| /* Copyright (c) 2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/of.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/types.h> |
| #include <linux/hwmon.h> |
| #include <linux/module.h> |
| #include <linux/debugfs.h> |
| #include <linux/spmi.h> |
| #include <linux/of_irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/qpnp/qpnp-adc.h> |
| #include <linux/platform_device.h> |
| |
| /* Min ADC code represets 0V */ |
| #define QPNP_VADC_MIN_ADC_CODE 0x6000 |
| /* Max ADC code represents full-scale range of 1.8V */ |
| #define QPNP_VADC_MAX_ADC_CODE 0xA800 |
| |
| int32_t qpnp_adc_scale_default(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| bool negative_rawfromoffset = 0, negative_offset = 0; |
| int64_t scale_voltage = 0; |
| |
| if (!chan_properties || !chan_properties->offset_gain_numerator || |
| !chan_properties->offset_gain_denominator || !adc_properties |
| || !adc_chan_result) |
| return -EINVAL; |
| |
| scale_voltage = (adc_code - |
| chan_properties->adc_graph[CALIB_ABSOLUTE].adc_gnd) |
| * chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| if (scale_voltage < 0) { |
| negative_offset = 1; |
| scale_voltage = -scale_voltage; |
| } |
| do_div(scale_voltage, |
| chan_properties->adc_graph[CALIB_ABSOLUTE].dy); |
| if (negative_offset) |
| scale_voltage = -scale_voltage; |
| scale_voltage += chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| |
| if (scale_voltage < 0) { |
| if (adc_properties->bipolar) { |
| scale_voltage = -scale_voltage; |
| negative_rawfromoffset = 1; |
| } else { |
| scale_voltage = 0; |
| } |
| } |
| |
| adc_chan_result->measurement = scale_voltage * |
| chan_properties->offset_gain_denominator; |
| |
| /* do_div only perform positive integer division! */ |
| do_div(adc_chan_result->measurement, |
| chan_properties->offset_gain_numerator); |
| |
| if (negative_rawfromoffset) |
| adc_chan_result->measurement = -adc_chan_result->measurement; |
| |
| /* |
| * Note: adc_chan_result->measurement is in the unit of |
| * adc_properties.adc_reference. For generic channel processing, |
| * channel measurement is a scale/ratio relative to the adc |
| * reference input |
| */ |
| adc_chan_result->physical = adc_chan_result->measurement; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_default); |
| |
| int32_t qpnp_vadc_check_result(int32_t *data) |
| { |
| if (*data < QPNP_VADC_MIN_ADC_CODE) |
| *data = QPNP_VADC_MIN_ADC_CODE; |
| else if (*data > QPNP_VADC_MAX_ADC_CODE) |
| *data = QPNP_VADC_MAX_ADC_CODE; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_vadc_check_result); |
| |
| int32_t qpnp_adc_get_devicetree_data(struct spmi_device *spmi, |
| struct qpnp_adc_drv *adc_qpnp) |
| { |
| struct device_node *node = spmi->dev.of_node; |
| struct resource *res; |
| struct device_node *child; |
| struct qpnp_vadc_amux *adc_channel_list; |
| struct qpnp_adc_properties *adc_prop; |
| struct qpnp_vadc_amux_properties *amux_prop; |
| int count_adc_channel_list = 0, decimation, rc = 0; |
| |
| if (!node) |
| return -EINVAL; |
| |
| for_each_child_of_node(node, child) |
| count_adc_channel_list++; |
| |
| if (!count_adc_channel_list) { |
| pr_err("No channel listing\n"); |
| return -EINVAL; |
| } |
| |
| adc_qpnp->spmi = spmi; |
| |
| adc_prop = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_properties), |
| GFP_KERNEL); |
| if (!adc_prop) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| adc_channel_list = devm_kzalloc(&spmi->dev, |
| (sizeof(struct qpnp_vadc_amux) * count_adc_channel_list), |
| GFP_KERNEL); |
| if (!adc_channel_list) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| amux_prop = devm_kzalloc(&spmi->dev, |
| sizeof(struct qpnp_vadc_amux_properties) + |
| sizeof(struct qpnp_vadc_chan_properties), GFP_KERNEL); |
| if (!amux_prop) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| for_each_child_of_node(node, child) { |
| int channel_num, scaling, post_scaling, hw_settle_time; |
| int fast_avg_setup, calib_type, i = 0, rc; |
| const char *calibration_param, *channel_name; |
| |
| channel_name = of_get_property(child, |
| "label", NULL) ? : child->name; |
| if (!channel_name) { |
| pr_err("Invalid channel name\n"); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(child, "qcom,channel-num", |
| &channel_num); |
| if (rc) { |
| pr_err("Invalid channel num\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, "qcom,decimation", |
| &decimation); |
| if (rc) { |
| pr_err("Invalid channel decimation property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,pre-div-channel-scaling", &scaling); |
| if (rc) { |
| pr_err("Invalid channel scaling property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,scale-function", &post_scaling); |
| if (rc) { |
| pr_err("Invalid channel post scaling property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,hw-settle-time", &hw_settle_time); |
| if (rc) { |
| pr_err("Invalid channel hw settle time property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,fast-avg-setup", &fast_avg_setup); |
| if (rc) { |
| pr_err("Invalid channel fast average setup\n"); |
| return -EINVAL; |
| } |
| calibration_param = of_get_property(child, |
| "qcom,calibration-type", NULL); |
| if (!strncmp(calibration_param, "absolute", 8)) |
| calib_type = CALIB_ABSOLUTE; |
| else if (!strncmp(calibration_param, "historical", 9)) |
| calib_type = CALIB_RATIOMETRIC; |
| else { |
| pr_err("%s: Invalid calibration property\n", __func__); |
| return -EINVAL; |
| } |
| /* Individual channel properties */ |
| adc_channel_list[i].name = (char *)channel_name; |
| adc_channel_list[i].channel_num = channel_num; |
| adc_channel_list[i].chan_path_prescaling = scaling; |
| adc_channel_list[i].adc_decimation = decimation; |
| adc_channel_list[i].adc_scale_fn = post_scaling; |
| adc_channel_list[i].hw_settle_time = hw_settle_time; |
| adc_channel_list[i].fast_avg_setup = fast_avg_setup; |
| i++; |
| } |
| adc_qpnp->adc_channels = adc_channel_list; |
| adc_qpnp->amux_prop = amux_prop; |
| |
| /* Get the ADC VDD reference voltage and ADC bit resolution */ |
| rc = of_property_read_u32(node, "qcom,adc-vdd-reference", |
| &adc_prop->adc_vdd_reference); |
| if (rc) { |
| pr_err("Invalid adc vdd reference property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(node, "qcom,adc-bit-resolution", |
| &adc_prop->bitresolution); |
| if (rc) { |
| pr_err("Invalid adc bit resolution property\n"); |
| return -EINVAL; |
| } |
| adc_qpnp->adc_prop = adc_prop; |
| |
| /* Get the peripheral address */ |
| res = spmi_get_resource(spmi, 0, IORESOURCE_MEM, 0); |
| if (!res) { |
| pr_err("No base address definition\n"); |
| return -EINVAL; |
| } |
| |
| adc_qpnp->slave = spmi->sid; |
| adc_qpnp->offset = res->start; |
| |
| /* Register the ADC peripheral interrupt */ |
| adc_qpnp->adc_irq = spmi_get_irq(spmi, 0, 0); |
| if (adc_qpnp->adc_irq < 0) { |
| pr_err("Invalid irq\n"); |
| return -ENXIO; |
| } |
| |
| mutex_init(&adc_qpnp->adc_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qpnp_adc_get_devicetree_data); |