| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/lmb.h> |
| |
| #define LMB_ALLOC_ANYWHERE 0 |
| |
| struct lmb lmb; |
| |
| static int lmb_debug; |
| |
| static int __init early_lmb(char *p) |
| { |
| if (p && strstr(p, "debug")) |
| lmb_debug = 1; |
| return 0; |
| } |
| early_param("lmb", early_lmb); |
| |
| static void lmb_dump(struct lmb_region *region, char *name) |
| { |
| unsigned long long base, size; |
| int i; |
| |
| pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); |
| |
| for (i = 0; i < region->cnt; i++) { |
| base = region->region[i].base; |
| size = region->region[i].size; |
| |
| pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", |
| name, i, base, base + size - 1, size); |
| } |
| } |
| |
| void lmb_dump_all(void) |
| { |
| if (!lmb_debug) |
| return; |
| |
| pr_info("LMB configuration:\n"); |
| pr_info(" rmo_size = 0x%llx\n", (unsigned long long)lmb.rmo_size); |
| pr_info(" memory.size = 0x%llx\n", (unsigned long long)lmb.memory.size); |
| |
| lmb_dump(&lmb.memory, "memory"); |
| lmb_dump(&lmb.reserved, "reserved"); |
| } |
| |
| static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2, |
| u64 size2) |
| { |
| return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| } |
| |
| static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) |
| { |
| if (base2 == base1 + size1) |
| return 1; |
| else if (base1 == base2 + size2) |
| return -1; |
| |
| return 0; |
| } |
| |
| static long lmb_regions_adjacent(struct lmb_region *rgn, |
| unsigned long r1, unsigned long r2) |
| { |
| u64 base1 = rgn->region[r1].base; |
| u64 size1 = rgn->region[r1].size; |
| u64 base2 = rgn->region[r2].base; |
| u64 size2 = rgn->region[r2].size; |
| |
| return lmb_addrs_adjacent(base1, size1, base2, size2); |
| } |
| |
| static void lmb_remove_region(struct lmb_region *rgn, unsigned long r) |
| { |
| unsigned long i; |
| |
| for (i = r; i < rgn->cnt - 1; i++) { |
| rgn->region[i].base = rgn->region[i + 1].base; |
| rgn->region[i].size = rgn->region[i + 1].size; |
| } |
| rgn->cnt--; |
| } |
| |
| /* Assumption: base addr of region 1 < base addr of region 2 */ |
| static void lmb_coalesce_regions(struct lmb_region *rgn, |
| unsigned long r1, unsigned long r2) |
| { |
| rgn->region[r1].size += rgn->region[r2].size; |
| lmb_remove_region(rgn, r2); |
| } |
| |
| void __init lmb_init(void) |
| { |
| /* Create a dummy zero size LMB which will get coalesced away later. |
| * This simplifies the lmb_add() code below... |
| */ |
| lmb.memory.region[0].base = 0; |
| lmb.memory.region[0].size = 0; |
| lmb.memory.cnt = 1; |
| |
| /* Ditto. */ |
| lmb.reserved.region[0].base = 0; |
| lmb.reserved.region[0].size = 0; |
| lmb.reserved.cnt = 1; |
| } |
| |
| void __init lmb_analyze(void) |
| { |
| int i; |
| |
| lmb.memory.size = 0; |
| |
| for (i = 0; i < lmb.memory.cnt; i++) |
| lmb.memory.size += lmb.memory.region[i].size; |
| } |
| |
| static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size) |
| { |
| unsigned long coalesced = 0; |
| long adjacent, i; |
| |
| if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { |
| rgn->region[0].base = base; |
| rgn->region[0].size = size; |
| return 0; |
| } |
| |
| /* First try and coalesce this LMB with another. */ |
| for (i = 0; i < rgn->cnt; i++) { |
| u64 rgnbase = rgn->region[i].base; |
| u64 rgnsize = rgn->region[i].size; |
| |
| if ((rgnbase == base) && (rgnsize == size)) |
| /* Already have this region, so we're done */ |
| return 0; |
| |
| adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize); |
| if (adjacent > 0) { |
| rgn->region[i].base -= size; |
| rgn->region[i].size += size; |
| coalesced++; |
| break; |
| } else if (adjacent < 0) { |
| rgn->region[i].size += size; |
| coalesced++; |
| break; |
| } |
| } |
| |
| if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) { |
| lmb_coalesce_regions(rgn, i, i+1); |
| coalesced++; |
| } |
| |
| if (coalesced) |
| return coalesced; |
| if (rgn->cnt >= MAX_LMB_REGIONS) |
| return -1; |
| |
| /* Couldn't coalesce the LMB, so add it to the sorted table. */ |
| for (i = rgn->cnt - 1; i >= 0; i--) { |
| if (base < rgn->region[i].base) { |
| rgn->region[i+1].base = rgn->region[i].base; |
| rgn->region[i+1].size = rgn->region[i].size; |
| } else { |
| rgn->region[i+1].base = base; |
| rgn->region[i+1].size = size; |
| break; |
| } |
| } |
| |
| if (base < rgn->region[0].base) { |
| rgn->region[0].base = base; |
| rgn->region[0].size = size; |
| } |
| rgn->cnt++; |
| |
| return 0; |
| } |
| |
| long lmb_add(u64 base, u64 size) |
| { |
| struct lmb_region *_rgn = &lmb.memory; |
| |
| /* On pSeries LPAR systems, the first LMB is our RMO region. */ |
| if (base == 0) |
| lmb.rmo_size = size; |
| |
| return lmb_add_region(_rgn, base, size); |
| |
| } |
| |
| long lmb_remove(u64 base, u64 size) |
| { |
| struct lmb_region *rgn = &(lmb.memory); |
| u64 rgnbegin, rgnend; |
| u64 end = base + size; |
| int i; |
| |
| rgnbegin = rgnend = 0; /* supress gcc warnings */ |
| |
| /* Find the region where (base, size) belongs to */ |
| for (i=0; i < rgn->cnt; i++) { |
| rgnbegin = rgn->region[i].base; |
| rgnend = rgnbegin + rgn->region[i].size; |
| |
| if ((rgnbegin <= base) && (end <= rgnend)) |
| break; |
| } |
| |
| /* Didn't find the region */ |
| if (i == rgn->cnt) |
| return -1; |
| |
| /* Check to see if we are removing entire region */ |
| if ((rgnbegin == base) && (rgnend == end)) { |
| lmb_remove_region(rgn, i); |
| return 0; |
| } |
| |
| /* Check to see if region is matching at the front */ |
| if (rgnbegin == base) { |
| rgn->region[i].base = end; |
| rgn->region[i].size -= size; |
| return 0; |
| } |
| |
| /* Check to see if the region is matching at the end */ |
| if (rgnend == end) { |
| rgn->region[i].size -= size; |
| return 0; |
| } |
| |
| /* |
| * We need to split the entry - adjust the current one to the |
| * beginging of the hole and add the region after hole. |
| */ |
| rgn->region[i].size = base - rgn->region[i].base; |
| return lmb_add_region(rgn, end, rgnend - end); |
| } |
| |
| long __init lmb_reserve(u64 base, u64 size) |
| { |
| struct lmb_region *_rgn = &lmb.reserved; |
| |
| BUG_ON(0 == size); |
| |
| return lmb_add_region(_rgn, base, size); |
| } |
| |
| long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < rgn->cnt; i++) { |
| u64 rgnbase = rgn->region[i].base; |
| u64 rgnsize = rgn->region[i].size; |
| if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) |
| break; |
| } |
| |
| return (i < rgn->cnt) ? i : -1; |
| } |
| |
| static u64 lmb_align_down(u64 addr, u64 size) |
| { |
| return addr & ~(size - 1); |
| } |
| |
| static u64 lmb_align_up(u64 addr, u64 size) |
| { |
| return (addr + (size - 1)) & ~(size - 1); |
| } |
| |
| static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end, |
| u64 size, u64 align) |
| { |
| u64 base, res_base; |
| long j; |
| |
| base = lmb_align_down((end - size), align); |
| while (start <= base) { |
| j = lmb_overlaps_region(&lmb.reserved, base, size); |
| if (j < 0) { |
| /* this area isn't reserved, take it */ |
| if (lmb_add_region(&lmb.reserved, base, size) < 0) |
| base = ~(u64)0; |
| return base; |
| } |
| res_base = lmb.reserved.region[j].base; |
| if (res_base < size) |
| break; |
| base = lmb_align_down(res_base - size, align); |
| } |
| |
| return ~(u64)0; |
| } |
| |
| static u64 __init lmb_alloc_nid_region(struct lmb_property *mp, |
| u64 (*nid_range)(u64, u64, int *), |
| u64 size, u64 align, int nid) |
| { |
| u64 start, end; |
| |
| start = mp->base; |
| end = start + mp->size; |
| |
| start = lmb_align_up(start, align); |
| while (start < end) { |
| u64 this_end; |
| int this_nid; |
| |
| this_end = nid_range(start, end, &this_nid); |
| if (this_nid == nid) { |
| u64 ret = lmb_alloc_nid_unreserved(start, this_end, |
| size, align); |
| if (ret != ~(u64)0) |
| return ret; |
| } |
| start = this_end; |
| } |
| |
| return ~(u64)0; |
| } |
| |
| u64 __init lmb_alloc_nid(u64 size, u64 align, int nid, |
| u64 (*nid_range)(u64 start, u64 end, int *nid)) |
| { |
| struct lmb_region *mem = &lmb.memory; |
| int i; |
| |
| BUG_ON(0 == size); |
| |
| size = lmb_align_up(size, align); |
| |
| for (i = 0; i < mem->cnt; i++) { |
| u64 ret = lmb_alloc_nid_region(&mem->region[i], |
| nid_range, |
| size, align, nid); |
| if (ret != ~(u64)0) |
| return ret; |
| } |
| |
| return lmb_alloc(size, align); |
| } |
| |
| u64 __init lmb_alloc(u64 size, u64 align) |
| { |
| return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); |
| } |
| |
| u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr) |
| { |
| u64 alloc; |
| |
| alloc = __lmb_alloc_base(size, align, max_addr); |
| |
| if (alloc == 0) |
| panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", |
| (unsigned long long) size, (unsigned long long) max_addr); |
| |
| return alloc; |
| } |
| |
| u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr) |
| { |
| long i, j; |
| u64 base = 0; |
| u64 res_base; |
| |
| BUG_ON(0 == size); |
| |
| size = lmb_align_up(size, align); |
| |
| /* On some platforms, make sure we allocate lowmem */ |
| /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */ |
| if (max_addr == LMB_ALLOC_ANYWHERE) |
| max_addr = LMB_REAL_LIMIT; |
| |
| for (i = lmb.memory.cnt - 1; i >= 0; i--) { |
| u64 lmbbase = lmb.memory.region[i].base; |
| u64 lmbsize = lmb.memory.region[i].size; |
| |
| if (lmbsize < size) |
| continue; |
| if (max_addr == LMB_ALLOC_ANYWHERE) |
| base = lmb_align_down(lmbbase + lmbsize - size, align); |
| else if (lmbbase < max_addr) { |
| base = min(lmbbase + lmbsize, max_addr); |
| base = lmb_align_down(base - size, align); |
| } else |
| continue; |
| |
| while (base && lmbbase <= base) { |
| j = lmb_overlaps_region(&lmb.reserved, base, size); |
| if (j < 0) { |
| /* this area isn't reserved, take it */ |
| if (lmb_add_region(&lmb.reserved, base, size) < 0) |
| return 0; |
| return base; |
| } |
| res_base = lmb.reserved.region[j].base; |
| if (res_base < size) |
| break; |
| base = lmb_align_down(res_base - size, align); |
| } |
| } |
| return 0; |
| } |
| |
| /* You must call lmb_analyze() before this. */ |
| u64 __init lmb_phys_mem_size(void) |
| { |
| return lmb.memory.size; |
| } |
| |
| u64 __init lmb_end_of_DRAM(void) |
| { |
| int idx = lmb.memory.cnt - 1; |
| |
| return (lmb.memory.region[idx].base + lmb.memory.region[idx].size); |
| } |
| |
| /* You must call lmb_analyze() after this. */ |
| void __init lmb_enforce_memory_limit(u64 memory_limit) |
| { |
| unsigned long i; |
| u64 limit; |
| struct lmb_property *p; |
| |
| if (!memory_limit) |
| return; |
| |
| /* Truncate the lmb regions to satisfy the memory limit. */ |
| limit = memory_limit; |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| if (limit > lmb.memory.region[i].size) { |
| limit -= lmb.memory.region[i].size; |
| continue; |
| } |
| |
| lmb.memory.region[i].size = limit; |
| lmb.memory.cnt = i + 1; |
| break; |
| } |
| |
| if (lmb.memory.region[0].size < lmb.rmo_size) |
| lmb.rmo_size = lmb.memory.region[0].size; |
| |
| memory_limit = lmb_end_of_DRAM(); |
| |
| /* And truncate any reserves above the limit also. */ |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| p = &lmb.reserved.region[i]; |
| |
| if (p->base > memory_limit) |
| p->size = 0; |
| else if ((p->base + p->size) > memory_limit) |
| p->size = memory_limit - p->base; |
| |
| if (p->size == 0) { |
| lmb_remove_region(&lmb.reserved, i); |
| i--; |
| } |
| } |
| } |
| |
| int __init lmb_is_reserved(u64 addr) |
| { |
| int i; |
| |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| u64 upper = lmb.reserved.region[i].base + |
| lmb.reserved.region[i].size - 1; |
| if ((addr >= lmb.reserved.region[i].base) && (addr <= upper)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Given a <base, len>, find which memory regions belong to this range. |
| * Adjust the request and return a contiguous chunk. |
| */ |
| int lmb_find(struct lmb_property *res) |
| { |
| int i; |
| u64 rstart, rend; |
| |
| rstart = res->base; |
| rend = rstart + res->size - 1; |
| |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| u64 start = lmb.memory.region[i].base; |
| u64 end = start + lmb.memory.region[i].size - 1; |
| |
| if (start > rend) |
| return -1; |
| |
| if ((end >= rstart) && (start < rend)) { |
| /* adjust the request */ |
| if (rstart < start) |
| rstart = start; |
| if (rend > end) |
| rend = end; |
| res->base = rstart; |
| res->size = rend - rstart + 1; |
| return 0; |
| } |
| } |
| return -1; |
| } |