| /* |
| * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. |
| * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/idr.h> |
| #include <linux/pci.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/vmalloc.h> |
| |
| #include "ipath_kernel.h" |
| #include "ipath_verbs.h" |
| |
| static void ipath_update_pio_bufs(struct ipath_devdata *); |
| |
| const char *ipath_get_unit_name(int unit) |
| { |
| static char iname[16]; |
| snprintf(iname, sizeof iname, "infinipath%u", unit); |
| return iname; |
| } |
| |
| #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: " |
| #define PFX IPATH_DRV_NAME ": " |
| |
| /* |
| * The size has to be longer than this string, so we can append |
| * board/chip information to it in the init code. |
| */ |
| const char ib_ipath_version[] = IPATH_IDSTR "\n"; |
| |
| static struct idr unit_table; |
| DEFINE_SPINLOCK(ipath_devs_lock); |
| LIST_HEAD(ipath_dev_list); |
| |
| wait_queue_head_t ipath_state_wait; |
| |
| unsigned ipath_debug = __IPATH_INFO; |
| |
| module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(debug, "mask for debug prints"); |
| EXPORT_SYMBOL_GPL(ipath_debug); |
| |
| unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */ |
| module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO); |
| MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported"); |
| |
| static unsigned ipath_hol_timeout_ms = 13000; |
| module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO); |
| MODULE_PARM_DESC(hol_timeout_ms, |
| "duration of user app suspension after link failure"); |
| |
| unsigned ipath_linkrecovery = 1; |
| module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO); |
| MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue"); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("QLogic <support@qlogic.com>"); |
| MODULE_DESCRIPTION("QLogic InfiniPath driver"); |
| |
| /* |
| * Table to translate the LINKTRAININGSTATE portion of |
| * IBCStatus to a human-readable form. |
| */ |
| const char *ipath_ibcstatus_str[] = { |
| "Disabled", |
| "LinkUp", |
| "PollActive", |
| "PollQuiet", |
| "SleepDelay", |
| "SleepQuiet", |
| "LState6", /* unused */ |
| "LState7", /* unused */ |
| "CfgDebounce", |
| "CfgRcvfCfg", |
| "CfgWaitRmt", |
| "CfgIdle", |
| "RecovRetrain", |
| "CfgTxRevLane", /* unused before IBA7220 */ |
| "RecovWaitRmt", |
| "RecovIdle", |
| /* below were added for IBA7220 */ |
| "CfgEnhanced", |
| "CfgTest", |
| "CfgWaitRmtTest", |
| "CfgWaitCfgEnhanced", |
| "SendTS_T", |
| "SendTstIdles", |
| "RcvTS_T", |
| "SendTst_TS1s", |
| "LTState18", "LTState19", "LTState1A", "LTState1B", |
| "LTState1C", "LTState1D", "LTState1E", "LTState1F" |
| }; |
| |
| static void __devexit ipath_remove_one(struct pci_dev *); |
| static int __devinit ipath_init_one(struct pci_dev *, |
| const struct pci_device_id *); |
| |
| /* Only needed for registration, nothing else needs this info */ |
| #define PCI_VENDOR_ID_PATHSCALE 0x1fc1 |
| #define PCI_VENDOR_ID_QLOGIC 0x1077 |
| #define PCI_DEVICE_ID_INFINIPATH_HT 0xd |
| #define PCI_DEVICE_ID_INFINIPATH_PE800 0x10 |
| #define PCI_DEVICE_ID_INFINIPATH_7220 0x7220 |
| |
| /* Number of seconds before our card status check... */ |
| #define STATUS_TIMEOUT 60 |
| |
| static const struct pci_device_id ipath_pci_tbl[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_INFINIPATH_7220) }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, ipath_pci_tbl); |
| |
| static struct pci_driver ipath_driver = { |
| .name = IPATH_DRV_NAME, |
| .probe = ipath_init_one, |
| .remove = __devexit_p(ipath_remove_one), |
| .id_table = ipath_pci_tbl, |
| .driver = { |
| .groups = ipath_driver_attr_groups, |
| }, |
| }; |
| |
| static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev, |
| u32 *bar0, u32 *bar1) |
| { |
| int ret; |
| |
| ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0); |
| if (ret) |
| ipath_dev_err(dd, "failed to read bar0 before enable: " |
| "error %d\n", -ret); |
| |
| ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1); |
| if (ret) |
| ipath_dev_err(dd, "failed to read bar1 before enable: " |
| "error %d\n", -ret); |
| |
| ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1); |
| } |
| |
| static void ipath_free_devdata(struct pci_dev *pdev, |
| struct ipath_devdata *dd) |
| { |
| unsigned long flags; |
| |
| pci_set_drvdata(pdev, NULL); |
| |
| if (dd->ipath_unit != -1) { |
| spin_lock_irqsave(&ipath_devs_lock, flags); |
| idr_remove(&unit_table, dd->ipath_unit); |
| list_del(&dd->ipath_list); |
| spin_unlock_irqrestore(&ipath_devs_lock, flags); |
| } |
| vfree(dd); |
| } |
| |
| static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev) |
| { |
| unsigned long flags; |
| struct ipath_devdata *dd; |
| int ret; |
| |
| if (!idr_pre_get(&unit_table, GFP_KERNEL)) { |
| dd = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| dd = vmalloc(sizeof(*dd)); |
| if (!dd) { |
| dd = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| memset(dd, 0, sizeof(*dd)); |
| dd->ipath_unit = -1; |
| |
| spin_lock_irqsave(&ipath_devs_lock, flags); |
| |
| ret = idr_get_new(&unit_table, dd, &dd->ipath_unit); |
| if (ret < 0) { |
| printk(KERN_ERR IPATH_DRV_NAME |
| ": Could not allocate unit ID: error %d\n", -ret); |
| ipath_free_devdata(pdev, dd); |
| dd = ERR_PTR(ret); |
| goto bail_unlock; |
| } |
| |
| dd->pcidev = pdev; |
| pci_set_drvdata(pdev, dd); |
| |
| list_add(&dd->ipath_list, &ipath_dev_list); |
| |
| bail_unlock: |
| spin_unlock_irqrestore(&ipath_devs_lock, flags); |
| |
| bail: |
| return dd; |
| } |
| |
| static inline struct ipath_devdata *__ipath_lookup(int unit) |
| { |
| return idr_find(&unit_table, unit); |
| } |
| |
| struct ipath_devdata *ipath_lookup(int unit) |
| { |
| struct ipath_devdata *dd; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ipath_devs_lock, flags); |
| dd = __ipath_lookup(unit); |
| spin_unlock_irqrestore(&ipath_devs_lock, flags); |
| |
| return dd; |
| } |
| |
| int ipath_count_units(int *npresentp, int *nupp, int *maxportsp) |
| { |
| int nunits, npresent, nup; |
| struct ipath_devdata *dd; |
| unsigned long flags; |
| int maxports; |
| |
| nunits = npresent = nup = maxports = 0; |
| |
| spin_lock_irqsave(&ipath_devs_lock, flags); |
| |
| list_for_each_entry(dd, &ipath_dev_list, ipath_list) { |
| nunits++; |
| if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase) |
| npresent++; |
| if (dd->ipath_lid && |
| !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN |
| | IPATH_LINKUNK))) |
| nup++; |
| if (dd->ipath_cfgports > maxports) |
| maxports = dd->ipath_cfgports; |
| } |
| |
| spin_unlock_irqrestore(&ipath_devs_lock, flags); |
| |
| if (npresentp) |
| *npresentp = npresent; |
| if (nupp) |
| *nupp = nup; |
| if (maxportsp) |
| *maxportsp = maxports; |
| |
| return nunits; |
| } |
| |
| /* |
| * These next two routines are placeholders in case we don't have per-arch |
| * code for controlling write combining. If explicit control of write |
| * combining is not available, performance will probably be awful. |
| */ |
| |
| int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd) |
| { |
| } |
| |
| /* |
| * Perform a PIO buffer bandwidth write test, to verify proper system |
| * configuration. Even when all the setup calls work, occasionally |
| * BIOS or other issues can prevent write combining from working, or |
| * can cause other bandwidth problems to the chip. |
| * |
| * This test simply writes the same buffer over and over again, and |
| * measures close to the peak bandwidth to the chip (not testing |
| * data bandwidth to the wire). On chips that use an address-based |
| * trigger to send packets to the wire, this is easy. On chips that |
| * use a count to trigger, we want to make sure that the packet doesn't |
| * go out on the wire, or trigger flow control checks. |
| */ |
| static void ipath_verify_pioperf(struct ipath_devdata *dd) |
| { |
| u32 pbnum, cnt, lcnt; |
| u32 __iomem *piobuf; |
| u32 *addr; |
| u64 msecs, emsecs; |
| |
| piobuf = ipath_getpiobuf(dd, 0, &pbnum); |
| if (!piobuf) { |
| dev_info(&dd->pcidev->dev, |
| "No PIObufs for checking perf, skipping\n"); |
| return; |
| } |
| |
| /* |
| * Enough to give us a reasonable test, less than piobuf size, and |
| * likely multiple of store buffer length. |
| */ |
| cnt = 1024; |
| |
| addr = vmalloc(cnt); |
| if (!addr) { |
| dev_info(&dd->pcidev->dev, |
| "Couldn't get memory for checking PIO perf," |
| " skipping\n"); |
| goto done; |
| } |
| |
| preempt_disable(); /* we want reasonably accurate elapsed time */ |
| msecs = 1 + jiffies_to_msecs(jiffies); |
| for (lcnt = 0; lcnt < 10000U; lcnt++) { |
| /* wait until we cross msec boundary */ |
| if (jiffies_to_msecs(jiffies) >= msecs) |
| break; |
| udelay(1); |
| } |
| |
| ipath_disable_armlaunch(dd); |
| |
| /* |
| * length 0, no dwords actually sent, and mark as VL15 |
| * on chips where that may matter (due to IB flowcontrol) |
| */ |
| if ((dd->ipath_flags & IPATH_HAS_PBC_CNT)) |
| writeq(1UL << 63, piobuf); |
| else |
| writeq(0, piobuf); |
| ipath_flush_wc(); |
| |
| /* |
| * this is only roughly accurate, since even with preempt we |
| * still take interrupts that could take a while. Running for |
| * >= 5 msec seems to get us "close enough" to accurate values |
| */ |
| msecs = jiffies_to_msecs(jiffies); |
| for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) { |
| __iowrite32_copy(piobuf + 64, addr, cnt >> 2); |
| emsecs = jiffies_to_msecs(jiffies) - msecs; |
| } |
| |
| /* 1 GiB/sec, slightly over IB SDR line rate */ |
| if (lcnt < (emsecs * 1024U)) |
| ipath_dev_err(dd, |
| "Performance problem: bandwidth to PIO buffers is " |
| "only %u MiB/sec\n", |
| lcnt / (u32) emsecs); |
| else |
| ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n", |
| lcnt / (u32) emsecs); |
| |
| preempt_enable(); |
| |
| vfree(addr); |
| |
| done: |
| /* disarm piobuf, so it's available again */ |
| ipath_disarm_piobufs(dd, pbnum, 1); |
| ipath_enable_armlaunch(dd); |
| } |
| |
| static int __devinit ipath_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int ret, len, j; |
| struct ipath_devdata *dd; |
| unsigned long long addr; |
| u32 bar0 = 0, bar1 = 0; |
| u8 rev; |
| |
| dd = ipath_alloc_devdata(pdev); |
| if (IS_ERR(dd)) { |
| ret = PTR_ERR(dd); |
| printk(KERN_ERR IPATH_DRV_NAME |
| ": Could not allocate devdata: error %d\n", -ret); |
| goto bail; |
| } |
| |
| ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit); |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| /* This can happen iff: |
| * |
| * We did a chip reset, and then failed to reprogram the |
| * BAR, or the chip reset due to an internal error. We then |
| * unloaded the driver and reloaded it. |
| * |
| * Both reset cases set the BAR back to initial state. For |
| * the latter case, the AER sticky error bit at offset 0x718 |
| * should be set, but the Linux kernel doesn't yet know |
| * about that, it appears. If the original BAR was retained |
| * in the kernel data structures, this may be OK. |
| */ |
| ipath_dev_err(dd, "enable unit %d failed: error %d\n", |
| dd->ipath_unit, -ret); |
| goto bail_devdata; |
| } |
| addr = pci_resource_start(pdev, 0); |
| len = pci_resource_len(pdev, 0); |
| ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x " |
| "driver_data %lx\n", addr, len, pdev->irq, ent->vendor, |
| ent->device, ent->driver_data); |
| |
| read_bars(dd, pdev, &bar0, &bar1); |
| |
| if (!bar1 && !(bar0 & ~0xf)) { |
| if (addr) { |
| dev_info(&pdev->dev, "BAR is 0 (probable RESET), " |
| "rewriting as %llx\n", addr); |
| ret = pci_write_config_dword( |
| pdev, PCI_BASE_ADDRESS_0, addr); |
| if (ret) { |
| ipath_dev_err(dd, "rewrite of BAR0 " |
| "failed: err %d\n", -ret); |
| goto bail_disable; |
| } |
| ret = pci_write_config_dword( |
| pdev, PCI_BASE_ADDRESS_1, addr >> 32); |
| if (ret) { |
| ipath_dev_err(dd, "rewrite of BAR1 " |
| "failed: err %d\n", -ret); |
| goto bail_disable; |
| } |
| } else { |
| ipath_dev_err(dd, "BAR is 0 (probable RESET), " |
| "not usable until reboot\n"); |
| ret = -ENODEV; |
| goto bail_disable; |
| } |
| } |
| |
| ret = pci_request_regions(pdev, IPATH_DRV_NAME); |
| if (ret) { |
| dev_info(&pdev->dev, "pci_request_regions unit %u fails: " |
| "err %d\n", dd->ipath_unit, -ret); |
| goto bail_disable; |
| } |
| |
| ret = pci_set_dma_mask(pdev, DMA_64BIT_MASK); |
| if (ret) { |
| /* |
| * if the 64 bit setup fails, try 32 bit. Some systems |
| * do not setup 64 bit maps on systems with 2GB or less |
| * memory installed. |
| */ |
| ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (ret) { |
| dev_info(&pdev->dev, |
| "Unable to set DMA mask for unit %u: %d\n", |
| dd->ipath_unit, ret); |
| goto bail_regions; |
| } |
| else { |
| ipath_dbg("No 64bit DMA mask, used 32 bit mask\n"); |
| ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| if (ret) |
| dev_info(&pdev->dev, |
| "Unable to set DMA consistent mask " |
| "for unit %u: %d\n", |
| dd->ipath_unit, ret); |
| |
| } |
| } |
| else { |
| ret = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| if (ret) |
| dev_info(&pdev->dev, |
| "Unable to set DMA consistent mask " |
| "for unit %u: %d\n", |
| dd->ipath_unit, ret); |
| } |
| |
| pci_set_master(pdev); |
| |
| /* |
| * Save BARs to rewrite after device reset. Save all 64 bits of |
| * BAR, just in case. |
| */ |
| dd->ipath_pcibar0 = addr; |
| dd->ipath_pcibar1 = addr >> 32; |
| dd->ipath_deviceid = ent->device; /* save for later use */ |
| dd->ipath_vendorid = ent->vendor; |
| |
| /* setup the chip-specific functions, as early as possible. */ |
| switch (ent->device) { |
| case PCI_DEVICE_ID_INFINIPATH_HT: |
| #ifdef CONFIG_HT_IRQ |
| ipath_init_iba6110_funcs(dd); |
| break; |
| #else |
| ipath_dev_err(dd, "QLogic HT device 0x%x cannot work if " |
| "CONFIG_HT_IRQ is not enabled\n", ent->device); |
| return -ENODEV; |
| #endif |
| case PCI_DEVICE_ID_INFINIPATH_PE800: |
| #ifdef CONFIG_PCI_MSI |
| ipath_init_iba6120_funcs(dd); |
| break; |
| #else |
| ipath_dev_err(dd, "QLogic PCIE device 0x%x cannot work if " |
| "CONFIG_PCI_MSI is not enabled\n", ent->device); |
| return -ENODEV; |
| #endif |
| case PCI_DEVICE_ID_INFINIPATH_7220: |
| #ifndef CONFIG_PCI_MSI |
| ipath_dbg("CONFIG_PCI_MSI is not enabled, " |
| "using INTx for unit %u\n", dd->ipath_unit); |
| #endif |
| ipath_init_iba7220_funcs(dd); |
| break; |
| default: |
| ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, " |
| "failing\n", ent->device); |
| return -ENODEV; |
| } |
| |
| for (j = 0; j < 6; j++) { |
| if (!pdev->resource[j].start) |
| continue; |
| ipath_cdbg(VERBOSE, "BAR %d start %llx, end %llx, len %llx\n", |
| j, (unsigned long long)pdev->resource[j].start, |
| (unsigned long long)pdev->resource[j].end, |
| (unsigned long long)pci_resource_len(pdev, j)); |
| } |
| |
| if (!addr) { |
| ipath_dev_err(dd, "No valid address in BAR 0!\n"); |
| ret = -ENODEV; |
| goto bail_regions; |
| } |
| |
| ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); |
| if (ret) { |
| ipath_dev_err(dd, "Failed to read PCI revision ID unit " |
| "%u: err %d\n", dd->ipath_unit, -ret); |
| goto bail_regions; /* shouldn't ever happen */ |
| } |
| dd->ipath_pcirev = rev; |
| |
| #if defined(__powerpc__) |
| /* There isn't a generic way to specify writethrough mappings */ |
| dd->ipath_kregbase = __ioremap(addr, len, |
| (_PAGE_NO_CACHE|_PAGE_WRITETHRU)); |
| #else |
| dd->ipath_kregbase = ioremap_nocache(addr, len); |
| #endif |
| |
| if (!dd->ipath_kregbase) { |
| ipath_dbg("Unable to map io addr %llx to kvirt, failing\n", |
| addr); |
| ret = -ENOMEM; |
| goto bail_iounmap; |
| } |
| dd->ipath_kregend = (u64 __iomem *) |
| ((void __iomem *)dd->ipath_kregbase + len); |
| dd->ipath_physaddr = addr; /* used for io_remap, etc. */ |
| /* for user mmap */ |
| ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n", |
| addr, dd->ipath_kregbase); |
| |
| if (dd->ipath_f_bus(dd, pdev)) |
| ipath_dev_err(dd, "Failed to setup config space; " |
| "continuing anyway\n"); |
| |
| /* |
| * set up our interrupt handler; IRQF_SHARED probably not needed, |
| * since MSI interrupts shouldn't be shared but won't hurt for now. |
| * check 0 irq after we return from chip-specific bus setup, since |
| * that can affect this due to setup |
| */ |
| if (!dd->ipath_irq) |
| ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't " |
| "work\n"); |
| else { |
| ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED, |
| IPATH_DRV_NAME, dd); |
| if (ret) { |
| ipath_dev_err(dd, "Couldn't setup irq handler, " |
| "irq=%d: %d\n", dd->ipath_irq, ret); |
| goto bail_iounmap; |
| } |
| } |
| |
| ret = ipath_init_chip(dd, 0); /* do the chip-specific init */ |
| if (ret) |
| goto bail_irqsetup; |
| |
| ret = ipath_enable_wc(dd); |
| |
| if (ret) { |
| ipath_dev_err(dd, "Write combining not enabled " |
| "(err %d): performance may be poor\n", |
| -ret); |
| ret = 0; |
| } |
| |
| ipath_verify_pioperf(dd); |
| |
| ipath_device_create_group(&pdev->dev, dd); |
| ipathfs_add_device(dd); |
| ipath_user_add(dd); |
| ipath_diag_add(dd); |
| ipath_register_ib_device(dd); |
| |
| goto bail; |
| |
| bail_irqsetup: |
| if (pdev->irq) |
| free_irq(pdev->irq, dd); |
| |
| bail_iounmap: |
| iounmap((volatile void __iomem *) dd->ipath_kregbase); |
| |
| bail_regions: |
| pci_release_regions(pdev); |
| |
| bail_disable: |
| pci_disable_device(pdev); |
| |
| bail_devdata: |
| ipath_free_devdata(pdev, dd); |
| |
| bail: |
| return ret; |
| } |
| |
| static void __devexit cleanup_device(struct ipath_devdata *dd) |
| { |
| int port; |
| |
| if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) { |
| /* can't do anything more with chip; needs re-init */ |
| *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT; |
| if (dd->ipath_kregbase) { |
| /* |
| * if we haven't already cleaned up before these are |
| * to ensure any register reads/writes "fail" until |
| * re-init |
| */ |
| dd->ipath_kregbase = NULL; |
| dd->ipath_uregbase = 0; |
| dd->ipath_sregbase = 0; |
| dd->ipath_cregbase = 0; |
| dd->ipath_kregsize = 0; |
| } |
| ipath_disable_wc(dd); |
| } |
| |
| if (dd->ipath_spectriggerhit) |
| dev_info(&dd->pcidev->dev, "%lu special trigger hits\n", |
| dd->ipath_spectriggerhit); |
| |
| if (dd->ipath_pioavailregs_dma) { |
| dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| (void *) dd->ipath_pioavailregs_dma, |
| dd->ipath_pioavailregs_phys); |
| dd->ipath_pioavailregs_dma = NULL; |
| } |
| if (dd->ipath_dummy_hdrq) { |
| dma_free_coherent(&dd->pcidev->dev, |
| dd->ipath_pd[0]->port_rcvhdrq_size, |
| dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys); |
| dd->ipath_dummy_hdrq = NULL; |
| } |
| |
| if (dd->ipath_pageshadow) { |
| struct page **tmpp = dd->ipath_pageshadow; |
| dma_addr_t *tmpd = dd->ipath_physshadow; |
| int i, cnt = 0; |
| |
| ipath_cdbg(VERBOSE, "Unlocking any expTID pages still " |
| "locked\n"); |
| for (port = 0; port < dd->ipath_cfgports; port++) { |
| int port_tidbase = port * dd->ipath_rcvtidcnt; |
| int maxtid = port_tidbase + dd->ipath_rcvtidcnt; |
| for (i = port_tidbase; i < maxtid; i++) { |
| if (!tmpp[i]) |
| continue; |
| pci_unmap_page(dd->pcidev, tmpd[i], |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| ipath_release_user_pages(&tmpp[i], 1); |
| tmpp[i] = NULL; |
| cnt++; |
| } |
| } |
| if (cnt) { |
| ipath_stats.sps_pageunlocks += cnt; |
| ipath_cdbg(VERBOSE, "There were still %u expTID " |
| "entries locked\n", cnt); |
| } |
| if (ipath_stats.sps_pagelocks || |
| ipath_stats.sps_pageunlocks) |
| ipath_cdbg(VERBOSE, "%llu pages locked, %llu " |
| "unlocked via ipath_m{un}lock\n", |
| (unsigned long long) |
| ipath_stats.sps_pagelocks, |
| (unsigned long long) |
| ipath_stats.sps_pageunlocks); |
| |
| ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n", |
| dd->ipath_pageshadow); |
| tmpp = dd->ipath_pageshadow; |
| dd->ipath_pageshadow = NULL; |
| vfree(tmpp); |
| |
| dd->ipath_egrtidbase = NULL; |
| } |
| |
| /* |
| * free any resources still in use (usually just kernel ports) |
| * at unload; we do for portcnt, not cfgports, because cfgports |
| * could have changed while we were loaded. |
| */ |
| for (port = 0; port < dd->ipath_portcnt; port++) { |
| struct ipath_portdata *pd = dd->ipath_pd[port]; |
| dd->ipath_pd[port] = NULL; |
| ipath_free_pddata(dd, pd); |
| } |
| kfree(dd->ipath_pd); |
| /* |
| * debuggability, in case some cleanup path tries to use it |
| * after this |
| */ |
| dd->ipath_pd = NULL; |
| } |
| |
| static void __devexit ipath_remove_one(struct pci_dev *pdev) |
| { |
| struct ipath_devdata *dd = pci_get_drvdata(pdev); |
| |
| ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd); |
| |
| /* |
| * disable the IB link early, to be sure no new packets arrive, which |
| * complicates the shutdown process |
| */ |
| ipath_shutdown_device(dd); |
| |
| flush_scheduled_work(); |
| |
| if (dd->verbs_dev) |
| ipath_unregister_ib_device(dd->verbs_dev); |
| |
| ipath_diag_remove(dd); |
| ipath_user_remove(dd); |
| ipathfs_remove_device(dd); |
| ipath_device_remove_group(&pdev->dev, dd); |
| |
| ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, " |
| "unit %u\n", dd, (u32) dd->ipath_unit); |
| |
| cleanup_device(dd); |
| |
| /* |
| * turn off rcv, send, and interrupts for all ports, all drivers |
| * should also hard reset the chip here? |
| * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs |
| * for all versions of the driver, if they were allocated |
| */ |
| if (dd->ipath_irq) { |
| ipath_cdbg(VERBOSE, "unit %u free irq %d\n", |
| dd->ipath_unit, dd->ipath_irq); |
| dd->ipath_f_free_irq(dd); |
| } else |
| ipath_dbg("irq is 0, not doing free_irq " |
| "for unit %u\n", dd->ipath_unit); |
| /* |
| * we check for NULL here, because it's outside |
| * the kregbase check, and we need to call it |
| * after the free_irq. Thus it's possible that |
| * the function pointers were never initialized. |
| */ |
| if (dd->ipath_f_cleanup) |
| /* clean up chip-specific stuff */ |
| dd->ipath_f_cleanup(dd); |
| |
| ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase); |
| iounmap((volatile void __iomem *) dd->ipath_kregbase); |
| pci_release_regions(pdev); |
| ipath_cdbg(VERBOSE, "calling pci_disable_device\n"); |
| pci_disable_device(pdev); |
| |
| ipath_free_devdata(pdev, dd); |
| } |
| |
| /* general driver use */ |
| DEFINE_MUTEX(ipath_mutex); |
| |
| static DEFINE_SPINLOCK(ipath_pioavail_lock); |
| |
| /** |
| * ipath_disarm_piobufs - cancel a range of PIO buffers |
| * @dd: the infinipath device |
| * @first: the first PIO buffer to cancel |
| * @cnt: the number of PIO buffers to cancel |
| * |
| * cancel a range of PIO buffers, used when they might be armed, but |
| * not triggered. Used at init to ensure buffer state, and also user |
| * process close, in case it died while writing to a PIO buffer |
| * Also after errors. |
| */ |
| void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first, |
| unsigned cnt) |
| { |
| unsigned i, last = first + cnt; |
| unsigned long flags; |
| |
| ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first); |
| for (i = first; i < last; i++) { |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| /* |
| * The disarm-related bits are write-only, so it |
| * is ok to OR them in with our copy of sendctrl |
| * while we hold the lock. |
| */ |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl | INFINIPATH_S_DISARM | |
| (i << INFINIPATH_S_DISARMPIOBUF_SHIFT)); |
| /* can't disarm bufs back-to-back per iba7220 spec */ |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| } |
| /* on some older chips, update may not happen after cancel */ |
| ipath_force_pio_avail_update(dd); |
| } |
| |
| /** |
| * ipath_wait_linkstate - wait for an IB link state change to occur |
| * @dd: the infinipath device |
| * @state: the state to wait for |
| * @msecs: the number of milliseconds to wait |
| * |
| * wait up to msecs milliseconds for IB link state change to occur for |
| * now, take the easy polling route. Currently used only by |
| * ipath_set_linkstate. Returns 0 if state reached, otherwise |
| * -ETIMEDOUT state can have multiple states set, for any of several |
| * transitions. |
| */ |
| int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs) |
| { |
| dd->ipath_state_wanted = state; |
| wait_event_interruptible_timeout(ipath_state_wait, |
| (dd->ipath_flags & state), |
| msecs_to_jiffies(msecs)); |
| dd->ipath_state_wanted = 0; |
| |
| if (!(dd->ipath_flags & state)) { |
| u64 val; |
| ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u" |
| " ms\n", |
| /* test INIT ahead of DOWN, both can be set */ |
| (state & IPATH_LINKINIT) ? "INIT" : |
| ((state & IPATH_LINKDOWN) ? "DOWN" : |
| ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")), |
| msecs); |
| val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n", |
| (unsigned long long) ipath_read_kreg64( |
| dd, dd->ipath_kregs->kr_ibcctrl), |
| (unsigned long long) val, |
| ipath_ibcstatus_str[val & dd->ibcs_lts_mask]); |
| } |
| return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT; |
| } |
| |
| static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err, |
| char *buf, size_t blen) |
| { |
| static const struct { |
| ipath_err_t err; |
| const char *msg; |
| } errs[] = { |
| { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" }, |
| { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" }, |
| { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" }, |
| { INFINIPATH_E_SDMABASE, "SDmaBase" }, |
| { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" }, |
| { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" }, |
| { INFINIPATH_E_SDMADWEN, "SDmaDwEn" }, |
| { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" }, |
| { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" }, |
| { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" }, |
| { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" }, |
| { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" }, |
| }; |
| int i; |
| int expected; |
| size_t bidx = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(errs); i++) { |
| expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 : |
| test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status); |
| if ((err & errs[i].err) && !expected) |
| bidx += snprintf(buf + bidx, blen - bidx, |
| "%s ", errs[i].msg); |
| } |
| } |
| |
| /* |
| * Decode the error status into strings, deciding whether to always |
| * print * it or not depending on "normal packet errors" vs everything |
| * else. Return 1 if "real" errors, otherwise 0 if only packet |
| * errors, so caller can decide what to print with the string. |
| */ |
| int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen, |
| ipath_err_t err) |
| { |
| int iserr = 1; |
| *buf = '\0'; |
| if (err & INFINIPATH_E_PKTERRS) { |
| if (!(err & ~INFINIPATH_E_PKTERRS)) |
| iserr = 0; // if only packet errors. |
| if (ipath_debug & __IPATH_ERRPKTDBG) { |
| if (err & INFINIPATH_E_REBP) |
| strlcat(buf, "EBP ", blen); |
| if (err & INFINIPATH_E_RVCRC) |
| strlcat(buf, "VCRC ", blen); |
| if (err & INFINIPATH_E_RICRC) { |
| strlcat(buf, "CRC ", blen); |
| // clear for check below, so only once |
| err &= INFINIPATH_E_RICRC; |
| } |
| if (err & INFINIPATH_E_RSHORTPKTLEN) |
| strlcat(buf, "rshortpktlen ", blen); |
| if (err & INFINIPATH_E_SDROPPEDDATAPKT) |
| strlcat(buf, "sdroppeddatapkt ", blen); |
| if (err & INFINIPATH_E_SPKTLEN) |
| strlcat(buf, "spktlen ", blen); |
| } |
| if ((err & INFINIPATH_E_RICRC) && |
| !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP))) |
| strlcat(buf, "CRC ", blen); |
| if (!iserr) |
| goto done; |
| } |
| if (err & INFINIPATH_E_RHDRLEN) |
| strlcat(buf, "rhdrlen ", blen); |
| if (err & INFINIPATH_E_RBADTID) |
| strlcat(buf, "rbadtid ", blen); |
| if (err & INFINIPATH_E_RBADVERSION) |
| strlcat(buf, "rbadversion ", blen); |
| if (err & INFINIPATH_E_RHDR) |
| strlcat(buf, "rhdr ", blen); |
| if (err & INFINIPATH_E_SENDSPECIALTRIGGER) |
| strlcat(buf, "sendspecialtrigger ", blen); |
| if (err & INFINIPATH_E_RLONGPKTLEN) |
| strlcat(buf, "rlongpktlen ", blen); |
| if (err & INFINIPATH_E_RMAXPKTLEN) |
| strlcat(buf, "rmaxpktlen ", blen); |
| if (err & INFINIPATH_E_RMINPKTLEN) |
| strlcat(buf, "rminpktlen ", blen); |
| if (err & INFINIPATH_E_SMINPKTLEN) |
| strlcat(buf, "sminpktlen ", blen); |
| if (err & INFINIPATH_E_RFORMATERR) |
| strlcat(buf, "rformaterr ", blen); |
| if (err & INFINIPATH_E_RUNSUPVL) |
| strlcat(buf, "runsupvl ", blen); |
| if (err & INFINIPATH_E_RUNEXPCHAR) |
| strlcat(buf, "runexpchar ", blen); |
| if (err & INFINIPATH_E_RIBFLOW) |
| strlcat(buf, "ribflow ", blen); |
| if (err & INFINIPATH_E_SUNDERRUN) |
| strlcat(buf, "sunderrun ", blen); |
| if (err & INFINIPATH_E_SPIOARMLAUNCH) |
| strlcat(buf, "spioarmlaunch ", blen); |
| if (err & INFINIPATH_E_SUNEXPERRPKTNUM) |
| strlcat(buf, "sunexperrpktnum ", blen); |
| if (err & INFINIPATH_E_SDROPPEDSMPPKT) |
| strlcat(buf, "sdroppedsmppkt ", blen); |
| if (err & INFINIPATH_E_SMAXPKTLEN) |
| strlcat(buf, "smaxpktlen ", blen); |
| if (err & INFINIPATH_E_SUNSUPVL) |
| strlcat(buf, "sunsupVL ", blen); |
| if (err & INFINIPATH_E_INVALIDADDR) |
| strlcat(buf, "invalidaddr ", blen); |
| if (err & INFINIPATH_E_RRCVEGRFULL) |
| strlcat(buf, "rcvegrfull ", blen); |
| if (err & INFINIPATH_E_RRCVHDRFULL) |
| strlcat(buf, "rcvhdrfull ", blen); |
| if (err & INFINIPATH_E_IBSTATUSCHANGED) |
| strlcat(buf, "ibcstatuschg ", blen); |
| if (err & INFINIPATH_E_RIBLOSTLINK) |
| strlcat(buf, "riblostlink ", blen); |
| if (err & INFINIPATH_E_HARDWARE) |
| strlcat(buf, "hardware ", blen); |
| if (err & INFINIPATH_E_RESET) |
| strlcat(buf, "reset ", blen); |
| if (err & INFINIPATH_E_SDMAERRS) |
| decode_sdma_errs(dd, err, buf, blen); |
| if (err & INFINIPATH_E_INVALIDEEPCMD) |
| strlcat(buf, "invalideepromcmd ", blen); |
| done: |
| return iserr; |
| } |
| |
| /** |
| * get_rhf_errstring - decode RHF errors |
| * @err: the err number |
| * @msg: the output buffer |
| * @len: the length of the output buffer |
| * |
| * only used one place now, may want more later |
| */ |
| static void get_rhf_errstring(u32 err, char *msg, size_t len) |
| { |
| /* if no errors, and so don't need to check what's first */ |
| *msg = '\0'; |
| |
| if (err & INFINIPATH_RHF_H_ICRCERR) |
| strlcat(msg, "icrcerr ", len); |
| if (err & INFINIPATH_RHF_H_VCRCERR) |
| strlcat(msg, "vcrcerr ", len); |
| if (err & INFINIPATH_RHF_H_PARITYERR) |
| strlcat(msg, "parityerr ", len); |
| if (err & INFINIPATH_RHF_H_LENERR) |
| strlcat(msg, "lenerr ", len); |
| if (err & INFINIPATH_RHF_H_MTUERR) |
| strlcat(msg, "mtuerr ", len); |
| if (err & INFINIPATH_RHF_H_IHDRERR) |
| /* infinipath hdr checksum error */ |
| strlcat(msg, "ipathhdrerr ", len); |
| if (err & INFINIPATH_RHF_H_TIDERR) |
| strlcat(msg, "tiderr ", len); |
| if (err & INFINIPATH_RHF_H_MKERR) |
| /* bad port, offset, etc. */ |
| strlcat(msg, "invalid ipathhdr ", len); |
| if (err & INFINIPATH_RHF_H_IBERR) |
| strlcat(msg, "iberr ", len); |
| if (err & INFINIPATH_RHF_L_SWA) |
| strlcat(msg, "swA ", len); |
| if (err & INFINIPATH_RHF_L_SWB) |
| strlcat(msg, "swB ", len); |
| } |
| |
| /** |
| * ipath_get_egrbuf - get an eager buffer |
| * @dd: the infinipath device |
| * @bufnum: the eager buffer to get |
| * |
| * must only be called if ipath_pd[port] is known to be allocated |
| */ |
| static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum) |
| { |
| return dd->ipath_port0_skbinfo ? |
| (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL; |
| } |
| |
| /** |
| * ipath_alloc_skb - allocate an skb and buffer with possible constraints |
| * @dd: the infinipath device |
| * @gfp_mask: the sk_buff SFP mask |
| */ |
| struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd, |
| gfp_t gfp_mask) |
| { |
| struct sk_buff *skb; |
| u32 len; |
| |
| /* |
| * Only fully supported way to handle this is to allocate lots |
| * extra, align as needed, and then do skb_reserve(). That wastes |
| * a lot of memory... I'll have to hack this into infinipath_copy |
| * also. |
| */ |
| |
| /* |
| * We need 2 extra bytes for ipath_ether data sent in the |
| * key header. In order to keep everything dword aligned, |
| * we'll reserve 4 bytes. |
| */ |
| len = dd->ipath_ibmaxlen + 4; |
| |
| if (dd->ipath_flags & IPATH_4BYTE_TID) { |
| /* We need a 2KB multiple alignment, and there is no way |
| * to do it except to allocate extra and then skb_reserve |
| * enough to bring it up to the right alignment. |
| */ |
| len += 2047; |
| } |
| |
| skb = __dev_alloc_skb(len, gfp_mask); |
| if (!skb) { |
| ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n", |
| len); |
| goto bail; |
| } |
| |
| skb_reserve(skb, 4); |
| |
| if (dd->ipath_flags & IPATH_4BYTE_TID) { |
| u32 una = (unsigned long)skb->data & 2047; |
| if (una) |
| skb_reserve(skb, 2048 - una); |
| } |
| |
| bail: |
| return skb; |
| } |
| |
| static void ipath_rcv_hdrerr(struct ipath_devdata *dd, |
| u32 eflags, |
| u32 l, |
| u32 etail, |
| __le32 *rhf_addr, |
| struct ipath_message_header *hdr) |
| { |
| char emsg[128]; |
| |
| get_rhf_errstring(eflags, emsg, sizeof emsg); |
| ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u " |
| "tlen=%x opcode=%x egridx=%x: %s\n", |
| eflags, l, |
| ipath_hdrget_rcv_type(rhf_addr), |
| ipath_hdrget_length_in_bytes(rhf_addr), |
| be32_to_cpu(hdr->bth[0]) >> 24, |
| etail, emsg); |
| |
| /* Count local link integrity errors. */ |
| if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) { |
| u8 n = (dd->ipath_ibcctrl >> |
| INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) & |
| INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK; |
| |
| if (++dd->ipath_lli_counter > n) { |
| dd->ipath_lli_counter = 0; |
| dd->ipath_lli_errors++; |
| } |
| } |
| } |
| |
| /* |
| * ipath_kreceive - receive a packet |
| * @pd: the infinipath port |
| * |
| * called from interrupt handler for errors or receive interrupt |
| */ |
| void ipath_kreceive(struct ipath_portdata *pd) |
| { |
| struct ipath_devdata *dd = pd->port_dd; |
| __le32 *rhf_addr; |
| void *ebuf; |
| const u32 rsize = dd->ipath_rcvhdrentsize; /* words */ |
| const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */ |
| u32 etail = -1, l, hdrqtail; |
| struct ipath_message_header *hdr; |
| u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0; |
| static u64 totcalls; /* stats, may eventually remove */ |
| int last; |
| |
| l = pd->port_head; |
| rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset; |
| if (dd->ipath_flags & IPATH_NODMA_RTAIL) { |
| u32 seq = ipath_hdrget_seq(rhf_addr); |
| |
| if (seq != pd->port_seq_cnt) |
| goto bail; |
| hdrqtail = 0; |
| } else { |
| hdrqtail = ipath_get_rcvhdrtail(pd); |
| if (l == hdrqtail) |
| goto bail; |
| smp_rmb(); |
| } |
| |
| reloop: |
| for (last = 0, i = 1; !last; i += !last) { |
| hdr = dd->ipath_f_get_msgheader(dd, rhf_addr); |
| eflags = ipath_hdrget_err_flags(rhf_addr); |
| etype = ipath_hdrget_rcv_type(rhf_addr); |
| /* total length */ |
| tlen = ipath_hdrget_length_in_bytes(rhf_addr); |
| ebuf = NULL; |
| if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ? |
| ipath_hdrget_use_egr_buf(rhf_addr) : |
| (etype != RCVHQ_RCV_TYPE_EXPECTED)) { |
| /* |
| * It turns out that the chip uses an eager buffer |
| * for all non-expected packets, whether it "needs" |
| * one or not. So always get the index, but don't |
| * set ebuf (so we try to copy data) unless the |
| * length requires it. |
| */ |
| etail = ipath_hdrget_index(rhf_addr); |
| updegr = 1; |
| if (tlen > sizeof(*hdr) || |
| etype == RCVHQ_RCV_TYPE_NON_KD) |
| ebuf = ipath_get_egrbuf(dd, etail); |
| } |
| |
| /* |
| * both tiderr and ipathhdrerr are set for all plain IB |
| * packets; only ipathhdrerr should be set. |
| */ |
| |
| if (etype != RCVHQ_RCV_TYPE_NON_KD && |
| etype != RCVHQ_RCV_TYPE_ERROR && |
| ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) != |
| IPS_PROTO_VERSION) |
| ipath_cdbg(PKT, "Bad InfiniPath protocol version " |
| "%x\n", etype); |
| |
| if (unlikely(eflags)) |
| ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr); |
| else if (etype == RCVHQ_RCV_TYPE_NON_KD) { |
| ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen); |
| if (dd->ipath_lli_counter) |
| dd->ipath_lli_counter--; |
| } else if (etype == RCVHQ_RCV_TYPE_EAGER) { |
| u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24; |
| u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff; |
| ipath_cdbg(PKT, "typ %x, opcode %x (eager, " |
| "qp=%x), len %x; ignored\n", |
| etype, opcode, qp, tlen); |
| } |
| else if (etype == RCVHQ_RCV_TYPE_EXPECTED) |
| ipath_dbg("Bug: Expected TID, opcode %x; ignored\n", |
| be32_to_cpu(hdr->bth[0]) >> 24); |
| else { |
| /* |
| * error packet, type of error unknown. |
| * Probably type 3, but we don't know, so don't |
| * even try to print the opcode, etc. |
| * Usually caused by a "bad packet", that has no |
| * BTH, when the LRH says it should. |
| */ |
| ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf" |
| " %x, len %x hdrq+%x rhf: %Lx\n", |
| etail, tlen, l, |
| le64_to_cpu(*(__le64 *) rhf_addr)); |
| if (ipath_debug & __IPATH_ERRPKTDBG) { |
| u32 j, *d, dw = rsize-2; |
| if (rsize > (tlen>>2)) |
| dw = tlen>>2; |
| d = (u32 *)hdr; |
| printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n", |
| dw); |
| for (j = 0; j < dw; j++) |
| printk(KERN_DEBUG "%8x%s", d[j], |
| (j%8) == 7 ? "\n" : " "); |
| printk(KERN_DEBUG ".\n"); |
| } |
| } |
| l += rsize; |
| if (l >= maxcnt) |
| l = 0; |
| rhf_addr = (__le32 *) pd->port_rcvhdrq + |
| l + dd->ipath_rhf_offset; |
| if (dd->ipath_flags & IPATH_NODMA_RTAIL) { |
| u32 seq = ipath_hdrget_seq(rhf_addr); |
| |
| if (++pd->port_seq_cnt > 13) |
| pd->port_seq_cnt = 1; |
| if (seq != pd->port_seq_cnt) |
| last = 1; |
| } else if (l == hdrqtail) |
| last = 1; |
| /* |
| * update head regs on last packet, and every 16 packets. |
| * Reduce bus traffic, while still trying to prevent |
| * rcvhdrq overflows, for when the queue is nearly full |
| */ |
| if (last || !(i & 0xf)) { |
| u64 lval = l; |
| |
| /* request IBA6120 and 7220 interrupt only on last */ |
| if (last) |
| lval |= dd->ipath_rhdrhead_intr_off; |
| ipath_write_ureg(dd, ur_rcvhdrhead, lval, |
| pd->port_port); |
| if (updegr) { |
| ipath_write_ureg(dd, ur_rcvegrindexhead, |
| etail, pd->port_port); |
| updegr = 0; |
| } |
| } |
| } |
| |
| if (!dd->ipath_rhdrhead_intr_off && !reloop && |
| !(dd->ipath_flags & IPATH_NODMA_RTAIL)) { |
| /* IBA6110 workaround; we can have a race clearing chip |
| * interrupt with another interrupt about to be delivered, |
| * and can clear it before it is delivered on the GPIO |
| * workaround. By doing the extra check here for the |
| * in-memory tail register updating while we were doing |
| * earlier packets, we "almost" guarantee we have covered |
| * that case. |
| */ |
| u32 hqtail = ipath_get_rcvhdrtail(pd); |
| if (hqtail != hdrqtail) { |
| hdrqtail = hqtail; |
| reloop = 1; /* loop 1 extra time at most */ |
| goto reloop; |
| } |
| } |
| |
| pkttot += i; |
| |
| pd->port_head = l; |
| |
| if (pkttot > ipath_stats.sps_maxpkts_call) |
| ipath_stats.sps_maxpkts_call = pkttot; |
| ipath_stats.sps_port0pkts += pkttot; |
| ipath_stats.sps_avgpkts_call = |
| ipath_stats.sps_port0pkts / ++totcalls; |
| |
| bail:; |
| } |
| |
| /** |
| * ipath_update_pio_bufs - update shadow copy of the PIO availability map |
| * @dd: the infinipath device |
| * |
| * called whenever our local copy indicates we have run out of send buffers |
| * NOTE: This can be called from interrupt context by some code |
| * and from non-interrupt context by ipath_getpiobuf(). |
| */ |
| |
| static void ipath_update_pio_bufs(struct ipath_devdata *dd) |
| { |
| unsigned long flags; |
| int i; |
| const unsigned piobregs = (unsigned)dd->ipath_pioavregs; |
| |
| /* If the generation (check) bits have changed, then we update the |
| * busy bit for the corresponding PIO buffer. This algorithm will |
| * modify positions to the value they already have in some cases |
| * (i.e., no change), but it's faster than changing only the bits |
| * that have changed. |
| * |
| * We would like to do this atomicly, to avoid spinlocks in the |
| * critical send path, but that's not really possible, given the |
| * type of changes, and that this routine could be called on |
| * multiple cpu's simultaneously, so we lock in this routine only, |
| * to avoid conflicting updates; all we change is the shadow, and |
| * it's a single 64 bit memory location, so by definition the update |
| * is atomic in terms of what other cpu's can see in testing the |
| * bits. The spin_lock overhead isn't too bad, since it only |
| * happens when all buffers are in use, so only cpu overhead, not |
| * latency or bandwidth is affected. |
| */ |
| if (!dd->ipath_pioavailregs_dma) { |
| ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n"); |
| return; |
| } |
| if (ipath_debug & __IPATH_VERBDBG) { |
| /* only if packet debug and verbose */ |
| volatile __le64 *dma = dd->ipath_pioavailregs_dma; |
| unsigned long *shadow = dd->ipath_pioavailshadow; |
| |
| ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, " |
| "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx " |
| "s3=%lx\n", |
| (unsigned long long) le64_to_cpu(dma[0]), |
| shadow[0], |
| (unsigned long long) le64_to_cpu(dma[1]), |
| shadow[1], |
| (unsigned long long) le64_to_cpu(dma[2]), |
| shadow[2], |
| (unsigned long long) le64_to_cpu(dma[3]), |
| shadow[3]); |
| if (piobregs > 4) |
| ipath_cdbg( |
| PKT, "2nd group, dma4=%llx shad4=%lx, " |
| "d5=%llx s5=%lx, d6=%llx s6=%lx, " |
| "d7=%llx s7=%lx\n", |
| (unsigned long long) le64_to_cpu(dma[4]), |
| shadow[4], |
| (unsigned long long) le64_to_cpu(dma[5]), |
| shadow[5], |
| (unsigned long long) le64_to_cpu(dma[6]), |
| shadow[6], |
| (unsigned long long) le64_to_cpu(dma[7]), |
| shadow[7]); |
| } |
| spin_lock_irqsave(&ipath_pioavail_lock, flags); |
| for (i = 0; i < piobregs; i++) { |
| u64 pchbusy, pchg, piov, pnew; |
| /* |
| * Chip Errata: bug 6641; even and odd qwords>3 are swapped |
| */ |
| if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) |
| piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]); |
| else |
| piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]); |
| pchg = dd->ipath_pioavailkernel[i] & |
| ~(dd->ipath_pioavailshadow[i] ^ piov); |
| pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT; |
| if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) { |
| pnew = dd->ipath_pioavailshadow[i] & ~pchbusy; |
| pnew |= piov & pchbusy; |
| dd->ipath_pioavailshadow[i] = pnew; |
| } |
| } |
| spin_unlock_irqrestore(&ipath_pioavail_lock, flags); |
| } |
| |
| /* |
| * used to force update of pioavailshadow if we can't get a pio buffer. |
| * Needed primarily due to exitting freeze mode after recovering |
| * from errors. Done lazily, because it's safer (known to not |
| * be writing pio buffers). |
| */ |
| static void ipath_reset_availshadow(struct ipath_devdata *dd) |
| { |
| int i, im; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ipath_pioavail_lock, flags); |
| for (i = 0; i < dd->ipath_pioavregs; i++) { |
| u64 val, oldval; |
| /* deal with 6110 chip bug on high register #s */ |
| im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ? |
| i ^ 1 : i; |
| val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]); |
| /* |
| * busy out the buffers not in the kernel avail list, |
| * without changing the generation bits. |
| */ |
| oldval = dd->ipath_pioavailshadow[i]; |
| dd->ipath_pioavailshadow[i] = val | |
| ((~dd->ipath_pioavailkernel[i] << |
| INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) & |
| 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */ |
| if (oldval != dd->ipath_pioavailshadow[i]) |
| ipath_dbg("shadow[%d] was %Lx, now %lx\n", |
| i, oldval, dd->ipath_pioavailshadow[i]); |
| } |
| spin_unlock_irqrestore(&ipath_pioavail_lock, flags); |
| } |
| |
| /** |
| * ipath_setrcvhdrsize - set the receive header size |
| * @dd: the infinipath device |
| * @rhdrsize: the receive header size |
| * |
| * called from user init code, and also layered driver init |
| */ |
| int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize) |
| { |
| int ret = 0; |
| |
| if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) { |
| if (dd->ipath_rcvhdrsize != rhdrsize) { |
| dev_info(&dd->pcidev->dev, |
| "Error: can't set protocol header " |
| "size %u, already %u\n", |
| rhdrsize, dd->ipath_rcvhdrsize); |
| ret = -EAGAIN; |
| } else |
| ipath_cdbg(VERBOSE, "Reuse same protocol header " |
| "size %u\n", dd->ipath_rcvhdrsize); |
| } else if (rhdrsize > (dd->ipath_rcvhdrentsize - |
| (sizeof(u64) / sizeof(u32)))) { |
| ipath_dbg("Error: can't set protocol header size %u " |
| "(> max %u)\n", rhdrsize, |
| dd->ipath_rcvhdrentsize - |
| (u32) (sizeof(u64) / sizeof(u32))); |
| ret = -EOVERFLOW; |
| } else { |
| dd->ipath_flags |= IPATH_RCVHDRSZ_SET; |
| dd->ipath_rcvhdrsize = rhdrsize; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize, |
| dd->ipath_rcvhdrsize); |
| ipath_cdbg(VERBOSE, "Set protocol header size to %u\n", |
| dd->ipath_rcvhdrsize); |
| } |
| return ret; |
| } |
| |
| /* |
| * debugging code and stats updates if no pio buffers available. |
| */ |
| static noinline void no_pio_bufs(struct ipath_devdata *dd) |
| { |
| unsigned long *shadow = dd->ipath_pioavailshadow; |
| __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma; |
| |
| dd->ipath_upd_pio_shadow = 1; |
| |
| /* |
| * not atomic, but if we lose a stat count in a while, that's OK |
| */ |
| ipath_stats.sps_nopiobufs++; |
| if (!(++dd->ipath_consec_nopiobuf % 100000)) { |
| ipath_force_pio_avail_update(dd); /* at start */ |
| ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: " |
| "%llx %llx %llx %llx\n" |
| "ipath shadow: %lx %lx %lx %lx\n", |
| dd->ipath_consec_nopiobuf, |
| (unsigned long)get_cycles(), |
| (unsigned long long) le64_to_cpu(dma[0]), |
| (unsigned long long) le64_to_cpu(dma[1]), |
| (unsigned long long) le64_to_cpu(dma[2]), |
| (unsigned long long) le64_to_cpu(dma[3]), |
| shadow[0], shadow[1], shadow[2], shadow[3]); |
| /* |
| * 4 buffers per byte, 4 registers above, cover rest |
| * below |
| */ |
| if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) > |
| (sizeof(shadow[0]) * 4 * 4)) |
| ipath_dbg("2nd group: dmacopy: " |
| "%llx %llx %llx %llx\n" |
| "ipath shadow: %lx %lx %lx %lx\n", |
| (unsigned long long)le64_to_cpu(dma[4]), |
| (unsigned long long)le64_to_cpu(dma[5]), |
| (unsigned long long)le64_to_cpu(dma[6]), |
| (unsigned long long)le64_to_cpu(dma[7]), |
| shadow[4], shadow[5], shadow[6], shadow[7]); |
| |
| /* at end, so update likely happened */ |
| ipath_reset_availshadow(dd); |
| } |
| } |
| |
| /* |
| * common code for normal driver pio buffer allocation, and reserved |
| * allocation. |
| * |
| * do appropriate marking as busy, etc. |
| * returns buffer number if one found (>=0), negative number is error. |
| */ |
| static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd, |
| u32 *pbufnum, u32 first, u32 last, u32 firsti) |
| { |
| int i, j, updated = 0; |
| unsigned piobcnt; |
| unsigned long flags; |
| unsigned long *shadow = dd->ipath_pioavailshadow; |
| u32 __iomem *buf; |
| |
| piobcnt = last - first; |
| if (dd->ipath_upd_pio_shadow) { |
| /* |
| * Minor optimization. If we had no buffers on last call, |
| * start out by doing the update; continue and do scan even |
| * if no buffers were updated, to be paranoid |
| */ |
| ipath_update_pio_bufs(dd); |
| updated++; |
| i = first; |
| } else |
| i = firsti; |
| rescan: |
| /* |
| * while test_and_set_bit() is atomic, we do that and then the |
| * change_bit(), and the pair is not. See if this is the cause |
| * of the remaining armlaunch errors. |
| */ |
| spin_lock_irqsave(&ipath_pioavail_lock, flags); |
| for (j = 0; j < piobcnt; j++, i++) { |
| if (i >= last) |
| i = first; |
| if (__test_and_set_bit((2 * i) + 1, shadow)) |
| continue; |
| /* flip generation bit */ |
| __change_bit(2 * i, shadow); |
| break; |
| } |
| spin_unlock_irqrestore(&ipath_pioavail_lock, flags); |
| |
| if (j == piobcnt) { |
| if (!updated) { |
| /* |
| * first time through; shadow exhausted, but may be |
| * buffers available, try an update and then rescan. |
| */ |
| ipath_update_pio_bufs(dd); |
| updated++; |
| i = first; |
| goto rescan; |
| } else if (updated == 1 && piobcnt <= |
| ((dd->ipath_sendctrl |
| >> INFINIPATH_S_UPDTHRESH_SHIFT) & |
| INFINIPATH_S_UPDTHRESH_MASK)) { |
| /* |
| * for chips supporting and using the update |
| * threshold we need to force an update of the |
| * in-memory copy if the count is less than the |
| * thershold, then check one more time. |
| */ |
| ipath_force_pio_avail_update(dd); |
| ipath_update_pio_bufs(dd); |
| updated++; |
| i = first; |
| goto rescan; |
| } |
| |
| no_pio_bufs(dd); |
| buf = NULL; |
| } else { |
| if (i < dd->ipath_piobcnt2k) |
| buf = (u32 __iomem *) (dd->ipath_pio2kbase + |
| i * dd->ipath_palign); |
| else |
| buf = (u32 __iomem *) |
| (dd->ipath_pio4kbase + |
| (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign); |
| if (pbufnum) |
| *pbufnum = i; |
| } |
| |
| return buf; |
| } |
| |
| /** |
| * ipath_getpiobuf - find an available pio buffer |
| * @dd: the infinipath device |
| * @plen: the size of the PIO buffer needed in 32-bit words |
| * @pbufnum: the buffer number is placed here |
| */ |
| u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum) |
| { |
| u32 __iomem *buf; |
| u32 pnum, nbufs; |
| u32 first, lasti; |
| |
| if (plen + 1 >= IPATH_SMALLBUF_DWORDS) { |
| first = dd->ipath_piobcnt2k; |
| lasti = dd->ipath_lastpioindexl; |
| } else { |
| first = 0; |
| lasti = dd->ipath_lastpioindex; |
| } |
| nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k; |
| buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti); |
| |
| if (buf) { |
| /* |
| * Set next starting place. It's just an optimization, |
| * it doesn't matter who wins on this, so no locking |
| */ |
| if (plen + 1 >= IPATH_SMALLBUF_DWORDS) |
| dd->ipath_lastpioindexl = pnum + 1; |
| else |
| dd->ipath_lastpioindex = pnum + 1; |
| if (dd->ipath_upd_pio_shadow) |
| dd->ipath_upd_pio_shadow = 0; |
| if (dd->ipath_consec_nopiobuf) |
| dd->ipath_consec_nopiobuf = 0; |
| ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n", |
| pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf); |
| if (pbufnum) |
| *pbufnum = pnum; |
| |
| } |
| return buf; |
| } |
| |
| /** |
| * ipath_chg_pioavailkernel - change which send buffers are available for kernel |
| * @dd: the infinipath device |
| * @start: the starting send buffer number |
| * @len: the number of send buffers |
| * @avail: true if the buffers are available for kernel use, false otherwise |
| */ |
| void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start, |
| unsigned len, int avail) |
| { |
| unsigned long flags; |
| unsigned end, cnt = 0, next; |
| |
| /* There are two bits per send buffer (busy and generation) */ |
| start *= 2; |
| end = start + len * 2; |
| |
| spin_lock_irqsave(&ipath_pioavail_lock, flags); |
| /* Set or clear the busy bit in the shadow. */ |
| while (start < end) { |
| if (avail) { |
| unsigned long dma; |
| int i, im; |
| /* |
| * the BUSY bit will never be set, because we disarm |
| * the user buffers before we hand them back to the |
| * kernel. We do have to make sure the generation |
| * bit is set correctly in shadow, since it could |
| * have changed many times while allocated to user. |
| * We can't use the bitmap functions on the full |
| * dma array because it is always little-endian, so |
| * we have to flip to host-order first. |
| * BITS_PER_LONG is slightly wrong, since it's |
| * always 64 bits per register in chip... |
| * We only work on 64 bit kernels, so that's OK. |
| */ |
| /* deal with 6110 chip bug on high register #s */ |
| i = start / BITS_PER_LONG; |
| im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ? |
| i ^ 1 : i; |
| __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT |
| + start, dd->ipath_pioavailshadow); |
| dma = (unsigned long) le64_to_cpu( |
| dd->ipath_pioavailregs_dma[im]); |
| if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT |
| + start) % BITS_PER_LONG, &dma)) |
| __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT |
| + start, dd->ipath_pioavailshadow); |
| else |
| __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT |
| + start, dd->ipath_pioavailshadow); |
| __set_bit(start, dd->ipath_pioavailkernel); |
| } else { |
| __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT, |
| dd->ipath_pioavailshadow); |
| __clear_bit(start, dd->ipath_pioavailkernel); |
| } |
| start += 2; |
| } |
| |
| if (dd->ipath_pioupd_thresh) { |
| end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k); |
| next = find_first_bit(dd->ipath_pioavailkernel, end); |
| while (next < end) { |
| cnt++; |
| next = find_next_bit(dd->ipath_pioavailkernel, end, |
| next + 1); |
| } |
| } |
| spin_unlock_irqrestore(&ipath_pioavail_lock, flags); |
| |
| /* |
| * When moving buffers from kernel to user, if number assigned to |
| * the user is less than the pio update threshold, and threshold |
| * is supported (cnt was computed > 0), drop the update threshold |
| * so we update at least once per allocated number of buffers. |
| * In any case, if the kernel buffers are less than the threshold, |
| * drop the threshold. We don't bother increasing it, having once |
| * decreased it, since it would typically just cycle back and forth. |
| * If we don't decrease below buffers in use, we can wait a long |
| * time for an update, until some other context uses PIO buffers. |
| */ |
| if (!avail && len < cnt) |
| cnt = len; |
| if (cnt < dd->ipath_pioupd_thresh) { |
| dd->ipath_pioupd_thresh = cnt; |
| ipath_dbg("Decreased pio update threshold to %u\n", |
| dd->ipath_pioupd_thresh); |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK |
| << INFINIPATH_S_UPDTHRESH_SHIFT); |
| dd->ipath_sendctrl |= dd->ipath_pioupd_thresh |
| << INFINIPATH_S_UPDTHRESH_SHIFT; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl); |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| } |
| } |
| |
| /** |
| * ipath_create_rcvhdrq - create a receive header queue |
| * @dd: the infinipath device |
| * @pd: the port data |
| * |
| * this must be contiguous memory (from an i/o perspective), and must be |
| * DMA'able (which means for some systems, it will go through an IOMMU, |
| * or be forced into a low address range). |
| */ |
| int ipath_create_rcvhdrq(struct ipath_devdata *dd, |
| struct ipath_portdata *pd) |
| { |
| int ret = 0; |
| |
| if (!pd->port_rcvhdrq) { |
| dma_addr_t phys_hdrqtail; |
| gfp_t gfp_flags = GFP_USER | __GFP_COMP; |
| int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize * |
| sizeof(u32), PAGE_SIZE); |
| |
| pd->port_rcvhdrq = dma_alloc_coherent( |
| &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys, |
| gfp_flags); |
| |
| if (!pd->port_rcvhdrq) { |
| ipath_dev_err(dd, "attempt to allocate %d bytes " |
| "for port %u rcvhdrq failed\n", |
| amt, pd->port_port); |
| ret = -ENOMEM; |
| goto bail; |
| } |
| |
| if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) { |
| pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent( |
| &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail, |
| GFP_KERNEL); |
| if (!pd->port_rcvhdrtail_kvaddr) { |
| ipath_dev_err(dd, "attempt to allocate 1 page " |
| "for port %u rcvhdrqtailaddr " |
| "failed\n", pd->port_port); |
| ret = -ENOMEM; |
| dma_free_coherent(&dd->pcidev->dev, amt, |
| pd->port_rcvhdrq, |
| pd->port_rcvhdrq_phys); |
| pd->port_rcvhdrq = NULL; |
| goto bail; |
| } |
| pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail; |
| ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx " |
| "physical\n", pd->port_port, |
| (unsigned long long) phys_hdrqtail); |
| } |
| |
| pd->port_rcvhdrq_size = amt; |
| |
| ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu " |
| "for port %u rcvhdr Q\n", |
| amt >> PAGE_SHIFT, pd->port_rcvhdrq, |
| (unsigned long) pd->port_rcvhdrq_phys, |
| (unsigned long) pd->port_rcvhdrq_size, |
| pd->port_port); |
| } |
| else |
| ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; " |
| "hdrtailaddr@%p %llx physical\n", |
| pd->port_port, pd->port_rcvhdrq, |
| (unsigned long long) pd->port_rcvhdrq_phys, |
| pd->port_rcvhdrtail_kvaddr, (unsigned long long) |
| pd->port_rcvhdrqtailaddr_phys); |
| |
| /* clear for security and sanity on each use */ |
| memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size); |
| if (pd->port_rcvhdrtail_kvaddr) |
| memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE); |
| |
| /* |
| * tell chip each time we init it, even if we are re-using previous |
| * memory (we zero the register at process close) |
| */ |
| ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr, |
| pd->port_port, pd->port_rcvhdrqtailaddr_phys); |
| ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr, |
| pd->port_port, pd->port_rcvhdrq_phys); |
| |
| bail: |
| return ret; |
| } |
| |
| |
| /* |
| * Flush all sends that might be in the ready to send state, as well as any |
| * that are in the process of being sent. Used whenever we need to be |
| * sure the send side is idle. Cleans up all buffer state by canceling |
| * all pio buffers, and issuing an abort, which cleans up anything in the |
| * launch fifo. The cancel is superfluous on some chip versions, but |
| * it's safer to always do it. |
| * PIOAvail bits are updated by the chip as if normal send had happened. |
| */ |
| void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl) |
| { |
| unsigned long flags; |
| |
| if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) { |
| ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n"); |
| goto bail; |
| } |
| /* |
| * If we have SDMA, and it's not disabled, we have to kick off the |
| * abort state machine, provided we aren't already aborting. |
| * If we are in the process of aborting SDMA (!DISABLED, but ABORTING), |
| * we skip the rest of this routine. It is already "in progress" |
| */ |
| if (dd->ipath_flags & IPATH_HAS_SEND_DMA) { |
| int skip_cancel; |
| unsigned long *statp = &dd->ipath_sdma_status; |
| |
| spin_lock_irqsave(&dd->ipath_sdma_lock, flags); |
| skip_cancel = |
| test_and_set_bit(IPATH_SDMA_ABORTING, statp) |
| && !test_bit(IPATH_SDMA_DISABLED, statp); |
| spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags); |
| if (skip_cancel) |
| goto bail; |
| } |
| |
| ipath_dbg("Cancelling all in-progress send buffers\n"); |
| |
| /* skip armlaunch errs for a while */ |
| dd->ipath_lastcancel = jiffies + HZ / 2; |
| |
| /* |
| * The abort bit is auto-clearing. We also don't want pioavail |
| * update happening during this, and we don't want any other |
| * sends going out, so turn those off for the duration. We read |
| * the scratch register to be sure that cancels and the abort |
| * have taken effect in the chip. Otherwise two parts are same |
| * as ipath_force_pio_avail_update() |
| */ |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD |
| | INFINIPATH_S_PIOENABLE); |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl | INFINIPATH_S_ABORT); |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| |
| /* disarm all send buffers */ |
| ipath_disarm_piobufs(dd, 0, |
| dd->ipath_piobcnt2k + dd->ipath_piobcnt4k); |
| |
| if (dd->ipath_flags & IPATH_HAS_SEND_DMA) |
| set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status); |
| |
| if (restore_sendctrl) { |
| /* else done by caller later if needed */ |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD | |
| INFINIPATH_S_PIOENABLE; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl); |
| /* and again, be sure all have hit the chip */ |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| } |
| |
| if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) && |
| !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) && |
| test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) { |
| spin_lock_irqsave(&dd->ipath_sdma_lock, flags); |
| /* only wait so long for intr */ |
| dd->ipath_sdma_abort_intr_timeout = jiffies + HZ; |
| dd->ipath_sdma_reset_wait = 200; |
| if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status)) |
| tasklet_hi_schedule(&dd->ipath_sdma_abort_task); |
| spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags); |
| } |
| bail:; |
| } |
| |
| /* |
| * Force an update of in-memory copy of the pioavail registers, when |
| * needed for any of a variety of reasons. We read the scratch register |
| * to make it highly likely that the update will have happened by the |
| * time we return. If already off (as in cancel_sends above), this |
| * routine is a nop, on the assumption that the caller will "do the |
| * right thing". |
| */ |
| void ipath_force_pio_avail_update(struct ipath_devdata *dd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) { |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD); |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, |
| dd->ipath_sendctrl); |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| } |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| } |
| |
| static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd, |
| int linitcmd) |
| { |
| u64 mod_wd; |
| static const char *what[4] = { |
| [0] = "NOP", |
| [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN", |
| [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED", |
| [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE" |
| }; |
| |
| if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) { |
| /* |
| * If we are told to disable, note that so link-recovery |
| * code does not attempt to bring us back up. |
| */ |
| preempt_disable(); |
| dd->ipath_flags |= IPATH_IB_LINK_DISABLED; |
| preempt_enable(); |
| } else if (linitcmd) { |
| /* |
| * Any other linkinitcmd will lead to LINKDOWN and then |
| * to INIT (if all is well), so clear flag to let |
| * link-recovery code attempt to bring us back up. |
| */ |
| preempt_disable(); |
| dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED; |
| preempt_enable(); |
| } |
| |
| mod_wd = (linkcmd << dd->ibcc_lc_shift) | |
| (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT); |
| ipath_cdbg(VERBOSE, |
| "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n", |
| dd->ipath_unit, what[linkcmd], linitcmd, |
| ipath_ibcstatus_str[ipath_ib_linktrstate(dd, |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]); |
| |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, |
| dd->ipath_ibcctrl | mod_wd); |
| /* read from chip so write is flushed */ |
| (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| } |
| |
| int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate) |
| { |
| u32 lstate; |
| int ret; |
| |
| switch (newstate) { |
| case IPATH_IB_LINKDOWN_ONLY: |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| case IPATH_IB_LINKDOWN: |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, |
| INFINIPATH_IBCC_LINKINITCMD_POLL); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| case IPATH_IB_LINKDOWN_SLEEP: |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, |
| INFINIPATH_IBCC_LINKINITCMD_SLEEP); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| case IPATH_IB_LINKDOWN_DISABLE: |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, |
| INFINIPATH_IBCC_LINKINITCMD_DISABLE); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| case IPATH_IB_LINKARM: |
| if (dd->ipath_flags & IPATH_LINKARMED) { |
| ret = 0; |
| goto bail; |
| } |
| if (!(dd->ipath_flags & |
| (IPATH_LINKINIT | IPATH_LINKACTIVE))) { |
| ret = -EINVAL; |
| goto bail; |
| } |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0); |
| |
| /* |
| * Since the port can transition to ACTIVE by receiving |
| * a non VL 15 packet, wait for either state. |
| */ |
| lstate = IPATH_LINKARMED | IPATH_LINKACTIVE; |
| break; |
| |
| case IPATH_IB_LINKACTIVE: |
| if (dd->ipath_flags & IPATH_LINKACTIVE) { |
| ret = 0; |
| goto bail; |
| } |
| if (!(dd->ipath_flags & IPATH_LINKARMED)) { |
| ret = -EINVAL; |
| goto bail; |
| } |
| ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0); |
| lstate = IPATH_LINKACTIVE; |
| break; |
| |
| case IPATH_IB_LINK_LOOPBACK: |
| dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n"); |
| dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, |
| dd->ipath_ibcctrl); |
| |
| /* turn heartbeat off, as it causes loopback to fail */ |
| dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, |
| IPATH_IB_HRTBT_OFF); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| case IPATH_IB_LINK_EXTERNAL: |
| dev_info(&dd->pcidev->dev, |
| "Disabling IB local loopback (normal)\n"); |
| dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, |
| IPATH_IB_HRTBT_ON); |
| dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, |
| dd->ipath_ibcctrl); |
| /* don't wait */ |
| ret = 0; |
| goto bail; |
| |
| /* |
| * Heartbeat can be explicitly enabled by the user via |
| * "hrtbt_enable" "file", and if disabled, trying to enable here |
| * will have no effect. Implicit changes (heartbeat off when |
| * loopback on, and vice versa) are included to ease testing. |
| */ |
| case IPATH_IB_LINK_HRTBT: |
| ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, |
| IPATH_IB_HRTBT_ON); |
| goto bail; |
| |
| case IPATH_IB_LINK_NO_HRTBT: |
| ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, |
| IPATH_IB_HRTBT_OFF); |
| goto bail; |
| |
| default: |
| ipath_dbg("Invalid linkstate 0x%x requested\n", newstate); |
| ret = -EINVAL; |
| goto bail; |
| } |
| ret = ipath_wait_linkstate(dd, lstate, 2000); |
| |
| bail: |
| return ret; |
| } |
| |
| /** |
| * ipath_set_mtu - set the MTU |
| * @dd: the infinipath device |
| * @arg: the new MTU |
| * |
| * we can handle "any" incoming size, the issue here is whether we |
| * need to restrict our outgoing size. For now, we don't do any |
| * sanity checking on this, and we don't deal with what happens to |
| * programs that are already running when the size changes. |
| * NOTE: changing the MTU will usually cause the IBC to go back to |
| * link INIT state... |
| */ |
| int ipath_set_mtu(struct ipath_devdata *dd, u16 arg) |
| { |
| u32 piosize; |
| int changed = 0; |
| int ret; |
| |
| /* |
| * mtu is IB data payload max. It's the largest power of 2 less |
| * than piosize (or even larger, since it only really controls the |
| * largest we can receive; we can send the max of the mtu and |
| * piosize). We check that it's one of the valid IB sizes. |
| */ |
| if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 && |
| (arg != 4096 || !ipath_mtu4096)) { |
| ipath_dbg("Trying to set invalid mtu %u, failing\n", arg); |
| ret = -EINVAL; |
| goto bail; |
| } |
| if (dd->ipath_ibmtu == arg) { |
| ret = 0; /* same as current */ |
| goto bail; |
| } |
| |
| piosize = dd->ipath_ibmaxlen; |
| dd->ipath_ibmtu = arg; |
| |
| if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) { |
| /* Only if it's not the initial value (or reset to it) */ |
| if (piosize != dd->ipath_init_ibmaxlen) { |
| if (arg > piosize && arg <= dd->ipath_init_ibmaxlen) |
| piosize = dd->ipath_init_ibmaxlen; |
| dd->ipath_ibmaxlen = piosize; |
| changed = 1; |
| } |
| } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) { |
| piosize = arg + IPATH_PIO_MAXIBHDR; |
| ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x " |
| "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize, |
| arg); |
| dd->ipath_ibmaxlen = piosize; |
| changed = 1; |
| } |
| |
| if (changed) { |
| u64 ibc = dd->ipath_ibcctrl, ibdw; |
| /* |
| * update our housekeeping variables, and set IBC max |
| * size, same as init code; max IBC is max we allow in |
| * buffer, less the qword pbc, plus 1 for ICRC, in dwords |
| */ |
| dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32); |
| ibdw = (dd->ipath_ibmaxlen >> 2) + 1; |
| ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK << |
| dd->ibcc_mpl_shift); |
| ibc |= ibdw << dd->ibcc_mpl_shift; |
| dd->ipath_ibcctrl = ibc; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, |
| dd->ipath_ibcctrl); |
| dd->ipath_f_tidtemplate(dd); |
| } |
| |
| ret = 0; |
| |
| bail: |
| return ret; |
| } |
| |
| int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc) |
| { |
| dd->ipath_lid = lid; |
| dd->ipath_lmc = lmc; |
| |
| dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid | |
| (~((1U << lmc) - 1)) << 16); |
| |
| dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * ipath_write_kreg_port - write a device's per-port 64-bit kernel register |
| * @dd: the infinipath device |
| * @regno: the register number to write |
| * @port: the port containing the register |
| * @value: the value to write |
| * |
| * Registers that vary with the chip implementation constants (port) |
| * use this routine. |
| */ |
| void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno, |
| unsigned port, u64 value) |
| { |
| u16 where; |
| |
| if (port < dd->ipath_portcnt && |
| (regno == dd->ipath_kregs->kr_rcvhdraddr || |
| regno == dd->ipath_kregs->kr_rcvhdrtailaddr)) |
| where = regno + port; |
| else |
| where = -1; |
| |
| ipath_write_kreg(dd, where, value); |
| } |
| |
| /* |
| * Following deal with the "obviously simple" task of overriding the state |
| * of the LEDS, which normally indicate link physical and logical status. |
| * The complications arise in dealing with different hardware mappings |
| * and the board-dependent routine being called from interrupts. |
| * and then there's the requirement to _flash_ them. |
| */ |
| #define LED_OVER_FREQ_SHIFT 8 |
| #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT) |
| /* Below is "non-zero" to force override, but both actual LEDs are off */ |
| #define LED_OVER_BOTH_OFF (8) |
| |
| static void ipath_run_led_override(unsigned long opaque) |
| { |
| struct ipath_devdata *dd = (struct ipath_devdata *)opaque; |
| int timeoff; |
| int pidx; |
| u64 lstate, ltstate, val; |
| |
| if (!(dd->ipath_flags & IPATH_INITTED)) |
| return; |
| |
| pidx = dd->ipath_led_override_phase++ & 1; |
| dd->ipath_led_override = dd->ipath_led_override_vals[pidx]; |
| timeoff = dd->ipath_led_override_timeoff; |
| |
| /* |
| * below potentially restores the LED values per current status, |
| * should also possibly setup the traffic-blink register, |
| * but leave that to per-chip functions. |
| */ |
| val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| ltstate = ipath_ib_linktrstate(dd, val); |
| lstate = ipath_ib_linkstate(dd, val); |
| |
| dd->ipath_f_setextled(dd, lstate, ltstate); |
| mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff); |
| } |
| |
| void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val) |
| { |
| int timeoff, freq; |
| |
| if (!(dd->ipath_flags & IPATH_INITTED)) |
| return; |
| |
| /* First check if we are blinking. If not, use 1HZ polling */ |
| timeoff = HZ; |
| freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT; |
| |
| if (freq) { |
| /* For blink, set each phase from one nybble of val */ |
| dd->ipath_led_override_vals[0] = val & 0xF; |
| dd->ipath_led_override_vals[1] = (val >> 4) & 0xF; |
| timeoff = (HZ << 4)/freq; |
| } else { |
| /* Non-blink set both phases the same. */ |
| dd->ipath_led_override_vals[0] = val & 0xF; |
| dd->ipath_led_override_vals[1] = val & 0xF; |
| } |
| dd->ipath_led_override_timeoff = timeoff; |
| |
| /* |
| * If the timer has not already been started, do so. Use a "quick" |
| * timeout so the function will be called soon, to look at our request. |
| */ |
| if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) { |
| /* Need to start timer */ |
| init_timer(&dd->ipath_led_override_timer); |
| dd->ipath_led_override_timer.function = |
| ipath_run_led_override; |
| dd->ipath_led_override_timer.data = (unsigned long) dd; |
| dd->ipath_led_override_timer.expires = jiffies + 1; |
| add_timer(&dd->ipath_led_override_timer); |
| } else |
| atomic_dec(&dd->ipath_led_override_timer_active); |
| } |
| |
| /** |
| * ipath_shutdown_device - shut down a device |
| * @dd: the infinipath device |
| * |
| * This is called to make the device quiet when we are about to |
| * unload the driver, and also when the device is administratively |
| * disabled. It does not free any data structures. |
| * Everything it does has to be setup again by ipath_init_chip(dd,1) |
| */ |
| void ipath_shutdown_device(struct ipath_devdata *dd) |
| { |
| unsigned long flags; |
| |
| ipath_dbg("Shutting down the device\n"); |
| |
| ipath_hol_up(dd); /* make sure user processes aren't suspended */ |
| |
| dd->ipath_flags |= IPATH_LINKUNK; |
| dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN | |
| IPATH_LINKINIT | IPATH_LINKARMED | |
| IPATH_LINKACTIVE); |
| *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF | |
| IPATH_STATUS_IB_READY); |
| |
| /* mask interrupts, but not errors */ |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL); |
| |
| dd->ipath_rcvctrl = 0; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, |
| dd->ipath_rcvctrl); |
| |
| if (dd->ipath_flags & IPATH_HAS_SEND_DMA) |
| teardown_sdma(dd); |
| |
| /* |
| * gracefully stop all sends allowing any in progress to trickle out |
| * first. |
| */ |
| spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); |
| dd->ipath_sendctrl = 0; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); |
| /* flush it */ |
| ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); |
| spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); |
| |
| /* |
| * enough for anything that's going to trickle out to have actually |
| * done so. |
| */ |
| udelay(5); |
| |
| dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */ |
| |
| ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE); |
| ipath_cancel_sends(dd, 0); |
| |
| /* |
| * we are shutting down, so tell components that care. We don't do |
| * this on just a link state change, much like ethernet, a cable |
| * unplug, etc. doesn't change driver state |
| */ |
| signal_ib_event(dd, IB_EVENT_PORT_ERR); |
| |
| /* disable IBC */ |
| dd->ipath_control &= ~INFINIPATH_C_LINKENABLE; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_control, |
| dd->ipath_control | INFINIPATH_C_FREEZEMODE); |
| |
| /* |
| * clear SerdesEnable and turn the leds off; do this here because |
| * we are unloading, so don't count on interrupts to move along |
| * Turn the LEDs off explictly for the same reason. |
| */ |
| dd->ipath_f_quiet_serdes(dd); |
| |
| /* stop all the timers that might still be running */ |
| del_timer_sync(&dd->ipath_hol_timer); |
| if (dd->ipath_stats_timer_active) { |
| del_timer_sync(&dd->ipath_stats_timer); |
| dd->ipath_stats_timer_active = 0; |
| } |
| if (dd->ipath_intrchk_timer.data) { |
| del_timer_sync(&dd->ipath_intrchk_timer); |
| dd->ipath_intrchk_timer.data = 0; |
| } |
| if (atomic_read(&dd->ipath_led_override_timer_active)) { |
| del_timer_sync(&dd->ipath_led_override_timer); |
| atomic_set(&dd->ipath_led_override_timer_active, 0); |
| } |
| |
| /* |
| * clear all interrupts and errors, so that the next time the driver |
| * is loaded or device is enabled, we know that whatever is set |
| * happened while we were unloaded |
| */ |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, |
| ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED); |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL); |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL); |
| |
| ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n"); |
| ipath_update_eeprom_log(dd); |
| } |
| |
| /** |
| * ipath_free_pddata - free a port's allocated data |
| * @dd: the infinipath device |
| * @pd: the portdata structure |
| * |
| * free up any allocated data for a port |
| * This should not touch anything that would affect a simultaneous |
| * re-allocation of port data, because it is called after ipath_mutex |
| * is released (and can be called from reinit as well). |
| * It should never change any chip state, or global driver state. |
| * (The only exception to global state is freeing the port0 port0_skbs.) |
| */ |
| void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd) |
| { |
| if (!pd) |
| return; |
| |
| if (pd->port_rcvhdrq) { |
| ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p " |
| "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq, |
| (unsigned long) pd->port_rcvhdrq_size); |
| dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size, |
| pd->port_rcvhdrq, pd->port_rcvhdrq_phys); |
| pd->port_rcvhdrq = NULL; |
| if (pd->port_rcvhdrtail_kvaddr) { |
| dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| pd->port_rcvhdrtail_kvaddr, |
| pd->port_rcvhdrqtailaddr_phys); |
| pd->port_rcvhdrtail_kvaddr = NULL; |
| } |
| } |
| if (pd->port_port && pd->port_rcvegrbuf) { |
| unsigned e; |
| |
| for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) { |
| void *base = pd->port_rcvegrbuf[e]; |
| size_t size = pd->port_rcvegrbuf_size; |
| |
| ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), " |
| "chunk %u/%u\n", base, |
| (unsigned long) size, |
| e, pd->port_rcvegrbuf_chunks); |
| dma_free_coherent(&dd->pcidev->dev, size, |
| base, pd->port_rcvegrbuf_phys[e]); |
| } |
| kfree(pd->port_rcvegrbuf); |
| pd->port_rcvegrbuf = NULL; |
| kfree(pd->port_rcvegrbuf_phys); |
| pd->port_rcvegrbuf_phys = NULL; |
| pd->port_rcvegrbuf_chunks = 0; |
| } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) { |
| unsigned e; |
| struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo; |
| |
| dd->ipath_port0_skbinfo = NULL; |
| ipath_cdbg(VERBOSE, "free closed port %d " |
| "ipath_port0_skbinfo @ %p\n", pd->port_port, |
| skbinfo); |
| for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++) |
| if (skbinfo[e].skb) { |
| pci_unmap_single(dd->pcidev, skbinfo[e].phys, |
| dd->ipath_ibmaxlen, |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(skbinfo[e].skb); |
| } |
| vfree(skbinfo); |
| } |
| kfree(pd->port_tid_pg_list); |
| vfree(pd->subport_uregbase); |
| vfree(pd->subport_rcvegrbuf); |
| vfree(pd->subport_rcvhdr_base); |
| kfree(pd); |
| } |
| |
| static int __init infinipath_init(void) |
| { |
| int ret; |
| |
| if (ipath_debug & __IPATH_DBG) |
| printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version); |
| |
| /* |
| * These must be called before the driver is registered with |
| * the PCI subsystem. |
| */ |
| idr_init(&unit_table); |
| if (!idr_pre_get(&unit_table, GFP_KERNEL)) { |
| printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n"); |
| ret = -ENOMEM; |
| goto bail; |
| } |
| |
| ret = pci_register_driver(&ipath_driver); |
| if (ret < 0) { |
| printk(KERN_ERR IPATH_DRV_NAME |
| ": Unable to register driver: error %d\n", -ret); |
| goto bail_unit; |
| } |
| |
| ret = ipath_init_ipathfs(); |
| if (ret < 0) { |
| printk(KERN_ERR IPATH_DRV_NAME ": Unable to create " |
| "ipathfs: error %d\n", -ret); |
| goto bail_pci; |
| } |
| |
| goto bail; |
| |
| bail_pci: |
| pci_unregister_driver(&ipath_driver); |
| |
| bail_unit: |
| idr_destroy(&unit_table); |
| |
| bail: |
| return ret; |
| } |
| |
| static void __exit infinipath_cleanup(void) |
| { |
| ipath_exit_ipathfs(); |
| |
| ipath_cdbg(VERBOSE, "Unregistering pci driver\n"); |
| pci_unregister_driver(&ipath_driver); |
| |
| idr_destroy(&unit_table); |
| } |
| |
| /** |
| * ipath_reset_device - reset the chip if possible |
| * @unit: the device to reset |
| * |
| * Whether or not reset is successful, we attempt to re-initialize the chip |
| * (that is, much like a driver unload/reload). We clear the INITTED flag |
| * so that the various entry points will fail until we reinitialize. For |
| * now, we only allow this if no user ports are open that use chip resources |
| */ |
| int ipath_reset_device(int unit) |
| { |
| int ret, i; |
| struct ipath_devdata *dd = ipath_lookup(unit); |
| |
| if (!dd) { |
| ret = -ENODEV; |
| goto bail; |
| } |
| |
| if (atomic_read(&dd->ipath_led_override_timer_active)) { |
| /* Need to stop LED timer, _then_ shut off LEDs */ |
| del_timer_sync(&dd->ipath_led_override_timer); |
| atomic_set(&dd->ipath_led_override_timer_active, 0); |
| } |
| |
| /* Shut off LEDs after we are sure timer is not running */ |
| dd->ipath_led_override = LED_OVER_BOTH_OFF; |
| dd->ipath_f_setextled(dd, 0, 0); |
| |
| dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit); |
| |
| if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) { |
| dev_info(&dd->pcidev->dev, "Invalid unit number %u or " |
| "not initialized or not present\n", unit); |
| ret = -ENXIO; |
| goto bail; |
| } |
| |
| if (dd->ipath_pd) |
| for (i = 1; i < dd->ipath_cfgports; i++) { |
| if (dd->ipath_pd[i] && dd->ipath_pd[i]->port_cnt) { |
| ipath_dbg("unit %u port %d is in use " |
| "(PID %u cmd %s), can't reset\n", |
| unit, i, |
| pid_nr(dd->ipath_pd[i]->port_pid), |
| dd->ipath_pd[i]->port_comm); |
| ret = -EBUSY; |
| goto bail; |
| } |
| } |
| |
| if (dd->ipath_flags & IPATH_HAS_SEND_DMA) |
| teardown_sdma(dd); |
| |
| dd->ipath_flags &= ~IPATH_INITTED; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL); |
| ret = dd->ipath_f_reset(dd); |
| if (ret == 1) { |
| ipath_dbg("Reinitializing unit %u after reset attempt\n", |
| unit); |
| ret = ipath_init_chip(dd, 1); |
| } else |
| ret = -EAGAIN; |
| if (ret) |
| ipath_dev_err(dd, "Reinitialize unit %u after " |
| "reset failed with %d\n", unit, ret); |
| else |
| dev_info(&dd->pcidev->dev, "Reinitialized unit %u after " |
| "resetting\n", unit); |
| |
| bail: |
| return ret; |
| } |
| |
| /* |
| * send a signal to all the processes that have the driver open |
| * through the normal interfaces (i.e., everything other than diags |
| * interface). Returns number of signalled processes. |
| */ |
| static int ipath_signal_procs(struct ipath_devdata *dd, int sig) |
| { |
| int i, sub, any = 0; |
| struct pid *pid; |
| |
| if (!dd->ipath_pd) |
| return 0; |
| for (i = 1; i < dd->ipath_cfgports; i++) { |
| if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt) |
| continue; |
| pid = dd->ipath_pd[i]->port_pid; |
| if (!pid) |
| continue; |
| |
| dev_info(&dd->pcidev->dev, "context %d in use " |
| "(PID %u), sending signal %d\n", |
| i, pid_nr(pid), sig); |
| kill_pid(pid, sig, 1); |
| any++; |
| for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) { |
| pid = dd->ipath_pd[i]->port_subpid[sub]; |
| if (!pid) |
| continue; |
| dev_info(&dd->pcidev->dev, "sub-context " |
| "%d:%d in use (PID %u), sending " |
| "signal %d\n", i, sub, pid_nr(pid), sig); |
| kill_pid(pid, sig, 1); |
| any++; |
| } |
| } |
| return any; |
| } |
| |
| static void ipath_hol_signal_down(struct ipath_devdata *dd) |
| { |
| if (ipath_signal_procs(dd, SIGSTOP)) |
| ipath_dbg("Stopped some processes\n"); |
| ipath_cancel_sends(dd, 1); |
| } |
| |
| |
| static void ipath_hol_signal_up(struct ipath_devdata *dd) |
| { |
| if (ipath_signal_procs(dd, SIGCONT)) |
| ipath_dbg("Continued some processes\n"); |
| } |
| |
| /* |
| * link is down, stop any users processes, and flush pending sends |
| * to prevent HoL blocking, then start the HoL timer that |
| * periodically continues, then stop procs, so they can detect |
| * link down if they want, and do something about it. |
| * Timer may already be running, so use __mod_timer, not add_timer. |
| */ |
| void ipath_hol_down(struct ipath_devdata *dd) |
| { |
| dd->ipath_hol_state = IPATH_HOL_DOWN; |
| ipath_hol_signal_down(dd); |
| dd->ipath_hol_next = IPATH_HOL_DOWNCONT; |
| dd->ipath_hol_timer.expires = jiffies + |
| msecs_to_jiffies(ipath_hol_timeout_ms); |
| __mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires); |
| } |
| |
| /* |
| * link is up, continue any user processes, and ensure timer |
| * is a nop, if running. Let timer keep running, if set; it |
| * will nop when it sees the link is up |
| */ |
| void ipath_hol_up(struct ipath_devdata *dd) |
| { |
| ipath_hol_signal_up(dd); |
| dd->ipath_hol_state = IPATH_HOL_UP; |
| } |
| |
| /* |
| * toggle the running/not running state of user proceses |
| * to prevent HoL blocking on chip resources, but still allow |
| * user processes to do link down special case handling. |
| * Should only be called via the timer |
| */ |
| void ipath_hol_event(unsigned long opaque) |
| { |
| struct ipath_devdata *dd = (struct ipath_devdata *)opaque; |
| |
| if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP |
| && dd->ipath_hol_state != IPATH_HOL_UP) { |
| dd->ipath_hol_next = IPATH_HOL_DOWNCONT; |
| ipath_dbg("Stopping processes\n"); |
| ipath_hol_signal_down(dd); |
| } else { /* may do "extra" if also in ipath_hol_up() */ |
| dd->ipath_hol_next = IPATH_HOL_DOWNSTOP; |
| ipath_dbg("Continuing processes\n"); |
| ipath_hol_signal_up(dd); |
| } |
| if (dd->ipath_hol_state == IPATH_HOL_UP) |
| ipath_dbg("link's up, don't resched timer\n"); |
| else { |
| dd->ipath_hol_timer.expires = jiffies + |
| msecs_to_jiffies(ipath_hol_timeout_ms); |
| __mod_timer(&dd->ipath_hol_timer, |
| dd->ipath_hol_timer.expires); |
| } |
| } |
| |
| int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv) |
| { |
| u64 val; |
| |
| if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK) |
| return -1; |
| if (dd->ipath_rx_pol_inv != new_pol_inv) { |
| dd->ipath_rx_pol_inv = new_pol_inv; |
| val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig); |
| val &= ~(INFINIPATH_XGXS_RX_POL_MASK << |
| INFINIPATH_XGXS_RX_POL_SHIFT); |
| val |= ((u64)dd->ipath_rx_pol_inv) << |
| INFINIPATH_XGXS_RX_POL_SHIFT; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val); |
| } |
| return 0; |
| } |
| |
| /* |
| * Disable and enable the armlaunch error. Used for PIO bandwidth testing on |
| * the 7220, which is count-based, rather than trigger-based. Safe for the |
| * driver check, since it's at init. Not completely safe when used for |
| * user-mode checking, since some error checking can be lost, but not |
| * particularly risky, and only has problematic side-effects in the face of |
| * very buggy user code. There is no reference counting, but that's also |
| * fine, given the intended use. |
| */ |
| void ipath_enable_armlaunch(struct ipath_devdata *dd) |
| { |
| dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, |
| INFINIPATH_E_SPIOARMLAUNCH); |
| dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask, |
| dd->ipath_errormask); |
| } |
| |
| void ipath_disable_armlaunch(struct ipath_devdata *dd) |
| { |
| /* so don't re-enable if already set */ |
| dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH; |
| dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH; |
| ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask, |
| dd->ipath_errormask); |
| } |
| |
| module_init(infinipath_init); |
| module_exit(infinipath_cleanup); |