blob: 7f6a9b1bb360bc4dd20815b256e289c67060765e [file] [log] [blame]
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/memory_alloc.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <mach/scm.h>
#include <mach/msm_cache_dump.h>
#include <mach/memory.h>
#include <mach/msm_iomap.h>
#include <mach/msm_memory_dump.h>
#define L2_DUMP_OFFSET 0x14
static unsigned long msm_cache_dump_addr;
/*
* These should not actually be dereferenced. There's no
* need for a virtual mapping, but the physical address is
* necessary.
*/
static struct l1_cache_dump *l1_dump;
static struct l2_cache_dump *l2_dump;
static int use_imem_dump_offset;
static int msm_cache_dump_panic(struct notifier_block *this,
unsigned long event, void *ptr)
{
#ifdef CONFIG_MSM_CACHE_DUMP_ON_PANIC
/*
* Clear the bootloader magic so the dumps aren't overwritten
*/
if (use_imem_dump_offset)
__raw_writel(0, MSM_IMEM_BASE + L2_DUMP_OFFSET);
scm_call_atomic1(L1C_SERVICE_ID, CACHE_BUFFER_DUMP_COMMAND_ID, 2);
scm_call_atomic1(L1C_SERVICE_ID, CACHE_BUFFER_DUMP_COMMAND_ID, 1);
#endif
return 0;
}
static struct notifier_block msm_cache_dump_blk = {
.notifier_call = msm_cache_dump_panic,
/*
* higher priority to ensure this runs before another panic handler
* flushes the caches.
*/
.priority = 1,
};
static int msm_cache_dump_probe(struct platform_device *pdev)
{
struct msm_cache_dump_platform_data *d = pdev->dev.platform_data;
struct msm_client_dump l1_dump_entry, l2_dump_entry;
int ret;
struct {
unsigned long buf;
unsigned long size;
} l1_cache_data;
void *temp;
u32 l1_size, l2_size;
unsigned long total_size;
if (pdev->dev.of_node) {
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,l1-dump-size", &l1_size);
if (ret)
return ret;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,l2-dump-size", &l2_size);
if (ret)
return ret;
use_imem_dump_offset = of_property_read_bool(pdev->dev.of_node,
"qcom,use-imem-dump-offset");
} else {
l1_size = d->l1_size;
l2_size = d->l2_size;
/* Non-DT targets assume the IMEM dump offset shall be used */
use_imem_dump_offset = 1;
};
total_size = l1_size + l2_size;
msm_cache_dump_addr = allocate_contiguous_ebi_nomap(total_size, SZ_4K);
if (!msm_cache_dump_addr) {
pr_err("%s: Could not get memory for cache dumping\n",
__func__);
return -ENOMEM;
}
temp = ioremap(msm_cache_dump_addr, total_size);
memset(temp, 0xFF, total_size);
iounmap(temp);
l1_cache_data.buf = msm_cache_dump_addr;
l1_cache_data.size = l1_size;
ret = scm_call(L1C_SERVICE_ID, L1C_BUFFER_SET_COMMAND_ID,
&l1_cache_data, sizeof(l1_cache_data), NULL, 0);
if (ret)
pr_err("%s: could not register L1 buffer ret = %d.\n",
__func__, ret);
l1_dump = (struct l1_cache_dump *)msm_cache_dump_addr;
l2_dump = (struct l2_cache_dump *)(msm_cache_dump_addr + l1_size);
#if defined(CONFIG_MSM_CACHE_DUMP_ON_PANIC)
l1_cache_data.buf = msm_cache_dump_addr + l1_size;
l1_cache_data.size = l2_size;
ret = scm_call(L1C_SERVICE_ID, L2C_BUFFER_SET_COMMAND_ID,
&l1_cache_data, sizeof(l1_cache_data), NULL, 0);
if (ret)
pr_err("%s: could not register L2 buffer ret = %d.\n",
__func__, ret);
#endif
if (use_imem_dump_offset)
__raw_writel(msm_cache_dump_addr + l1_size,
MSM_IMEM_BASE + L2_DUMP_OFFSET);
else {
l1_dump_entry.id = MSM_L1_CACHE;
l1_dump_entry.start_addr = msm_cache_dump_addr;
l1_dump_entry.end_addr = l1_dump_entry.start_addr + l1_size - 1;
l2_dump_entry.id = MSM_L2_CACHE;
l2_dump_entry.start_addr = msm_cache_dump_addr + l1_size;
l2_dump_entry.end_addr = l2_dump_entry.start_addr + l2_size - 1;
ret = msm_dump_table_register(&l1_dump_entry);
if (ret)
pr_err("Could not register L1 dump area: %d\n", ret);
ret = msm_dump_table_register(&l2_dump_entry);
if (ret)
pr_err("Could not register L2 dump area: %d\n", ret);
}
atomic_notifier_chain_register(&panic_notifier_list,
&msm_cache_dump_blk);
return 0;
}
static int msm_cache_dump_remove(struct platform_device *pdev)
{
atomic_notifier_chain_unregister(&panic_notifier_list,
&msm_cache_dump_blk);
return 0;
}
static struct of_device_id cache_dump_match_table[] = {
{ .compatible = "qcom,cache_dump", },
{}
};
EXPORT_COMPAT("qcom,cache_dump");
static struct platform_driver msm_cache_dump_driver = {
.remove = __devexit_p(msm_cache_dump_remove),
.driver = {
.name = "msm_cache_dump",
.owner = THIS_MODULE,
.of_match_table = cache_dump_match_table,
},
};
static int __init msm_cache_dump_init(void)
{
return platform_driver_probe(&msm_cache_dump_driver,
msm_cache_dump_probe);
}
static void __exit msm_cache_dump_exit(void)
{
platform_driver_unregister(&msm_cache_dump_driver);
}
late_initcall(msm_cache_dump_init);
module_exit(msm_cache_dump_exit)