blob: 40c6ceceb5f9149f4f5a352c504cb6301b22a6fc [file] [log] [blame]
/*
* Copyright 2001, 2007-2008 MontaVista Software Inc.
* Author: MontaVista Software, Inc. <source@mvista.com>
*
* Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <asm/irq_cpu.h>
#include <asm/mipsregs.h>
#include <asm/mach-au1x00/au1000.h>
#ifdef CONFIG_MIPS_PB1000
#include <asm/mach-pb1x00/pb1000.h>
#endif
#define EXT_INTC0_REQ0 2 /* IP 2 */
#define EXT_INTC0_REQ1 3 /* IP 3 */
#define EXT_INTC1_REQ0 4 /* IP 4 */
#define EXT_INTC1_REQ1 5 /* IP 5 */
#define MIPS_TIMER_IP 7 /* IP 7 */
void (*board_init_irq)(void) __initdata = NULL;
static DEFINE_SPINLOCK(irq_lock);
#ifdef CONFIG_PM
/*
* Save/restore the interrupt controller state.
* Called from the save/restore core registers as part of the
* au_sleep function in power.c.....maybe I should just pm_register()
* them instead?
*/
static unsigned int sleep_intctl_config0[2];
static unsigned int sleep_intctl_config1[2];
static unsigned int sleep_intctl_config2[2];
static unsigned int sleep_intctl_src[2];
static unsigned int sleep_intctl_assign[2];
static unsigned int sleep_intctl_wake[2];
static unsigned int sleep_intctl_mask[2];
void save_au1xxx_intctl(void)
{
sleep_intctl_config0[0] = au_readl(IC0_CFG0RD);
sleep_intctl_config1[0] = au_readl(IC0_CFG1RD);
sleep_intctl_config2[0] = au_readl(IC0_CFG2RD);
sleep_intctl_src[0] = au_readl(IC0_SRCRD);
sleep_intctl_assign[0] = au_readl(IC0_ASSIGNRD);
sleep_intctl_wake[0] = au_readl(IC0_WAKERD);
sleep_intctl_mask[0] = au_readl(IC0_MASKRD);
sleep_intctl_config0[1] = au_readl(IC1_CFG0RD);
sleep_intctl_config1[1] = au_readl(IC1_CFG1RD);
sleep_intctl_config2[1] = au_readl(IC1_CFG2RD);
sleep_intctl_src[1] = au_readl(IC1_SRCRD);
sleep_intctl_assign[1] = au_readl(IC1_ASSIGNRD);
sleep_intctl_wake[1] = au_readl(IC1_WAKERD);
sleep_intctl_mask[1] = au_readl(IC1_MASKRD);
}
/*
* For most restore operations, we clear the entire register and
* then set the bits we found during the save.
*/
void restore_au1xxx_intctl(void)
{
au_writel(0xffffffff, IC0_MASKCLR); au_sync();
au_writel(0xffffffff, IC0_CFG0CLR); au_sync();
au_writel(sleep_intctl_config0[0], IC0_CFG0SET); au_sync();
au_writel(0xffffffff, IC0_CFG1CLR); au_sync();
au_writel(sleep_intctl_config1[0], IC0_CFG1SET); au_sync();
au_writel(0xffffffff, IC0_CFG2CLR); au_sync();
au_writel(sleep_intctl_config2[0], IC0_CFG2SET); au_sync();
au_writel(0xffffffff, IC0_SRCCLR); au_sync();
au_writel(sleep_intctl_src[0], IC0_SRCSET); au_sync();
au_writel(0xffffffff, IC0_ASSIGNCLR); au_sync();
au_writel(sleep_intctl_assign[0], IC0_ASSIGNSET); au_sync();
au_writel(0xffffffff, IC0_WAKECLR); au_sync();
au_writel(sleep_intctl_wake[0], IC0_WAKESET); au_sync();
au_writel(0xffffffff, IC0_RISINGCLR); au_sync();
au_writel(0xffffffff, IC0_FALLINGCLR); au_sync();
au_writel(0x00000000, IC0_TESTBIT); au_sync();
au_writel(0xffffffff, IC1_MASKCLR); au_sync();
au_writel(0xffffffff, IC1_CFG0CLR); au_sync();
au_writel(sleep_intctl_config0[1], IC1_CFG0SET); au_sync();
au_writel(0xffffffff, IC1_CFG1CLR); au_sync();
au_writel(sleep_intctl_config1[1], IC1_CFG1SET); au_sync();
au_writel(0xffffffff, IC1_CFG2CLR); au_sync();
au_writel(sleep_intctl_config2[1], IC1_CFG2SET); au_sync();
au_writel(0xffffffff, IC1_SRCCLR); au_sync();
au_writel(sleep_intctl_src[1], IC1_SRCSET); au_sync();
au_writel(0xffffffff, IC1_ASSIGNCLR); au_sync();
au_writel(sleep_intctl_assign[1], IC1_ASSIGNSET); au_sync();
au_writel(0xffffffff, IC1_WAKECLR); au_sync();
au_writel(sleep_intctl_wake[1], IC1_WAKESET); au_sync();
au_writel(0xffffffff, IC1_RISINGCLR); au_sync();
au_writel(0xffffffff, IC1_FALLINGCLR); au_sync();
au_writel(0x00000000, IC1_TESTBIT); au_sync();
au_writel(sleep_intctl_mask[1], IC1_MASKSET); au_sync();
au_writel(sleep_intctl_mask[0], IC0_MASKSET); au_sync();
}
#endif /* CONFIG_PM */
inline void local_enable_irq(unsigned int irq_nr)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
if (bit >= 32) {
au_writel(1 << (bit - 32), IC1_MASKSET);
au_writel(1 << (bit - 32), IC1_WAKESET);
} else {
au_writel(1 << bit, IC0_MASKSET);
au_writel(1 << bit, IC0_WAKESET);
}
au_sync();
}
inline void local_disable_irq(unsigned int irq_nr)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
if (bit >= 32) {
au_writel(1 << (bit - 32), IC1_MASKCLR);
au_writel(1 << (bit - 32), IC1_WAKECLR);
} else {
au_writel(1 << bit, IC0_MASKCLR);
au_writel(1 << bit, IC0_WAKECLR);
}
au_sync();
}
static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
if (bit >= 32) {
au_writel(1 << (bit - 32), IC1_RISINGCLR);
au_writel(1 << (bit - 32), IC1_MASKCLR);
} else {
au_writel(1 << bit, IC0_RISINGCLR);
au_writel(1 << bit, IC0_MASKCLR);
}
au_sync();
}
static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
if (bit >= 32) {
au_writel(1 << (bit - 32), IC1_FALLINGCLR);
au_writel(1 << (bit - 32), IC1_MASKCLR);
} else {
au_writel(1 << bit, IC0_FALLINGCLR);
au_writel(1 << bit, IC0_MASKCLR);
}
au_sync();
}
static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
/*
* This may assume that we don't get interrupts from
* both edges at once, or if we do, that we don't care.
*/
if (bit >= 32) {
au_writel(1 << (bit - 32), IC1_FALLINGCLR);
au_writel(1 << (bit - 32), IC1_RISINGCLR);
au_writel(1 << (bit - 32), IC1_MASKCLR);
} else {
au_writel(1 << bit, IC0_FALLINGCLR);
au_writel(1 << bit, IC0_RISINGCLR);
au_writel(1 << bit, IC0_MASKCLR);
}
au_sync();
}
static inline void mask_and_ack_level_irq(unsigned int irq_nr)
{
local_disable_irq(irq_nr);
au_sync();
#if defined(CONFIG_MIPS_PB1000)
if (irq_nr == AU1000_GPIO_15) {
au_writel(0x8000, PB1000_MDR); /* ack int */
au_sync();
}
#endif
}
static void end_irq(unsigned int irq_nr)
{
if (!(irq_desc[irq_nr].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
local_enable_irq(irq_nr);
#if defined(CONFIG_MIPS_PB1000)
if (irq_nr == AU1000_GPIO_15) {
au_writel(0x4000, PB1000_MDR); /* enable int */
au_sync();
}
#endif
}
unsigned long save_local_and_disable(int controller)
{
int i;
unsigned long flags, mask;
spin_lock_irqsave(&irq_lock, flags);
if (controller) {
mask = au_readl(IC1_MASKSET);
for (i = 32; i < 64; i++)
local_disable_irq(i);
} else {
mask = au_readl(IC0_MASKSET);
for (i = 0; i < 32; i++)
local_disable_irq(i);
}
spin_unlock_irqrestore(&irq_lock, flags);
return mask;
}
void restore_local_and_enable(int controller, unsigned long mask)
{
int i;
unsigned long flags, new_mask;
spin_lock_irqsave(&irq_lock, flags);
for (i = 0; i < 32; i++)
if (mask & (1 << i)) {
if (controller)
local_enable_irq(i + 32);
else
local_enable_irq(i);
}
if (controller)
new_mask = au_readl(IC1_MASKSET);
else
new_mask = au_readl(IC0_MASKSET);
spin_unlock_irqrestore(&irq_lock, flags);
}
static struct irq_chip rise_edge_irq_type = {
.name = "Au1000 Rise Edge",
.ack = mask_and_ack_rise_edge_irq,
.mask = local_disable_irq,
.mask_ack = mask_and_ack_rise_edge_irq,
.unmask = local_enable_irq,
.end = end_irq,
};
static struct irq_chip fall_edge_irq_type = {
.name = "Au1000 Fall Edge",
.ack = mask_and_ack_fall_edge_irq,
.mask = local_disable_irq,
.mask_ack = mask_and_ack_fall_edge_irq,
.unmask = local_enable_irq,
.end = end_irq,
};
static struct irq_chip either_edge_irq_type = {
.name = "Au1000 Rise or Fall Edge",
.ack = mask_and_ack_either_edge_irq,
.mask = local_disable_irq,
.mask_ack = mask_and_ack_either_edge_irq,
.unmask = local_enable_irq,
.end = end_irq,
};
static struct irq_chip level_irq_type = {
.name = "Au1000 Level",
.ack = mask_and_ack_level_irq,
.mask = local_disable_irq,
.mask_ack = mask_and_ack_level_irq,
.unmask = local_enable_irq,
.end = end_irq,
};
static void __init setup_local_irq(unsigned int irq_nr, int type, int int_req)
{
unsigned int bit = irq_nr - AU1000_INTC0_INT_BASE;
if (irq_nr > AU1000_MAX_INTR)
return;
/* Config2[n], Config1[n], Config0[n] */
if (bit >= 32) {
switch (type) {
case INTC_INT_RISE_EDGE: /* 0:0:1 */
au_writel(1 << (bit - 32), IC1_CFG2CLR);
au_writel(1 << (bit - 32), IC1_CFG1CLR);
au_writel(1 << (bit - 32), IC1_CFG0SET);
set_irq_chip(irq_nr, &rise_edge_irq_type);
break;
case INTC_INT_FALL_EDGE: /* 0:1:0 */
au_writel(1 << (bit - 32), IC1_CFG2CLR);
au_writel(1 << (bit - 32), IC1_CFG1SET);
au_writel(1 << (bit - 32), IC1_CFG0CLR);
set_irq_chip(irq_nr, &fall_edge_irq_type);
break;
case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
au_writel(1 << (bit - 32), IC1_CFG2CLR);
au_writel(1 << (bit - 32), IC1_CFG1SET);
au_writel(1 << (bit - 32), IC1_CFG0SET);
set_irq_chip(irq_nr, &either_edge_irq_type);
break;
case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
au_writel(1 << (bit - 32), IC1_CFG2SET);
au_writel(1 << (bit - 32), IC1_CFG1CLR);
au_writel(1 << (bit - 32), IC1_CFG0SET);
set_irq_chip(irq_nr, &level_irq_type);
break;
case INTC_INT_LOW_LEVEL: /* 1:1:0 */
au_writel(1 << (bit - 32), IC1_CFG2SET);
au_writel(1 << (bit - 32), IC1_CFG1SET);
au_writel(1 << (bit - 32), IC1_CFG0CLR);
set_irq_chip(irq_nr, &level_irq_type);
break;
case INTC_INT_DISABLED: /* 0:0:0 */
au_writel(1 << (bit - 32), IC1_CFG0CLR);
au_writel(1 << (bit - 32), IC1_CFG1CLR);
au_writel(1 << (bit - 32), IC1_CFG2CLR);
break;
default: /* disable the interrupt */
printk(KERN_WARNING "unexpected int type %d (irq %d)\n",
type, irq_nr);
au_writel(1 << (bit - 32), IC1_CFG0CLR);
au_writel(1 << (bit - 32), IC1_CFG1CLR);
au_writel(1 << (bit - 32), IC1_CFG2CLR);
return;
}
if (int_req) /* assign to interrupt request 1 */
au_writel(1 << (bit - 32), IC1_ASSIGNCLR);
else /* assign to interrupt request 0 */
au_writel(1 << (bit - 32), IC1_ASSIGNSET);
au_writel(1 << (bit - 32), IC1_SRCSET);
au_writel(1 << (bit - 32), IC1_MASKCLR);
au_writel(1 << (bit - 32), IC1_WAKECLR);
} else {
switch (type) {
case INTC_INT_RISE_EDGE: /* 0:0:1 */
au_writel(1 << bit, IC0_CFG2CLR);
au_writel(1 << bit, IC0_CFG1CLR);
au_writel(1 << bit, IC0_CFG0SET);
set_irq_chip(irq_nr, &rise_edge_irq_type);
break;
case INTC_INT_FALL_EDGE: /* 0:1:0 */
au_writel(1 << bit, IC0_CFG2CLR);
au_writel(1 << bit, IC0_CFG1SET);
au_writel(1 << bit, IC0_CFG0CLR);
set_irq_chip(irq_nr, &fall_edge_irq_type);
break;
case INTC_INT_RISE_AND_FALL_EDGE: /* 0:1:1 */
au_writel(1 << bit, IC0_CFG2CLR);
au_writel(1 << bit, IC0_CFG1SET);
au_writel(1 << bit, IC0_CFG0SET);
set_irq_chip(irq_nr, &either_edge_irq_type);
break;
case INTC_INT_HIGH_LEVEL: /* 1:0:1 */
au_writel(1 << bit, IC0_CFG2SET);
au_writel(1 << bit, IC0_CFG1CLR);
au_writel(1 << bit, IC0_CFG0SET);
set_irq_chip(irq_nr, &level_irq_type);
break;
case INTC_INT_LOW_LEVEL: /* 1:1:0 */
au_writel(1 << bit, IC0_CFG2SET);
au_writel(1 << bit, IC0_CFG1SET);
au_writel(1 << bit, IC0_CFG0CLR);
set_irq_chip(irq_nr, &level_irq_type);
break;
case INTC_INT_DISABLED: /* 0:0:0 */
au_writel(1 << bit, IC0_CFG0CLR);
au_writel(1 << bit, IC0_CFG1CLR);
au_writel(1 << bit, IC0_CFG2CLR);
break;
default: /* disable the interrupt */
printk(KERN_WARNING "unexpected int type %d (irq %d)\n",
type, irq_nr);
au_writel(1 << bit, IC0_CFG0CLR);
au_writel(1 << bit, IC0_CFG1CLR);
au_writel(1 << bit, IC0_CFG2CLR);
return;
}
if (int_req) /* assign to interrupt request 1 */
au_writel(1 << bit, IC0_ASSIGNCLR);
else /* assign to interrupt request 0 */
au_writel(1 << bit, IC0_ASSIGNSET);
au_writel(1 << bit, IC0_SRCSET);
au_writel(1 << bit, IC0_MASKCLR);
au_writel(1 << bit, IC0_WAKECLR);
}
au_sync();
}
/*
* Interrupts are nested. Even if an interrupt handler is registered
* as "fast", we might get another interrupt before we return from
* intcX_reqX_irqdispatch().
*/
static void intc0_req0_irqdispatch(void)
{
static unsigned long intc0_req0;
unsigned int bit;
intc0_req0 |= au_readl(IC0_REQ0INT);
if (!intc0_req0)
return;
#ifdef AU1000_USB_DEV_REQ_INT
/*
* Because of the tight timing of SETUP token to reply
* transactions, the USB devices-side packet complete
* interrupt needs the highest priority.
*/
if ((intc0_req0 & (1 << AU1000_USB_DEV_REQ_INT))) {
intc0_req0 &= ~(1 << AU1000_USB_DEV_REQ_INT);
do_IRQ(AU1000_USB_DEV_REQ_INT);
return;
}
#endif
bit = __ffs(intc0_req0);
intc0_req0 &= ~(1 << bit);
do_IRQ(AU1000_INTC0_INT_BASE + bit);
}
static void intc0_req1_irqdispatch(void)
{
static unsigned long intc0_req1;
unsigned int bit;
intc0_req1 |= au_readl(IC0_REQ1INT);
if (!intc0_req1)
return;
bit = __ffs(intc0_req1);
intc0_req1 &= ~(1 << bit);
do_IRQ(AU1000_INTC0_INT_BASE + bit);
}
/*
* Interrupt Controller 1:
* interrupts 32 - 63
*/
static void intc1_req0_irqdispatch(void)
{
static unsigned long intc1_req0;
unsigned int bit;
intc1_req0 |= au_readl(IC1_REQ0INT);
if (!intc1_req0)
return;
bit = __ffs(intc1_req0);
intc1_req0 &= ~(1 << bit);
do_IRQ(AU1000_INTC1_INT_BASE + bit);
}
static void intc1_req1_irqdispatch(void)
{
static unsigned long intc1_req1;
unsigned int bit;
intc1_req1 |= au_readl(IC1_REQ1INT);
if (!intc1_req1)
return;
bit = __ffs(intc1_req1);
intc1_req1 &= ~(1 << bit);
do_IRQ(AU1000_INTC1_INT_BASE + bit);
}
asmlinkage void plat_irq_dispatch(void)
{
unsigned int pending = read_c0_status() & read_c0_cause();
if (pending & CAUSEF_IP7)
do_IRQ(MIPS_CPU_IRQ_BASE + 7);
else if (pending & CAUSEF_IP2)
intc0_req0_irqdispatch();
else if (pending & CAUSEF_IP3)
intc0_req1_irqdispatch();
else if (pending & CAUSEF_IP4)
intc1_req0_irqdispatch();
else if (pending & CAUSEF_IP5)
intc1_req1_irqdispatch();
else
spurious_interrupt();
}
void __init arch_init_irq(void)
{
int i;
struct au1xxx_irqmap *imp;
extern struct au1xxx_irqmap au1xxx_irq_map[];
extern struct au1xxx_irqmap au1xxx_ic0_map[];
extern int au1xxx_nr_irqs;
extern int au1xxx_ic0_nr_irqs;
/*
* Initialize interrupt controllers to a safe state.
*/
au_writel(0xffffffff, IC0_CFG0CLR);
au_writel(0xffffffff, IC0_CFG1CLR);
au_writel(0xffffffff, IC0_CFG2CLR);
au_writel(0xffffffff, IC0_MASKCLR);
au_writel(0xffffffff, IC0_ASSIGNSET);
au_writel(0xffffffff, IC0_WAKECLR);
au_writel(0xffffffff, IC0_SRCSET);
au_writel(0xffffffff, IC0_FALLINGCLR);
au_writel(0xffffffff, IC0_RISINGCLR);
au_writel(0x00000000, IC0_TESTBIT);
au_writel(0xffffffff, IC1_CFG0CLR);
au_writel(0xffffffff, IC1_CFG1CLR);
au_writel(0xffffffff, IC1_CFG2CLR);
au_writel(0xffffffff, IC1_MASKCLR);
au_writel(0xffffffff, IC1_ASSIGNSET);
au_writel(0xffffffff, IC1_WAKECLR);
au_writel(0xffffffff, IC1_SRCSET);
au_writel(0xffffffff, IC1_FALLINGCLR);
au_writel(0xffffffff, IC1_RISINGCLR);
au_writel(0x00000000, IC1_TESTBIT);
mips_cpu_irq_init();
/*
* Initialize IC0, which is fixed per processor.
*/
imp = au1xxx_ic0_map;
for (i = 0; i < au1xxx_ic0_nr_irqs; i++) {
setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
imp++;
}
/*
* Now set up the irq mapping for the board.
*/
imp = au1xxx_irq_map;
for (i = 0; i < au1xxx_nr_irqs; i++) {
setup_local_irq(imp->im_irq, imp->im_type, imp->im_request);
imp++;
}
set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4);
/* Board specific IRQ initialization.
*/
if (board_init_irq)
board_init_irq();
}