_SEL */
sel = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 12) & 0x7;
/* CLK_SRC0_DIV */
div = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 8) & 0x0f;
} else {
/* CLK_SRC1_SEL */
sel = (readl_relaxed(A11S_CLK_CNTL_ADDR) >> 4) & 0x07;
/* CLK_SRC1_DIV */
div = readl_relaxed(A11S_CLK_CNTL_ADDR) & 0x0f;
}
for (speed = acpu_freq_tbl; speed->a11clk_khz != 0; speed++) {
if (speed->a11clk_src_sel == sel
&& (speed->a11clk_src_div == div))
break;
}
if (speed->a11clk_khz == 0) {
pr_err("Error - ACPU clock reports invalid speed\n");
return -EINVAL;
}
drv_state.current_speed = speed;
if (speed->pll != ACPU_PLL_TCXO) {
if (clk_enable(pll_clk[speed->pll].clk)) {
pr_warning("Failed to vote for boot PLL\n");
return -ENODEV;
}
}
reg_clksel = readl_relaxed(A11S_CLK_SEL_ADDR);
reg_clksel &= ~(0x3 << 14);
reg_clksel |= (0x1 << 14);
writel_relaxed(reg_clksel, A11S_CLK_SEL_ADDR);
res = clk_set_rate(drv_state.ebi1_clk, speed->axiclk_khz * 1000);
if (res < 0) {
pr_warning("Setting AXI min rate failed (%d)\n", res);
return -ENODEV;
}
res = clk_enable(drv_state.ebi1_clk);
if (res < 0) {
pr_warning("Enabling AXI clock failed (%d)\n", res);
return -ENODEV;
}
drv_state.vreg_cpu = regulator_get(NULL, "vddx_cx");
if (IS_ERR(drv_state.vreg_cpu)) {
res = PTR_ERR(drv_state.vreg_cpu);
pr_err("could not get regulator: %d\n", res);
}
pr_info("ACPU running at %d KHz\n", speed->a11clk_khz);
return 0;
}
static unsigned long acpuclk_8625q_get_rate(int cpu)
{
WARN_ONCE(drv_state.current_speed == NULL,
"%s: not initialized\n", __func__);
if (drv_state.current_speed)
return drv_state.current_speed->a11clk_khz;
else
return 0;
}
static int reinitialize_freq_table(bool target_select)
{
/*
* target_flag is set only if it is a Quad core chip,
* In that case, we modify the initialization
* of the table according to the specific requirement
* for this target. Otherwise the default initialized table is
* used for SKUD_prime.
*/
if (target_select) {
struct clkctl_acpu_speed *tbl;
for (tbl = acpu_freq_tbl; tbl->a11clk_khz; tbl++) {
if (tbl->a11clk_khz >= 1008000) {
tbl->axiclk_khz = 300000;
if (tbl->a11clk_khz == 1209600)
tbl->vdd = 0;
} else {
if (tbl->a11clk_khz != 600000
&& tbl->a11clk_khz != 19200)
tbl->vdd = 1050000;
if (tbl->a11clk_khz == 700800)
tbl->axiclk_khz = 245000;
}
}
}
return 0;
}
#define MHZ 1000000
static void __devinit select_freq_plan(unsigned int pvs_voltage,
bool target_sel)
{
unsigned long pll_mhz[ACPU_PLL_END];
int i;
int size;
int delta[3] = {DELTA_LEVEL_1_UV, DELTA_LEVEL_2_UV, DELTA_LEVEL_3_UV};
struct clkctl_acpu_speed *tbl;
/* Get PLL clocks */
for (i = 0; i < ACPU_PLL_END; i++) {
if (pll_clk[i].name) {
pll_clk[i].clk = clk_get_sys("acpu", pll_clk[i].name);
if (IS_ERR(pll_clk[i].clk)) {
pll_mhz[i] = 0;
continue;
}
/* Get PLL's Rate */
pll_mhz[i] = clk_get_rate(pll_clk[i].clk)/MHZ;
}
}
memcpy(acpu_freq_tbl, acpu_freq_tbl_cmn, sizeof(acpu_freq_tbl_cmn));
size = ARRAY_SIZE(acpu_freq_tbl_cmn);
i = 0; /* needed if we have a 1Ghz part */
/* select if it is a 1.2Ghz part */
if (pll_mhz[ACPU_PLL_4] == 1209) {
memcpy(acpu_freq_tbl + size, acpu_freq_tbl_1209,
sizeof(acpu_freq_tbl_1209));
size += sizeof(acpu_freq_tbl_1209);
i = 1; /* set the delta index */
}
/* select if it is a 1.4Ghz part */
if (pll_mhz[ACPU_PLL_4] == 1401) {
memcpy(acpu_freq_tbl + size, acpu_freq_tbl_1209,
sizeof(acpu_freq_tbl_1209));
size += ARRAY_SIZE(acpu_freq_tbl_1209);
memcpy(acpu_freq_tbl + size, acpu_freq_tbl_1401,
sizeof(acpu_freq_tbl_1401));
size += ARRAY_SIZE(acpu_freq_tbl_1401);
i = 2; /* set the delta index */
}
memcpy(acpu_freq_tbl + size, acpu_freq_tbl_null,
sizeof(acpu_freq_tbl_null));
size += sizeof(acpu_freq_tbl_null);
/* Alter the freq value in freq_tbl if it is a CDMA build*/
if (pll_mhz[ACPU_PLL_1] == 196) {
for (tbl = acpu_freq_tbl; tbl->a11clk_khz; tbl++) {
if (tbl->a11clk_khz == 245760 &&
tbl->pll == ACPU_PLL_1) {
pr_debug("Upgrading pll1 freq to 196 Mhz\n");
memcpy(tbl, acpu_freq_tbl_196608,
sizeof(acpu_freq_tbl_196608));
break;
}
}
}
reinitialize_freq_table(target_sel);
/*
*PVS Voltage calculation formula
*1.4 Ghz device
*1.4 Ghz: Max(PVS_voltage,1.35V)
*1.2 Ghz: Max(PVS_volatge - 75mV,1.275V)
*1.0 Ghz: Max(PVS_voltage - 150mV, 1.175V)
*1.2 Ghz device
*1.2 Ghz: Max(PVS_voltage,1.275V)
*1.0 Ghz: Max(PVS_volatge - 75mV,1.175V)
*Nominal Mode: 1.15V
*/
for (tbl = acpu_freq_tbl; tbl->a11clk_khz; tbl++) {
if (tbl->a11clk_khz >= 1008000) {
/*
* Change voltage as per PVS formula,
* i is initialized above with 2 or 1
* depending upon whether it is a 1.4Ghz
* or 1.2Ghz, so, we get the proper value
* from delta[i] which is to be deducted
* from PVS voltage.
*/
tbl->vdd = max((int)(pvs_voltage - delta[i]), tbl->vdd);
i--;
}
}
/* find the backup PLL entry from the table */
for (tbl = acpu_freq_tbl; tbl->a11clk_khz; tbl++) {
if (tbl->pll == ACPU_PLL_2 &&
tbl->a11clk_src_div == 1) {
backup_s = tbl;
break;
}
}
BUG_ON(!backup_s);
}
/*
* Hardware requires the CPU to be dropped to less than MAX_WAIT_FOR_IRQ_KHZ
* before entering a wait for irq low-power mode. Find a suitable rate.
*/
static unsigned long __devinit find_wait_for_irq_khz(void)
{
unsigned long found_khz = 0;
int i;
for (i = 0; acpu_freq_tbl[i].a11clk_khz &&
acpu_freq_tbl[i].a11clk_khz <= MAX_WAIT_FOR_IRQ_KHZ; i++)
found_khz = acpu_freq_tbl[i].a11clk_khz;
return found_khz;
}
static void __devinit lpj_init(void)
{
int i = 0, cpu;
const struct clkctl_acpu_speed *base_clk = drv_state.current_speed;
unsigned long loops;
for_each_possible_cpu(cpu) {
#ifdef CONFIG_SMP
loops = per_cpu(cpu_data, cpu).loops_per_jiffy;
#else
loops = loops_per_jiffy;
#endif
for (i = 0; acpu_freq_tbl[i].a11clk_khz; i++) {
acpu_freq_tbl[i].lpj = cpufreq_scale(
loops,
base_clk->a11clk_khz,
acpu_freq_tbl[i].a11clk_khz);
}
}
}
static struct acpuclk_data acpuclk_8625q_data = {
.set_rate = acpuclk_8625q_set_rate,
.get_rate = acpuclk_8625q_get_rate,
.power_collapse_khz = POWER_COLLAPSE_KHZ,
.switch_time_us = 50,
};
static void __devinit print_acpu_freq_tbl(void)
{
struct clkctl_acpu_speed *t;
int i;
pr_info("Id CPU-KHz PLL DIV AHB-KHz ADIV AXI-KHz Vdd\n");
t = &acpu_freq_tbl[0];
for (i = 0; t->a11clk_khz != 0; i++) {
pr_info("%2d %7d %3d %3d %7d %4d %7d %3d\n",
i, t->a11clk_khz, t->pll, t->a11clk_src_div + 1,
t->ahbclk_khz, t->ahbclk_div + 1, t->axiclk_khz,
t->vdd);
t++;
}
}
static int __devinit acpuclk_8625q_probe(struct platform_device *pdev)
{
const struct acpuclk_pdata_8625q *pdata = pdev->dev.platform_data;
unsigned int pvs_voltage = pdata->pvs_voltage_uv;
bool target_sel = pdata->flag;
drv_state.max_speed_delta_khz = pdata->acpu_clk_data->
max_speed_delta_khz;
drv_state.ebi1_clk = clk_get(NULL, "ebi1_acpu_clk");
BUG_ON(IS_ERR(drv_state.ebi1_clk));
mutex_init(&drv_state.lock);
select_freq_plan(pvs_voltage, target_sel);
acpuclk_8625q_data.wait_for_irq_khz = find_wait_for_irq_khz();
if (acpuclk_hw_init() < 0)
pr_err("acpuclk_hw_init not successful.\n");
print_acpu_freq_tbl();
lpj_init();
acpuclk_register(&acpuclk_8625q_data);
cpufreq_table_init();
return 0;
}
static struct platform_driver acpuclk_8625q_driver = {
.probe = acpuclk_8625q_probe,
.driver = {
.name = "acpuclock-8625q",
.owner = THIS_MODULE,
},
};
static int __init acpuclk_8625q_init(void)
{
return platform_driver_register(&acpuclk_8625q_driver);
}
postcore_initcall(acpuclk_8625q_init);