blob: c77b19c5ff9995ef3cf1d9c51cd766573699b826 [file] [log] [blame]
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include <asm/mach-types.h>
#include <asm/sizes.h>
#include "scm-boot.h"
#include "idle.h"
#include "pm-boot.h"
static uint32_t *msm_pm_reset_vector;
static uint32_t saved_vector[2];
static void (*msm_pm_boot_before_pc)(unsigned int cpu, unsigned long entry);
static void (*msm_pm_boot_after_pc)(unsigned int cpu);
static void msm_pm_write_boot_vector(unsigned int cpu, unsigned long address)
{
msm_pm_boot_vector[cpu] = address;
clean_caches((unsigned long)&msm_pm_boot_vector[cpu],
sizeof(msm_pm_boot_vector[cpu]),
virt_to_phys(&msm_pm_boot_vector[cpu]));
}
#ifdef CONFIG_MSM_SCM
static int __devinit msm_pm_tz_boot_init(void)
{
unsigned int flag = 0;
if (num_possible_cpus() == 1)
flag = SCM_FLAG_WARMBOOT_CPU0;
else if (num_possible_cpus() == 2)
flag = SCM_FLAG_WARMBOOT_CPU0 | SCM_FLAG_WARMBOOT_CPU1;
else if (num_possible_cpus() == 4)
flag = SCM_FLAG_WARMBOOT_CPU0 | SCM_FLAG_WARMBOOT_CPU1 |
SCM_FLAG_WARMBOOT_CPU2 | SCM_FLAG_WARMBOOT_CPU3;
else
__WARN();
return scm_set_boot_addr(virt_to_phys(msm_pm_boot_entry), flag);
}
static void msm_pm_config_tz_before_pc(unsigned int cpu,
unsigned long entry)
{
msm_pm_write_boot_vector(cpu, entry);
}
#else
static int __init msm_pm_tz_boot_init(void)
{
return 0;
};
static inline void msm_pm_config_tz_before_pc(unsigned int cpu,
unsigned long entry) {}
#endif
static int __devinit msm_pm_boot_reset_vector_init(uint32_t *reset_vector)
{
if (!reset_vector)
return -ENODEV;
msm_pm_reset_vector = reset_vector;
mb();
return 0;
}
static void msm_pm_config_rst_vector_before_pc(unsigned int cpu,
unsigned long entry)
{
saved_vector[0] = msm_pm_reset_vector[0];
saved_vector[1] = msm_pm_reset_vector[1];
msm_pm_reset_vector[0] = 0xE51FF004; /* ldr pc, 4 */
msm_pm_reset_vector[1] = entry;
}
static void msm_pm_config_rst_vector_after_pc(unsigned int cpu)
{
msm_pm_reset_vector[0] = saved_vector[0];
msm_pm_reset_vector[1] = saved_vector[1];
}
void msm_pm_boot_config_before_pc(unsigned int cpu, unsigned long entry)
{
if (msm_pm_boot_before_pc)
msm_pm_boot_before_pc(cpu, entry);
}
void msm_pm_boot_config_after_pc(unsigned int cpu)
{
if (msm_pm_boot_after_pc)
msm_pm_boot_after_pc(cpu);
}
#define BOOT_REMAP_ENABLE BIT(0)
int __devinit msm_pm_boot_init(struct msm_pm_boot_platform_data *pdata)
{
int ret = 0;
unsigned long entry;
void __iomem *warm_boot_ptr;
switch (pdata->mode) {
case MSM_PM_BOOT_CONFIG_TZ:
ret = msm_pm_tz_boot_init();
msm_pm_boot_before_pc = msm_pm_config_tz_before_pc;
msm_pm_boot_after_pc = NULL;
break;
case MSM_PM_BOOT_CONFIG_RESET_VECTOR_PHYS:
pdata->v_addr = ioremap(pdata->p_addr, PAGE_SIZE);
/* Fall through */
case MSM_PM_BOOT_CONFIG_RESET_VECTOR_VIRT:
if (!pdata->v_addr)
return -ENODEV;
ret = msm_pm_boot_reset_vector_init(pdata->v_addr);
msm_pm_boot_before_pc
= msm_pm_config_rst_vector_before_pc;
msm_pm_boot_after_pc
= msm_pm_config_rst_vector_after_pc;
break;
case MSM_PM_BOOT_CONFIG_REMAP_BOOT_ADDR:
if (!cpu_is_msm8625() && !cpu_is_msm8625q()) {
void *remapped;
/*
* Set the boot remap address and enable remapping of
* reset vector
*/
if (!pdata->p_addr || !pdata->v_addr)
return -ENODEV;
remapped = ioremap_nocache(pdata->p_addr, SZ_8);
ret = msm_pm_boot_reset_vector_init(remapped);
__raw_writel((pdata->p_addr | BOOT_REMAP_ENABLE),
pdata->v_addr);
msm_pm_boot_before_pc
= msm_pm_config_rst_vector_before_pc;
msm_pm_boot_after_pc
= msm_pm_config_rst_vector_after_pc;
} else {
uint32_t mpa5_boot_remap_addr[2] = {0x34, 0x4C};
uint32_t mpa5_cfg_ctl[2] = {0x30, 0x48};
warm_boot_ptr = ioremap_nocache(
MSM8625_WARM_BOOT_PHYS, SZ_64);
ret = msm_pm_boot_reset_vector_init(warm_boot_ptr);
entry = virt_to_phys(msm_pm_boot_entry);
/*
* Below sequence is a work around for cores
* to come out of GDFS properly on 8625 target.
* On 8625 while cores coming out of GDFS observed
* the memory corruption at very first memory read.
*/
msm_pm_reset_vector[0] = 0xE59F000C; /* ldr r0, 0x14 */
msm_pm_reset_vector[1] = 0xE59F1008; /* ldr r1, 0x14 */
msm_pm_reset_vector[2] = 0xE1500001; /* cmp r0, r1 */
msm_pm_reset_vector[3] = 0x1AFFFFFB; /* bne 0x0 */
msm_pm_reset_vector[4] = 0xE12FFF10; /* bx r0 */
msm_pm_reset_vector[5] = entry; /* 0x14 */
/*
* Here upper 16bits[16:31] used by CORE1
* lower 16bits[0:15] used by CORE0
*/
entry = (MSM8625_WARM_BOOT_PHYS |
((MSM8625_WARM_BOOT_PHYS & 0xFFFF0000) >> 16));
/* write 'entry' to boot remapper register */
__raw_writel(entry, (pdata->v_addr +
mpa5_boot_remap_addr[0]));
/*
* Enable boot remapper for C0 [bit:25th]
* Enable boot remapper for C1 [bit:26th]
*/
__raw_writel(readl_relaxed(pdata->v_addr +
mpa5_cfg_ctl[0]) | (0x3 << 25),
pdata->v_addr + mpa5_cfg_ctl[0]);
/* 8x25Q changes */
if (cpu_is_msm8625q()) {
/* write 'entry' to boot remapper register */
__raw_writel(entry, (pdata->v_addr +
mpa5_boot_remap_addr[1]));
/*
* Enable boot remapper for C2 [bit:25th]
* Enable boot remapper for C3 [bit:26th]
*/
__raw_writel(readl_relaxed(pdata->v_addr +
mpa5_cfg_ctl[1]) | (0x3 << 25),
pdata->v_addr + mpa5_cfg_ctl[1]);
}
msm_pm_boot_before_pc = msm_pm_write_boot_vector;
}
break;
default:
__WARN();
}
return ret;
}
static int __devinit msm_pm_boot_probe(struct platform_device *pdev)
{
struct msm_pm_boot_platform_data pdata;
char *key = NULL;
uint32_t val = 0;
int ret = 0;
uint32_t vaddr_val;
pdata.p_addr = 0;
vaddr_val = 0;
key = "qcom,mode";
ret = of_property_read_u32(pdev->dev.of_node, key, &val);
if (ret) {
pr_err("Unable to read boot mode Err(%d).\n", ret);
return -ENODEV;
}
pdata.mode = val;
key = "qcom,phy-addr";
ret = of_property_read_u32(pdev->dev.of_node, key, &val);
if (!ret)
pdata.p_addr = val;
key = "qcom,virt-addr";
ret = of_property_read_u32(pdev->dev.of_node, key, &vaddr_val);
switch (pdata.mode) {
case MSM_PM_BOOT_CONFIG_RESET_VECTOR_PHYS:
if (!pdata.p_addr) {
key = "qcom,phy-addr";
goto fail;
}
break;
case MSM_PM_BOOT_CONFIG_RESET_VECTOR_VIRT:
if (!vaddr_val)
goto fail;
pdata.v_addr = (void *)vaddr_val;
break;
case MSM_PM_BOOT_CONFIG_REMAP_BOOT_ADDR:
if (!vaddr_val)
goto fail;
pdata.v_addr = ioremap_nocache(vaddr_val, SZ_8);
pdata.p_addr = allocate_contiguous_ebi_nomap(SZ_8, SZ_64K);
if (!pdata.p_addr) {
key = "qcom,phy-addr";
goto fail;
}
break;
case MSM_PM_BOOT_CONFIG_TZ:
break;
default:
pr_err("%s: Unsupported boot mode %d",
__func__, pdata.mode);
goto fail;
}
return msm_pm_boot_init(&pdata);
fail:
pr_err("Error reading %s\n", key);
return -EFAULT;
}
static struct of_device_id msm_pm_match_table[] = {
{.compatible = "qcom,pm-boot"},
{},
};
static struct platform_driver msm_pm_boot_driver = {
.probe = msm_pm_boot_probe,
.driver = {
.name = "pm-boot",
.owner = THIS_MODULE,
.of_match_table = msm_pm_match_table,
},
};
static int __init msm_pm_boot_module_init(void)
{
return platform_driver_register(&msm_pm_boot_driver);
}
module_init(msm_pm_boot_module_init);