| /* |
| * arch/ppc/kernel/ppc4xx_dma.c |
| * |
| * IBM PPC4xx DMA engine core library |
| * |
| * Copyright 2000-2004 MontaVista Software Inc. |
| * |
| * Cleaned up and converted to new DCR access |
| * Matt Porter <mporter@kernel.crashing.org> |
| * |
| * Original code by Armin Kuster <akuster@mvista.com> |
| * and Pete Popov <ppopov@mvista.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/miscdevice.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/ppc4xx_dma.h> |
| |
| ppc_dma_ch_t dma_channels[MAX_PPC4xx_DMA_CHANNELS]; |
| |
| int |
| ppc4xx_get_dma_status(void) |
| { |
| return (mfdcr(DCRN_DMASR)); |
| } |
| |
| void |
| ppc4xx_set_src_addr(int dmanr, phys_addr_t src_addr) |
| { |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("set_src_addr: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| #ifdef PPC4xx_DMA_64BIT |
| mtdcr(DCRN_DMASAH0 + dmanr*2, (u32)(src_addr >> 32)); |
| #else |
| mtdcr(DCRN_DMASA0 + dmanr*2, (u32)src_addr); |
| #endif |
| } |
| |
| void |
| ppc4xx_set_dst_addr(int dmanr, phys_addr_t dst_addr) |
| { |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("set_dst_addr: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| #ifdef PPC4xx_DMA_64BIT |
| mtdcr(DCRN_DMADAH0 + dmanr*2, (u32)(dst_addr >> 32)); |
| #else |
| mtdcr(DCRN_DMADA0 + dmanr*2, (u32)dst_addr); |
| #endif |
| } |
| |
| void |
| ppc4xx_enable_dma(unsigned int dmanr) |
| { |
| unsigned int control; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| unsigned int status_bits[] = { DMA_CS0 | DMA_TS0 | DMA_CH0_ERR, |
| DMA_CS1 | DMA_TS1 | DMA_CH1_ERR, |
| DMA_CS2 | DMA_TS2 | DMA_CH2_ERR, |
| DMA_CS3 | DMA_TS3 | DMA_CH3_ERR}; |
| |
| if (p_dma_ch->in_use) { |
| printk("enable_dma: channel %d in use\n", dmanr); |
| return; |
| } |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("enable_dma: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| if (p_dma_ch->mode == DMA_MODE_READ) { |
| /* peripheral to memory */ |
| ppc4xx_set_src_addr(dmanr, 0); |
| ppc4xx_set_dst_addr(dmanr, p_dma_ch->addr); |
| } else if (p_dma_ch->mode == DMA_MODE_WRITE) { |
| /* memory to peripheral */ |
| ppc4xx_set_src_addr(dmanr, p_dma_ch->addr); |
| ppc4xx_set_dst_addr(dmanr, 0); |
| } |
| |
| /* for other xfer modes, the addresses are already set */ |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| |
| control &= ~(DMA_TM_MASK | DMA_TD); /* clear all mode bits */ |
| if (p_dma_ch->mode == DMA_MODE_MM) { |
| /* software initiated memory to memory */ |
| control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; |
| } |
| |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| /* |
| * Clear the CS, TS, RI bits for the channel from DMASR. This |
| * has been observed to happen correctly only after the mode and |
| * ETD/DCE bits in DMACRx are set above. Must do this before |
| * enabling the channel. |
| */ |
| |
| mtdcr(DCRN_DMASR, status_bits[dmanr]); |
| |
| /* |
| * For device-paced transfers, Terminal Count Enable apparently |
| * must be on, and this must be turned on after the mode, etc. |
| * bits are cleared above (at least on Redwood-6). |
| */ |
| |
| if ((p_dma_ch->mode == DMA_MODE_MM_DEVATDST) || |
| (p_dma_ch->mode == DMA_MODE_MM_DEVATSRC)) |
| control |= DMA_TCE_ENABLE; |
| |
| /* |
| * Now enable the channel. |
| */ |
| |
| control |= (p_dma_ch->mode | DMA_CE_ENABLE); |
| |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| p_dma_ch->in_use = 1; |
| } |
| |
| void |
| ppc4xx_disable_dma(unsigned int dmanr) |
| { |
| unsigned int control; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (!p_dma_ch->in_use) { |
| printk("disable_dma: channel %d not in use\n", dmanr); |
| return; |
| } |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("disable_dma: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| control &= ~DMA_CE_ENABLE; |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| p_dma_ch->in_use = 0; |
| } |
| |
| /* |
| * Sets the dma mode for single DMA transfers only. |
| * For scatter/gather transfers, the mode is passed to the |
| * alloc_dma_handle() function as one of the parameters. |
| * |
| * The mode is simply saved and used later. This allows |
| * the driver to call set_dma_mode() and set_dma_addr() in |
| * any order. |
| * |
| * Valid mode values are: |
| * |
| * DMA_MODE_READ peripheral to memory |
| * DMA_MODE_WRITE memory to peripheral |
| * DMA_MODE_MM memory to memory |
| * DMA_MODE_MM_DEVATSRC device-paced memory to memory, device at src |
| * DMA_MODE_MM_DEVATDST device-paced memory to memory, device at dst |
| */ |
| int |
| ppc4xx_set_dma_mode(unsigned int dmanr, unsigned int mode) |
| { |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("set_dma_mode: bad channel 0x%x\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| p_dma_ch->mode = mode; |
| |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * Sets the DMA Count register. Note that 'count' is in bytes. |
| * However, the DMA Count register counts the number of "transfers", |
| * where each transfer is equal to the bus width. Thus, count |
| * MUST be a multiple of the bus width. |
| */ |
| void |
| ppc4xx_set_dma_count(unsigned int dmanr, unsigned int count) |
| { |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| #ifdef DEBUG_4xxDMA |
| { |
| int error = 0; |
| switch (p_dma_ch->pwidth) { |
| case PW_8: |
| break; |
| case PW_16: |
| if (count & 0x1) |
| error = 1; |
| break; |
| case PW_32: |
| if (count & 0x3) |
| error = 1; |
| break; |
| case PW_64: |
| if (count & 0x7) |
| error = 1; |
| break; |
| default: |
| printk("set_dma_count: invalid bus width: 0x%x\n", |
| p_dma_ch->pwidth); |
| return; |
| } |
| if (error) |
| printk |
| ("Warning: set_dma_count count 0x%x bus width %d\n", |
| count, p_dma_ch->pwidth); |
| } |
| #endif |
| |
| count = count >> p_dma_ch->shift; |
| |
| mtdcr(DCRN_DMACT0 + (dmanr * 0x8), count); |
| } |
| |
| /* |
| * Returns the number of bytes left to be transfered. |
| * After a DMA transfer, this should return zero. |
| * Reading this while a DMA transfer is still in progress will return |
| * unpredictable results. |
| */ |
| int |
| ppc4xx_get_dma_residue(unsigned int dmanr) |
| { |
| unsigned int count; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_get_dma_residue: bad channel 0x%x\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| count = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)); |
| |
| return (count << p_dma_ch->shift); |
| } |
| |
| /* |
| * Sets the DMA address for a memory to peripheral or peripheral |
| * to memory transfer. The address is just saved in the channel |
| * structure for now and used later in enable_dma(). |
| */ |
| void |
| ppc4xx_set_dma_addr(unsigned int dmanr, phys_addr_t addr) |
| { |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_set_dma_addr: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| #ifdef DEBUG_4xxDMA |
| { |
| int error = 0; |
| switch (p_dma_ch->pwidth) { |
| case PW_8: |
| break; |
| case PW_16: |
| if ((unsigned) addr & 0x1) |
| error = 1; |
| break; |
| case PW_32: |
| if ((unsigned) addr & 0x3) |
| error = 1; |
| break; |
| case PW_64: |
| if ((unsigned) addr & 0x7) |
| error = 1; |
| break; |
| default: |
| printk("ppc4xx_set_dma_addr: invalid bus width: 0x%x\n", |
| p_dma_ch->pwidth); |
| return; |
| } |
| if (error) |
| printk("Warning: ppc4xx_set_dma_addr addr 0x%x bus width %d\n", |
| addr, p_dma_ch->pwidth); |
| } |
| #endif |
| |
| /* save dma address and program it later after we know the xfer mode */ |
| p_dma_ch->addr = addr; |
| } |
| |
| /* |
| * Sets both DMA addresses for a memory to memory transfer. |
| * For memory to peripheral or peripheral to memory transfers |
| * the function set_dma_addr() should be used instead. |
| */ |
| void |
| ppc4xx_set_dma_addr2(unsigned int dmanr, phys_addr_t src_dma_addr, |
| phys_addr_t dst_dma_addr) |
| { |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_set_dma_addr2: bad channel: %d\n", dmanr); |
| return; |
| } |
| |
| #ifdef DEBUG_4xxDMA |
| { |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| int error = 0; |
| switch (p_dma_ch->pwidth) { |
| case PW_8: |
| break; |
| case PW_16: |
| if (((unsigned) src_dma_addr & 0x1) || |
| ((unsigned) dst_dma_addr & 0x1) |
| ) |
| error = 1; |
| break; |
| case PW_32: |
| if (((unsigned) src_dma_addr & 0x3) || |
| ((unsigned) dst_dma_addr & 0x3) |
| ) |
| error = 1; |
| break; |
| case PW_64: |
| if (((unsigned) src_dma_addr & 0x7) || |
| ((unsigned) dst_dma_addr & 0x7) |
| ) |
| error = 1; |
| break; |
| default: |
| printk("ppc4xx_set_dma_addr2: invalid bus width: 0x%x\n", |
| p_dma_ch->pwidth); |
| return; |
| } |
| if (error) |
| printk |
| ("Warning: ppc4xx_set_dma_addr2 src 0x%x dst 0x%x bus width %d\n", |
| src_dma_addr, dst_dma_addr, p_dma_ch->pwidth); |
| } |
| #endif |
| |
| ppc4xx_set_src_addr(dmanr, src_dma_addr); |
| ppc4xx_set_dst_addr(dmanr, dst_dma_addr); |
| } |
| |
| /* |
| * Enables the channel interrupt. |
| * |
| * If performing a scatter/gatter transfer, this function |
| * MUST be called before calling alloc_dma_handle() and building |
| * the sgl list. Otherwise, interrupts will not be enabled, if |
| * they were previously disabled. |
| */ |
| int |
| ppc4xx_enable_dma_interrupt(unsigned int dmanr) |
| { |
| unsigned int control; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_enable_dma_interrupt: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| p_dma_ch->int_enable = 1; |
| |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| control |= DMA_CIE_ENABLE; /* Channel Interrupt Enable */ |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * Disables the channel interrupt. |
| * |
| * If performing a scatter/gatter transfer, this function |
| * MUST be called before calling alloc_dma_handle() and building |
| * the sgl list. Otherwise, interrupts will not be disabled, if |
| * they were previously enabled. |
| */ |
| int |
| ppc4xx_disable_dma_interrupt(unsigned int dmanr) |
| { |
| unsigned int control; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_disable_dma_interrupt: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| p_dma_ch->int_enable = 0; |
| |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| control &= ~DMA_CIE_ENABLE; /* Channel Interrupt Enable */ |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * Configures a DMA channel, including the peripheral bus width, if a |
| * peripheral is attached to the channel, the polarity of the DMAReq and |
| * DMAAck signals, etc. This information should really be setup by the boot |
| * code, since most likely the configuration won't change dynamically. |
| * If the kernel has to call this function, it's recommended that it's |
| * called from platform specific init code. The driver should not need to |
| * call this function. |
| */ |
| int |
| ppc4xx_init_dma_channel(unsigned int dmanr, ppc_dma_ch_t * p_init) |
| { |
| unsigned int polarity; |
| uint32_t control = 0; |
| ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; |
| |
| DMA_MODE_READ = (unsigned long) DMA_TD; /* Peripheral to Memory */ |
| DMA_MODE_WRITE = 0; /* Memory to Peripheral */ |
| |
| if (!p_init) { |
| printk("ppc4xx_init_dma_channel: NULL p_init\n"); |
| return DMA_STATUS_NULL_POINTER; |
| } |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_init_dma_channel: bad channel %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| #if DCRN_POL > 0 |
| polarity = mfdcr(DCRN_POL); |
| #else |
| polarity = 0; |
| #endif |
| |
| /* Setup the control register based on the values passed to |
| * us in p_init. Then, over-write the control register with this |
| * new value. |
| */ |
| control |= SET_DMA_CONTROL; |
| |
| /* clear all polarity signals and then "or" in new signal levels */ |
| polarity &= ~GET_DMA_POLARITY(dmanr); |
| polarity |= p_init->polarity; |
| #if DCRN_POL > 0 |
| mtdcr(DCRN_POL, polarity); |
| #endif |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| /* save these values in our dma channel structure */ |
| memcpy(p_dma_ch, p_init, sizeof (ppc_dma_ch_t)); |
| |
| /* |
| * The peripheral width values written in the control register are: |
| * PW_8 0 |
| * PW_16 1 |
| * PW_32 2 |
| * PW_64 3 |
| * |
| * Since the DMA count register takes the number of "transfers", |
| * we need to divide the count sent to us in certain |
| * functions by the appropriate number. It so happens that our |
| * right shift value is equal to the peripheral width value. |
| */ |
| p_dma_ch->shift = p_init->pwidth; |
| |
| /* |
| * Save the control word for easy access. |
| */ |
| p_dma_ch->control = control; |
| |
| mtdcr(DCRN_DMASR, 0xffffffff); /* clear status register */ |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * This function returns the channel configuration. |
| */ |
| int |
| ppc4xx_get_channel_config(unsigned int dmanr, ppc_dma_ch_t * p_dma_ch) |
| { |
| unsigned int polarity; |
| unsigned int control; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_get_channel_config: bad channel %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| memcpy(p_dma_ch, &dma_channels[dmanr], sizeof (ppc_dma_ch_t)); |
| |
| #if DCRN_POL > 0 |
| polarity = mfdcr(DCRN_POL); |
| #else |
| polarity = 0; |
| #endif |
| |
| p_dma_ch->polarity = polarity & GET_DMA_POLARITY(dmanr); |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| |
| p_dma_ch->cp = GET_DMA_PRIORITY(control); |
| p_dma_ch->pwidth = GET_DMA_PW(control); |
| p_dma_ch->psc = GET_DMA_PSC(control); |
| p_dma_ch->pwc = GET_DMA_PWC(control); |
| p_dma_ch->phc = GET_DMA_PHC(control); |
| p_dma_ch->ce = GET_DMA_CE_ENABLE(control); |
| p_dma_ch->int_enable = GET_DMA_CIE_ENABLE(control); |
| p_dma_ch->shift = GET_DMA_PW(control); |
| |
| #ifdef CONFIG_PPC4xx_EDMA |
| p_dma_ch->pf = GET_DMA_PREFETCH(control); |
| #else |
| p_dma_ch->ch_enable = GET_DMA_CH(control); |
| p_dma_ch->ece_enable = GET_DMA_ECE(control); |
| p_dma_ch->tcd_disable = GET_DMA_TCD(control); |
| #endif |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * Sets the priority for the DMA channel dmanr. |
| * Since this is setup by the hardware init function, this function |
| * can be used to dynamically change the priority of a channel. |
| * |
| * Acceptable priorities: |
| * |
| * PRIORITY_LOW |
| * PRIORITY_MID_LOW |
| * PRIORITY_MID_HIGH |
| * PRIORITY_HIGH |
| * |
| */ |
| int |
| ppc4xx_set_channel_priority(unsigned int dmanr, unsigned int priority) |
| { |
| unsigned int control; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_set_channel_priority: bad channel %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| if ((priority != PRIORITY_LOW) && |
| (priority != PRIORITY_MID_LOW) && |
| (priority != PRIORITY_MID_HIGH) && (priority != PRIORITY_HIGH)) { |
| printk("ppc4xx_set_channel_priority: bad priority: 0x%x\n", priority); |
| } |
| |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| control |= SET_DMA_PRIORITY(priority); |
| mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); |
| |
| return DMA_STATUS_GOOD; |
| } |
| |
| /* |
| * Returns the width of the peripheral attached to this channel. This assumes |
| * that someone who knows the hardware configuration, boot code or some other |
| * init code, already set the width. |
| * |
| * The return value is one of: |
| * PW_8 |
| * PW_16 |
| * PW_32 |
| * PW_64 |
| * |
| * The function returns 0 on error. |
| */ |
| unsigned int |
| ppc4xx_get_peripheral_width(unsigned int dmanr) |
| { |
| unsigned int control; |
| |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk("ppc4xx_get_peripheral_width: bad channel %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| |
| control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); |
| |
| return (GET_DMA_PW(control)); |
| } |
| |
| /* |
| * Clears the channel status bits |
| */ |
| int |
| ppc4xx_clr_dma_status(unsigned int dmanr) |
| { |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk(KERN_ERR "ppc4xx_clr_dma_status: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| mtdcr(DCRN_DMASR, ((u32)DMA_CH0_ERR | (u32)DMA_CS0 | (u32)DMA_TS0) >> dmanr); |
| return DMA_STATUS_GOOD; |
| } |
| |
| #ifdef CONFIG_PPC4xx_EDMA |
| /* |
| * Enables the burst on the channel (BTEN bit in the control/count register) |
| * Note: |
| * For scatter/gather dma, this function MUST be called before the |
| * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the |
| * sgl list and used as each sgl element is added. |
| */ |
| int |
| ppc4xx_enable_burst(unsigned int dmanr) |
| { |
| unsigned int ctc; |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk(KERN_ERR "ppc4xx_enable_burst: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) | DMA_CTC_BTEN; |
| mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); |
| return DMA_STATUS_GOOD; |
| } |
| /* |
| * Disables the burst on the channel (BTEN bit in the control/count register) |
| * Note: |
| * For scatter/gather dma, this function MUST be called before the |
| * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the |
| * sgl list and used as each sgl element is added. |
| */ |
| int |
| ppc4xx_disable_burst(unsigned int dmanr) |
| { |
| unsigned int ctc; |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk(KERN_ERR "ppc4xx_disable_burst: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BTEN; |
| mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); |
| return DMA_STATUS_GOOD; |
| } |
| /* |
| * Sets the burst size (number of peripheral widths) for the channel |
| * (BSIZ bits in the control/count register)) |
| * must be one of: |
| * DMA_CTC_BSIZ_2 |
| * DMA_CTC_BSIZ_4 |
| * DMA_CTC_BSIZ_8 |
| * DMA_CTC_BSIZ_16 |
| * Note: |
| * For scatter/gather dma, this function MUST be called before the |
| * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the |
| * sgl list and used as each sgl element is added. |
| */ |
| int |
| ppc4xx_set_burst_size(unsigned int dmanr, unsigned int bsize) |
| { |
| unsigned int ctc; |
| if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { |
| printk(KERN_ERR "ppc4xx_set_burst_size: bad channel: %d\n", dmanr); |
| return DMA_STATUS_BAD_CHANNEL; |
| } |
| ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BSIZ_MSK; |
| ctc |= (bsize & DMA_CTC_BSIZ_MSK); |
| mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); |
| return DMA_STATUS_GOOD; |
| } |
| |
| EXPORT_SYMBOL(ppc4xx_enable_burst); |
| EXPORT_SYMBOL(ppc4xx_disable_burst); |
| EXPORT_SYMBOL(ppc4xx_set_burst_size); |
| #endif /* CONFIG_PPC4xx_EDMA */ |
| |
| EXPORT_SYMBOL(ppc4xx_init_dma_channel); |
| EXPORT_SYMBOL(ppc4xx_get_channel_config); |
| EXPORT_SYMBOL(ppc4xx_set_channel_priority); |
| EXPORT_SYMBOL(ppc4xx_get_peripheral_width); |
| EXPORT_SYMBOL(dma_channels); |
| EXPORT_SYMBOL(ppc4xx_set_src_addr); |
| EXPORT_SYMBOL(ppc4xx_set_dst_addr); |
| EXPORT_SYMBOL(ppc4xx_set_dma_addr); |
| EXPORT_SYMBOL(ppc4xx_set_dma_addr2); |
| EXPORT_SYMBOL(ppc4xx_enable_dma); |
| EXPORT_SYMBOL(ppc4xx_disable_dma); |
| EXPORT_SYMBOL(ppc4xx_set_dma_mode); |
| EXPORT_SYMBOL(ppc4xx_set_dma_count); |
| EXPORT_SYMBOL(ppc4xx_get_dma_residue); |
| EXPORT_SYMBOL(ppc4xx_enable_dma_interrupt); |
| EXPORT_SYMBOL(ppc4xx_disable_dma_interrupt); |
| EXPORT_SYMBOL(ppc4xx_get_dma_status); |
| EXPORT_SYMBOL(ppc4xx_clr_dma_status); |
| |