| /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ |
| /* |
| Written 1998-2000 by Donald Becker. |
| |
| Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please |
| send all bug reports to me, and not to Donald Becker, as this code |
| has been heavily modified from Donald's original version. |
| |
| This software may be used and distributed according to the terms of |
| the GNU General Public License (GPL), incorporated herein by reference. |
| Drivers based on or derived from this code fall under the GPL and must |
| retain the authorship, copyright and license notice. This file is not |
| a complete program and may only be used when the entire operating |
| system is licensed under the GPL. |
| |
| The information below comes from Donald Becker's original driver: |
| |
| The author may be reached as becker@scyld.com, or C/O |
| Scyld Computing Corporation |
| 410 Severn Ave., Suite 210 |
| Annapolis MD 21403 |
| |
| Support and updates available at |
| http://www.scyld.com/network/starfire.html |
| [link no longer provides useful info -jgarzik] |
| |
| */ |
| |
| #define DRV_NAME "starfire" |
| #define DRV_VERSION "2.0" |
| #define DRV_RELDATE "June 27, 2006" |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/crc32.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/if_vlan.h> |
| #include <linux/mm.h> |
| #include <asm/processor.h> /* Processor type for cache alignment. */ |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| #include "starfire_firmware.h" |
| /* |
| * The current frame processor firmware fails to checksum a fragment |
| * of length 1. If and when this is fixed, the #define below can be removed. |
| */ |
| #define HAS_BROKEN_FIRMWARE |
| |
| /* |
| * If using the broken firmware, data must be padded to the next 32-bit boundary. |
| */ |
| #ifdef HAS_BROKEN_FIRMWARE |
| #define PADDING_MASK 3 |
| #endif |
| |
| /* |
| * Define this if using the driver with the zero-copy patch |
| */ |
| #define ZEROCOPY |
| |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) |
| #define VLAN_SUPPORT |
| #endif |
| |
| #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI |
| #undef HAVE_NETDEV_POLL |
| #endif |
| |
| /* The user-configurable values. |
| These may be modified when a driver module is loaded.*/ |
| |
| /* Used for tuning interrupt latency vs. overhead. */ |
| static int intr_latency; |
| static int small_frames; |
| |
| static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ |
| static int max_interrupt_work = 20; |
| static int mtu; |
| /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). |
| The Starfire has a 512 element hash table based on the Ethernet CRC. */ |
| static const int multicast_filter_limit = 512; |
| /* Whether to do TCP/UDP checksums in hardware */ |
| static int enable_hw_cksum = 1; |
| |
| #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ |
| /* |
| * Set the copy breakpoint for the copy-only-tiny-frames scheme. |
| * Setting to > 1518 effectively disables this feature. |
| * |
| * NOTE: |
| * The ia64 doesn't allow for unaligned loads even of integers being |
| * misaligned on a 2 byte boundary. Thus always force copying of |
| * packets as the starfire doesn't allow for misaligned DMAs ;-( |
| * 23/10/2000 - Jes |
| * |
| * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, |
| * at least, having unaligned frames leads to a rather serious performance |
| * penalty. -Ion |
| */ |
| #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) |
| static int rx_copybreak = PKT_BUF_SZ; |
| #else |
| static int rx_copybreak /* = 0 */; |
| #endif |
| |
| /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ |
| #ifdef __sparc__ |
| #define DMA_BURST_SIZE 64 |
| #else |
| #define DMA_BURST_SIZE 128 |
| #endif |
| |
| /* Used to pass the media type, etc. |
| Both 'options[]' and 'full_duplex[]' exist for driver interoperability. |
| The media type is usually passed in 'options[]'. |
| These variables are deprecated, use ethtool instead. -Ion |
| */ |
| #define MAX_UNITS 8 /* More are supported, limit only on options */ |
| static int options[MAX_UNITS] = {0, }; |
| static int full_duplex[MAX_UNITS] = {0, }; |
| |
| /* Operational parameters that are set at compile time. */ |
| |
| /* The "native" ring sizes are either 256 or 2048. |
| However in some modes a descriptor may be marked to wrap the ring earlier. |
| */ |
| #define RX_RING_SIZE 256 |
| #define TX_RING_SIZE 32 |
| /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ |
| #define DONE_Q_SIZE 1024 |
| /* All queues must be aligned on a 256-byte boundary */ |
| #define QUEUE_ALIGN 256 |
| |
| #if RX_RING_SIZE > 256 |
| #define RX_Q_ENTRIES Rx2048QEntries |
| #else |
| #define RX_Q_ENTRIES Rx256QEntries |
| #endif |
| |
| /* Operational parameters that usually are not changed. */ |
| /* Time in jiffies before concluding the transmitter is hung. */ |
| #define TX_TIMEOUT (2 * HZ) |
| |
| /* |
| * This SUCKS. |
| * We need a much better method to determine if dma_addr_t is 64-bit. |
| */ |
| #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR)) |
| /* 64-bit dma_addr_t */ |
| #define ADDR_64BITS /* This chip uses 64 bit addresses. */ |
| #define netdrv_addr_t __le64 |
| #define cpu_to_dma(x) cpu_to_le64(x) |
| #define dma_to_cpu(x) le64_to_cpu(x) |
| #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit |
| #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit |
| #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit |
| #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit |
| #define RX_DESC_ADDR_SIZE RxDescAddr64bit |
| #else /* 32-bit dma_addr_t */ |
| #define netdrv_addr_t __le32 |
| #define cpu_to_dma(x) cpu_to_le32(x) |
| #define dma_to_cpu(x) le32_to_cpu(x) |
| #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit |
| #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit |
| #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit |
| #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit |
| #define RX_DESC_ADDR_SIZE RxDescAddr32bit |
| #endif |
| |
| #define skb_first_frag_len(skb) skb_headlen(skb) |
| #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) |
| |
| #ifdef HAVE_NETDEV_POLL |
| #define init_poll(dev, np) \ |
| netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work) |
| #define netdev_rx(dev, np, ioaddr) \ |
| do { \ |
| u32 intr_enable; \ |
| if (netif_rx_schedule_prep(dev, &np->napi)) { \ |
| __netif_rx_schedule(dev, &np->napi); \ |
| intr_enable = readl(ioaddr + IntrEnable); \ |
| intr_enable &= ~(IntrRxDone | IntrRxEmpty); \ |
| writel(intr_enable, ioaddr + IntrEnable); \ |
| readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \ |
| } else { \ |
| /* Paranoia check */ \ |
| intr_enable = readl(ioaddr + IntrEnable); \ |
| if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \ |
| printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \ |
| intr_enable &= ~(IntrRxDone | IntrRxEmpty); \ |
| writel(intr_enable, ioaddr + IntrEnable); \ |
| } \ |
| } \ |
| } while (0) |
| #define netdev_receive_skb(skb) netif_receive_skb(skb) |
| #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid) |
| static int netdev_poll(struct napi_struct *napi, int budget); |
| #else /* not HAVE_NETDEV_POLL */ |
| #define init_poll(dev, np) |
| #define netdev_receive_skb(skb) netif_rx(skb) |
| #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid) |
| #define netdev_rx(dev, np, ioaddr) \ |
| do { \ |
| int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \ |
| __netdev_rx(dev, "a);\ |
| } while (0) |
| #endif /* not HAVE_NETDEV_POLL */ |
| /* end of compatibility code */ |
| |
| |
| /* These identify the driver base version and may not be removed. */ |
| static char version[] = |
| KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n" |
| KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n"; |
| |
| MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); |
| MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| module_param(max_interrupt_work, int, 0); |
| module_param(mtu, int, 0); |
| module_param(debug, int, 0); |
| module_param(rx_copybreak, int, 0); |
| module_param(intr_latency, int, 0); |
| module_param(small_frames, int, 0); |
| module_param_array(options, int, NULL, 0); |
| module_param_array(full_duplex, int, NULL, 0); |
| module_param(enable_hw_cksum, int, 0); |
| MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); |
| MODULE_PARM_DESC(mtu, "MTU (all boards)"); |
| MODULE_PARM_DESC(debug, "Debug level (0-6)"); |
| MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); |
| MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); |
| MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); |
| MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex"); |
| MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)"); |
| MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); |
| |
| /* |
| Theory of Operation |
| |
| I. Board Compatibility |
| |
| This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. |
| |
| II. Board-specific settings |
| |
| III. Driver operation |
| |
| IIIa. Ring buffers |
| |
| The Starfire hardware uses multiple fixed-size descriptor queues/rings. The |
| ring sizes are set fixed by the hardware, but may optionally be wrapped |
| earlier by the END bit in the descriptor. |
| This driver uses that hardware queue size for the Rx ring, where a large |
| number of entries has no ill effect beyond increases the potential backlog. |
| The Tx ring is wrapped with the END bit, since a large hardware Tx queue |
| disables the queue layer priority ordering and we have no mechanism to |
| utilize the hardware two-level priority queue. When modifying the |
| RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning |
| levels. |
| |
| IIIb/c. Transmit/Receive Structure |
| |
| See the Adaptec manual for the many possible structures, and options for |
| each structure. There are far too many to document all of them here. |
| |
| For transmit this driver uses type 0/1 transmit descriptors (depending |
| on the 32/64 bitness of the architecture), and relies on automatic |
| minimum-length padding. It does not use the completion queue |
| consumer index, but instead checks for non-zero status entries. |
| |
| For receive this driver uses type 2/3 receive descriptors. The driver |
| allocates full frame size skbuffs for the Rx ring buffers, so all frames |
| should fit in a single descriptor. The driver does not use the completion |
| queue consumer index, but instead checks for non-zero status entries. |
| |
| When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff |
| is allocated and the frame is copied to the new skbuff. When the incoming |
| frame is larger, the skbuff is passed directly up the protocol stack. |
| Buffers consumed this way are replaced by newly allocated skbuffs in a later |
| phase of receive. |
| |
| A notable aspect of operation is that unaligned buffers are not permitted by |
| the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame |
| isn't longword aligned, which may cause problems on some machine |
| e.g. Alphas and IA64. For these architectures, the driver is forced to copy |
| the frame into a new skbuff unconditionally. Copied frames are put into the |
| skbuff at an offset of "+2", thus 16-byte aligning the IP header. |
| |
| IIId. Synchronization |
| |
| The driver runs as two independent, single-threaded flows of control. One |
| is the send-packet routine, which enforces single-threaded use by the |
| dev->tbusy flag. The other thread is the interrupt handler, which is single |
| threaded by the hardware and interrupt handling software. |
| |
| The send packet thread has partial control over the Tx ring and the netif_queue |
| status. If the number of free Tx slots in the ring falls below a certain number |
| (currently hardcoded to 4), it signals the upper layer to stop the queue. |
| |
| The interrupt handler has exclusive control over the Rx ring and records stats |
| from the Tx ring. After reaping the stats, it marks the Tx queue entry as |
| empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the |
| number of free Tx slow is above the threshold, it signals the upper layer to |
| restart the queue. |
| |
| IV. Notes |
| |
| IVb. References |
| |
| The Adaptec Starfire manuals, available only from Adaptec. |
| http://www.scyld.com/expert/100mbps.html |
| http://www.scyld.com/expert/NWay.html |
| |
| IVc. Errata |
| |
| - StopOnPerr is broken, don't enable |
| - Hardware ethernet padding exposes random data, perform software padding |
| instead (unverified -- works correctly for all the hardware I have) |
| |
| */ |
| |
| |
| |
| enum chip_capability_flags {CanHaveMII=1, }; |
| |
| enum chipset { |
| CH_6915 = 0, |
| }; |
| |
| static struct pci_device_id starfire_pci_tbl[] = { |
| { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); |
| |
| /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ |
| static const struct chip_info { |
| const char *name; |
| int drv_flags; |
| } netdrv_tbl[] __devinitdata = { |
| { "Adaptec Starfire 6915", CanHaveMII }, |
| }; |
| |
| |
| /* Offsets to the device registers. |
| Unlike software-only systems, device drivers interact with complex hardware. |
| It's not useful to define symbolic names for every register bit in the |
| device. The name can only partially document the semantics and make |
| the driver longer and more difficult to read. |
| In general, only the important configuration values or bits changed |
| multiple times should be defined symbolically. |
| */ |
| enum register_offsets { |
| PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, |
| IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, |
| MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, |
| GPIOCtrl=0x5008C, TxDescCtrl=0x50090, |
| TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ |
| TxRingHiAddr=0x5009C, /* 64 bit address extension. */ |
| TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, |
| TxThreshold=0x500B0, |
| CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, |
| RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, |
| CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, |
| RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, |
| RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, |
| TxMode=0x55000, VlanType=0x55064, |
| PerfFilterTable=0x56000, HashTable=0x56100, |
| TxGfpMem=0x58000, RxGfpMem=0x5a000, |
| }; |
| |
| /* |
| * Bits in the interrupt status/mask registers. |
| * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register |
| * enables all the interrupt sources that are or'ed into those status bits. |
| */ |
| enum intr_status_bits { |
| IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, |
| IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, |
| IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, |
| IntrTxComplQLow=0x200000, IntrPCI=0x100000, |
| IntrDMAErr=0x080000, IntrTxDataLow=0x040000, |
| IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, |
| IntrNormalSummary=0x8000, IntrTxDone=0x4000, |
| IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, |
| IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, |
| IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, |
| IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, |
| IntrNoTxCsum=0x20, IntrTxBadID=0x10, |
| IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, |
| IntrTxGfp=0x02, IntrPCIPad=0x01, |
| /* not quite bits */ |
| IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, |
| IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, |
| IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, |
| }; |
| |
| /* Bits in the RxFilterMode register. */ |
| enum rx_mode_bits { |
| AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, |
| AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, |
| PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, |
| WakeupOnGFP=0x0800, |
| }; |
| |
| /* Bits in the TxMode register */ |
| enum tx_mode_bits { |
| MiiSoftReset=0x8000, MIILoopback=0x4000, |
| TxFlowEnable=0x0800, RxFlowEnable=0x0400, |
| PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, |
| }; |
| |
| /* Bits in the TxDescCtrl register. */ |
| enum tx_ctrl_bits { |
| TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, |
| TxDescSpace128=0x30, TxDescSpace256=0x40, |
| TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, |
| TxDescType3=0x03, TxDescType4=0x04, |
| TxNoDMACompletion=0x08, |
| TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, |
| TxHiPriFIFOThreshShift=24, TxPadLenShift=16, |
| TxDMABurstSizeShift=8, |
| }; |
| |
| /* Bits in the RxDescQCtrl register. */ |
| enum rx_ctrl_bits { |
| RxBufferLenShift=16, RxMinDescrThreshShift=0, |
| RxPrefetchMode=0x8000, RxVariableQ=0x2000, |
| Rx2048QEntries=0x4000, Rx256QEntries=0, |
| RxDescAddr64bit=0x1000, RxDescAddr32bit=0, |
| RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, |
| RxDescSpace4=0x000, RxDescSpace8=0x100, |
| RxDescSpace16=0x200, RxDescSpace32=0x300, |
| RxDescSpace64=0x400, RxDescSpace128=0x500, |
| RxConsumerWrEn=0x80, |
| }; |
| |
| /* Bits in the RxDMACtrl register. */ |
| enum rx_dmactrl_bits { |
| RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, |
| RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, |
| RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, |
| RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, |
| RxChecksumRejectTCPOnly=0x01000000, |
| RxCompletionQ2Enable=0x800000, |
| RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, |
| RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, |
| RxDMAQ2NonIP=0x400000, |
| RxUseBackupQueue=0x080000, RxDMACRC=0x040000, |
| RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, |
| RxBurstSizeShift=0, |
| }; |
| |
| /* Bits in the RxCompletionAddr register */ |
| enum rx_compl_bits { |
| RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, |
| RxComplProducerWrEn=0x40, |
| RxComplType0=0x00, RxComplType1=0x10, |
| RxComplType2=0x20, RxComplType3=0x30, |
| RxComplThreshShift=0, |
| }; |
| |
| /* Bits in the TxCompletionAddr register */ |
| enum tx_compl_bits { |
| TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, |
| TxComplProducerWrEn=0x40, |
| TxComplIntrStatus=0x20, |
| CommonQueueMode=0x10, |
| TxComplThreshShift=0, |
| }; |
| |
| /* Bits in the GenCtrl register */ |
| enum gen_ctrl_bits { |
| RxEnable=0x05, TxEnable=0x0a, |
| RxGFPEnable=0x10, TxGFPEnable=0x20, |
| }; |
| |
| /* Bits in the IntrTimerCtrl register */ |
| enum intr_ctrl_bits { |
| Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, |
| SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, |
| IntrLatencyMask=0x1f, |
| }; |
| |
| /* The Rx and Tx buffer descriptors. */ |
| struct starfire_rx_desc { |
| netdrv_addr_t rxaddr; |
| }; |
| enum rx_desc_bits { |
| RxDescValid=1, RxDescEndRing=2, |
| }; |
| |
| /* Completion queue entry. */ |
| struct short_rx_done_desc { |
| __le32 status; /* Low 16 bits is length. */ |
| }; |
| struct basic_rx_done_desc { |
| __le32 status; /* Low 16 bits is length. */ |
| __le16 vlanid; |
| __le16 status2; |
| }; |
| struct csum_rx_done_desc { |
| __le32 status; /* Low 16 bits is length. */ |
| __le16 csum; /* Partial checksum */ |
| __le16 status2; |
| }; |
| struct full_rx_done_desc { |
| __le32 status; /* Low 16 bits is length. */ |
| __le16 status3; |
| __le16 status2; |
| __le16 vlanid; |
| __le16 csum; /* partial checksum */ |
| __le32 timestamp; |
| }; |
| /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ |
| #ifdef VLAN_SUPPORT |
| typedef struct full_rx_done_desc rx_done_desc; |
| #define RxComplType RxComplType3 |
| #else /* not VLAN_SUPPORT */ |
| typedef struct csum_rx_done_desc rx_done_desc; |
| #define RxComplType RxComplType2 |
| #endif /* not VLAN_SUPPORT */ |
| |
| enum rx_done_bits { |
| RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, |
| }; |
| |
| /* Type 1 Tx descriptor. */ |
| struct starfire_tx_desc_1 { |
| __le32 status; /* Upper bits are status, lower 16 length. */ |
| __le32 addr; |
| }; |
| |
| /* Type 2 Tx descriptor. */ |
| struct starfire_tx_desc_2 { |
| __le32 status; /* Upper bits are status, lower 16 length. */ |
| __le32 reserved; |
| __le64 addr; |
| }; |
| |
| #ifdef ADDR_64BITS |
| typedef struct starfire_tx_desc_2 starfire_tx_desc; |
| #define TX_DESC_TYPE TxDescType2 |
| #else /* not ADDR_64BITS */ |
| typedef struct starfire_tx_desc_1 starfire_tx_desc; |
| #define TX_DESC_TYPE TxDescType1 |
| #endif /* not ADDR_64BITS */ |
| #define TX_DESC_SPACING TxDescSpaceUnlim |
| |
| enum tx_desc_bits { |
| TxDescID=0xB0000000, |
| TxCRCEn=0x01000000, TxDescIntr=0x08000000, |
| TxRingWrap=0x04000000, TxCalTCP=0x02000000, |
| }; |
| struct tx_done_desc { |
| __le32 status; /* timestamp, index. */ |
| #if 0 |
| __le32 intrstatus; /* interrupt status */ |
| #endif |
| }; |
| |
| struct rx_ring_info { |
| struct sk_buff *skb; |
| dma_addr_t mapping; |
| }; |
| struct tx_ring_info { |
| struct sk_buff *skb; |
| dma_addr_t mapping; |
| unsigned int used_slots; |
| }; |
| |
| #define PHY_CNT 2 |
| struct netdev_private { |
| /* Descriptor rings first for alignment. */ |
| struct starfire_rx_desc *rx_ring; |
| starfire_tx_desc *tx_ring; |
| dma_addr_t rx_ring_dma; |
| dma_addr_t tx_ring_dma; |
| /* The addresses of rx/tx-in-place skbuffs. */ |
| struct rx_ring_info rx_info[RX_RING_SIZE]; |
| struct tx_ring_info tx_info[TX_RING_SIZE]; |
| /* Pointers to completion queues (full pages). */ |
| rx_done_desc *rx_done_q; |
| dma_addr_t rx_done_q_dma; |
| unsigned int rx_done; |
| struct tx_done_desc *tx_done_q; |
| dma_addr_t tx_done_q_dma; |
| unsigned int tx_done; |
| struct napi_struct napi; |
| struct net_device *dev; |
| struct net_device_stats stats; |
| struct pci_dev *pci_dev; |
| #ifdef VLAN_SUPPORT |
| struct vlan_group *vlgrp; |
| #endif |
| void *queue_mem; |
| dma_addr_t queue_mem_dma; |
| size_t queue_mem_size; |
| |
| /* Frequently used values: keep some adjacent for cache effect. */ |
| spinlock_t lock; |
| unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ |
| unsigned int cur_tx, dirty_tx, reap_tx; |
| unsigned int rx_buf_sz; /* Based on MTU+slack. */ |
| /* These values keep track of the transceiver/media in use. */ |
| int speed100; /* Set if speed == 100MBit. */ |
| u32 tx_mode; |
| u32 intr_timer_ctrl; |
| u8 tx_threshold; |
| /* MII transceiver section. */ |
| struct mii_if_info mii_if; /* MII lib hooks/info */ |
| int phy_cnt; /* MII device addresses. */ |
| unsigned char phys[PHY_CNT]; /* MII device addresses. */ |
| void __iomem *base; |
| }; |
| |
| |
| static int mdio_read(struct net_device *dev, int phy_id, int location); |
| static void mdio_write(struct net_device *dev, int phy_id, int location, int value); |
| static int netdev_open(struct net_device *dev); |
| static void check_duplex(struct net_device *dev); |
| static void tx_timeout(struct net_device *dev); |
| static void init_ring(struct net_device *dev); |
| static int start_tx(struct sk_buff *skb, struct net_device *dev); |
| static irqreturn_t intr_handler(int irq, void *dev_instance); |
| static void netdev_error(struct net_device *dev, int intr_status); |
| static int __netdev_rx(struct net_device *dev, int *quota); |
| static void refill_rx_ring(struct net_device *dev); |
| static void netdev_error(struct net_device *dev, int intr_status); |
| static void set_rx_mode(struct net_device *dev); |
| static struct net_device_stats *get_stats(struct net_device *dev); |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
| static int netdev_close(struct net_device *dev); |
| static void netdev_media_change(struct net_device *dev); |
| static const struct ethtool_ops ethtool_ops; |
| |
| |
| #ifdef VLAN_SUPPORT |
| static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| spin_lock(&np->lock); |
| if (debug > 2) |
| printk("%s: Setting vlgrp to %p\n", dev->name, grp); |
| np->vlgrp = grp; |
| set_rx_mode(dev); |
| spin_unlock(&np->lock); |
| } |
| |
| static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| spin_lock(&np->lock); |
| if (debug > 1) |
| printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); |
| set_rx_mode(dev); |
| spin_unlock(&np->lock); |
| } |
| |
| static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| spin_lock(&np->lock); |
| if (debug > 1) |
| printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); |
| vlan_group_set_device(np->vlgrp, vid, NULL); |
| set_rx_mode(dev); |
| spin_unlock(&np->lock); |
| } |
| #endif /* VLAN_SUPPORT */ |
| |
| |
| static int __devinit starfire_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct netdev_private *np; |
| int i, irq, option, chip_idx = ent->driver_data; |
| struct net_device *dev; |
| static int card_idx = -1; |
| long ioaddr; |
| void __iomem *base; |
| int drv_flags, io_size; |
| int boguscnt; |
| DECLARE_MAC_BUF(mac); |
| |
| /* when built into the kernel, we only print version if device is found */ |
| #ifndef MODULE |
| static int printed_version; |
| if (!printed_version++) |
| printk(version); |
| #endif |
| |
| card_idx++; |
| |
| if (pci_enable_device (pdev)) |
| return -EIO; |
| |
| ioaddr = pci_resource_start(pdev, 0); |
| io_size = pci_resource_len(pdev, 0); |
| if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { |
| printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx); |
| return -ENODEV; |
| } |
| |
| dev = alloc_etherdev(sizeof(*np)); |
| if (!dev) { |
| printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx); |
| return -ENOMEM; |
| } |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| irq = pdev->irq; |
| |
| if (pci_request_regions (pdev, DRV_NAME)) { |
| printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx); |
| goto err_out_free_netdev; |
| } |
| |
| base = ioremap(ioaddr, io_size); |
| if (!base) { |
| printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n", |
| card_idx, io_size, ioaddr); |
| goto err_out_free_res; |
| } |
| |
| pci_set_master(pdev); |
| |
| /* enable MWI -- it vastly improves Rx performance on sparc64 */ |
| pci_try_set_mwi(pdev); |
| |
| #ifdef ZEROCOPY |
| /* Starfire can do TCP/UDP checksumming */ |
| if (enable_hw_cksum) |
| dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; |
| #endif /* ZEROCOPY */ |
| #ifdef VLAN_SUPPORT |
| dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER; |
| dev->vlan_rx_register = netdev_vlan_rx_register; |
| dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid; |
| dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid; |
| #endif /* VLAN_RX_KILL_VID */ |
| #ifdef ADDR_64BITS |
| dev->features |= NETIF_F_HIGHDMA; |
| #endif /* ADDR_64BITS */ |
| |
| /* Serial EEPROM reads are hidden by the hardware. */ |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i); |
| |
| #if ! defined(final_version) /* Dump the EEPROM contents during development. */ |
| if (debug > 4) |
| for (i = 0; i < 0x20; i++) |
| printk("%2.2x%s", |
| (unsigned int)readb(base + EEPROMCtrl + i), |
| i % 16 != 15 ? " " : "\n"); |
| #endif |
| |
| /* Issue soft reset */ |
| writel(MiiSoftReset, base + TxMode); |
| udelay(1000); |
| writel(0, base + TxMode); |
| |
| /* Reset the chip to erase previous misconfiguration. */ |
| writel(1, base + PCIDeviceConfig); |
| boguscnt = 1000; |
| while (--boguscnt > 0) { |
| udelay(10); |
| if ((readl(base + PCIDeviceConfig) & 1) == 0) |
| break; |
| } |
| if (boguscnt == 0) |
| printk("%s: chipset reset never completed!\n", dev->name); |
| /* wait a little longer */ |
| udelay(1000); |
| |
| dev->base_addr = (unsigned long)base; |
| dev->irq = irq; |
| |
| np = netdev_priv(dev); |
| np->dev = dev; |
| np->base = base; |
| spin_lock_init(&np->lock); |
| pci_set_drvdata(pdev, dev); |
| |
| np->pci_dev = pdev; |
| |
| np->mii_if.dev = dev; |
| np->mii_if.mdio_read = mdio_read; |
| np->mii_if.mdio_write = mdio_write; |
| np->mii_if.phy_id_mask = 0x1f; |
| np->mii_if.reg_num_mask = 0x1f; |
| |
| drv_flags = netdrv_tbl[chip_idx].drv_flags; |
| |
| option = card_idx < MAX_UNITS ? options[card_idx] : 0; |
| if (dev->mem_start) |
| option = dev->mem_start; |
| |
| /* The lower four bits are the media type. */ |
| if (option & 0x200) |
| np->mii_if.full_duplex = 1; |
| |
| if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) |
| np->mii_if.full_duplex = 1; |
| |
| if (np->mii_if.full_duplex) |
| np->mii_if.force_media = 1; |
| else |
| np->mii_if.force_media = 0; |
| np->speed100 = 1; |
| |
| /* timer resolution is 128 * 0.8us */ |
| np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | |
| Timer10X | EnableIntrMasking; |
| |
| if (small_frames > 0) { |
| np->intr_timer_ctrl |= SmallFrameBypass; |
| switch (small_frames) { |
| case 1 ... 64: |
| np->intr_timer_ctrl |= SmallFrame64; |
| break; |
| case 65 ... 128: |
| np->intr_timer_ctrl |= SmallFrame128; |
| break; |
| case 129 ... 256: |
| np->intr_timer_ctrl |= SmallFrame256; |
| break; |
| default: |
| np->intr_timer_ctrl |= SmallFrame512; |
| if (small_frames > 512) |
| printk("Adjusting small_frames down to 512\n"); |
| break; |
| } |
| } |
| |
| /* The chip-specific entries in the device structure. */ |
| dev->open = &netdev_open; |
| dev->hard_start_xmit = &start_tx; |
| dev->tx_timeout = tx_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| init_poll(dev, np); |
| dev->stop = &netdev_close; |
| dev->get_stats = &get_stats; |
| dev->set_multicast_list = &set_rx_mode; |
| dev->do_ioctl = &netdev_ioctl; |
| SET_ETHTOOL_OPS(dev, ðtool_ops); |
| |
| if (mtu) |
| dev->mtu = mtu; |
| |
| if (register_netdev(dev)) |
| goto err_out_cleardev; |
| |
| printk(KERN_INFO "%s: %s at %p, %s, IRQ %d.\n", |
| dev->name, netdrv_tbl[chip_idx].name, base, |
| print_mac(mac, dev->dev_addr), irq); |
| |
| if (drv_flags & CanHaveMII) { |
| int phy, phy_idx = 0; |
| int mii_status; |
| for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { |
| mdio_write(dev, phy, MII_BMCR, BMCR_RESET); |
| mdelay(100); |
| boguscnt = 1000; |
| while (--boguscnt > 0) |
| if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0) |
| break; |
| if (boguscnt == 0) { |
| printk("%s: PHY#%d reset never completed!\n", dev->name, phy); |
| continue; |
| } |
| mii_status = mdio_read(dev, phy, MII_BMSR); |
| if (mii_status != 0) { |
| np->phys[phy_idx++] = phy; |
| np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); |
| printk(KERN_INFO "%s: MII PHY found at address %d, status " |
| "%#4.4x advertising %#4.4x.\n", |
| dev->name, phy, mii_status, np->mii_if.advertising); |
| /* there can be only one PHY on-board */ |
| break; |
| } |
| } |
| np->phy_cnt = phy_idx; |
| if (np->phy_cnt > 0) |
| np->mii_if.phy_id = np->phys[0]; |
| else |
| memset(&np->mii_if, 0, sizeof(np->mii_if)); |
| } |
| |
| printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", |
| dev->name, enable_hw_cksum ? "enabled" : "disabled"); |
| return 0; |
| |
| err_out_cleardev: |
| pci_set_drvdata(pdev, NULL); |
| iounmap(base); |
| err_out_free_res: |
| pci_release_regions (pdev); |
| err_out_free_netdev: |
| free_netdev(dev); |
| return -ENODEV; |
| } |
| |
| |
| /* Read the MII Management Data I/O (MDIO) interfaces. */ |
| static int mdio_read(struct net_device *dev, int phy_id, int location) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); |
| int result, boguscnt=1000; |
| /* ??? Should we add a busy-wait here? */ |
| do |
| result = readl(mdio_addr); |
| while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); |
| if (boguscnt == 0) |
| return 0; |
| if ((result & 0xffff) == 0xffff) |
| return 0; |
| return result & 0xffff; |
| } |
| |
| |
| static void mdio_write(struct net_device *dev, int phy_id, int location, int value) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); |
| writel(value, mdio_addr); |
| /* The busy-wait will occur before a read. */ |
| } |
| |
| |
| static int netdev_open(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| int i, retval; |
| size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; |
| |
| /* Do we ever need to reset the chip??? */ |
| |
| retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev); |
| if (retval) |
| return retval; |
| |
| /* Disable the Rx and Tx, and reset the chip. */ |
| writel(0, ioaddr + GenCtrl); |
| writel(1, ioaddr + PCIDeviceConfig); |
| if (debug > 1) |
| printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", |
| dev->name, dev->irq); |
| |
| /* Allocate the various queues. */ |
| if (!np->queue_mem) { |
| tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
| rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
| tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
| rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; |
| np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; |
| np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma); |
| if (np->queue_mem == NULL) { |
| free_irq(dev->irq, dev); |
| return -ENOMEM; |
| } |
| |
| np->tx_done_q = np->queue_mem; |
| np->tx_done_q_dma = np->queue_mem_dma; |
| np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; |
| np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; |
| np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; |
| np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; |
| np->rx_ring = (void *) np->tx_ring + tx_ring_size; |
| np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; |
| } |
| |
| /* Start with no carrier, it gets adjusted later */ |
| netif_carrier_off(dev); |
| init_ring(dev); |
| /* Set the size of the Rx buffers. */ |
| writel((np->rx_buf_sz << RxBufferLenShift) | |
| (0 << RxMinDescrThreshShift) | |
| RxPrefetchMode | RxVariableQ | |
| RX_Q_ENTRIES | |
| RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | |
| RxDescSpace4, |
| ioaddr + RxDescQCtrl); |
| |
| /* Set up the Rx DMA controller. */ |
| writel(RxChecksumIgnore | |
| (0 << RxEarlyIntThreshShift) | |
| (6 << RxHighPrioThreshShift) | |
| ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), |
| ioaddr + RxDMACtrl); |
| |
| /* Set Tx descriptor */ |
| writel((2 << TxHiPriFIFOThreshShift) | |
| (0 << TxPadLenShift) | |
| ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | |
| TX_DESC_Q_ADDR_SIZE | |
| TX_DESC_SPACING | TX_DESC_TYPE, |
| ioaddr + TxDescCtrl); |
| |
| writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr); |
| writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr); |
| writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr); |
| writel(np->rx_ring_dma, ioaddr + RxDescQAddr); |
| writel(np->tx_ring_dma, ioaddr + TxRingPtr); |
| |
| writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr); |
| writel(np->rx_done_q_dma | |
| RxComplType | |
| (0 << RxComplThreshShift), |
| ioaddr + RxCompletionAddr); |
| |
| if (debug > 1) |
| printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); |
| |
| /* Fill both the Tx SA register and the Rx perfect filter. */ |
| for (i = 0; i < 6; i++) |
| writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i); |
| /* The first entry is special because it bypasses the VLAN filter. |
| Don't use it. */ |
| writew(0, ioaddr + PerfFilterTable); |
| writew(0, ioaddr + PerfFilterTable + 4); |
| writew(0, ioaddr + PerfFilterTable + 8); |
| for (i = 1; i < 16; i++) { |
| __be16 *eaddrs = (__be16 *)dev->dev_addr; |
| void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; |
| writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4; |
| writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4; |
| writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8; |
| } |
| |
| /* Initialize other registers. */ |
| /* Configure the PCI bus bursts and FIFO thresholds. */ |
| np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ |
| writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode); |
| udelay(1000); |
| writel(np->tx_mode, ioaddr + TxMode); |
| np->tx_threshold = 4; |
| writel(np->tx_threshold, ioaddr + TxThreshold); |
| |
| writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl); |
| |
| #ifdef HAVE_NETDEV_POLL |
| napi_enable(&np->napi); |
| #endif |
| netif_start_queue(dev); |
| |
| if (debug > 1) |
| printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); |
| set_rx_mode(dev); |
| |
| np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE); |
| check_duplex(dev); |
| |
| /* Enable GPIO interrupts on link change */ |
| writel(0x0f00ff00, ioaddr + GPIOCtrl); |
| |
| /* Set the interrupt mask */ |
| writel(IntrRxDone | IntrRxEmpty | IntrDMAErr | |
| IntrTxDMADone | IntrStatsMax | IntrLinkChange | |
| IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, |
| ioaddr + IntrEnable); |
| /* Enable PCI interrupts. */ |
| writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), |
| ioaddr + PCIDeviceConfig); |
| |
| #ifdef VLAN_SUPPORT |
| /* Set VLAN type to 802.1q */ |
| writel(ETH_P_8021Q, ioaddr + VlanType); |
| #endif /* VLAN_SUPPORT */ |
| |
| /* Load Rx/Tx firmware into the frame processors */ |
| for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++) |
| writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4); |
| for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++) |
| writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4); |
| if (enable_hw_cksum) |
| /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ |
| writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl); |
| else |
| /* Enable the Rx and Tx units only. */ |
| writel(TxEnable|RxEnable, ioaddr + GenCtrl); |
| |
| if (debug > 1) |
| printk(KERN_DEBUG "%s: Done netdev_open().\n", |
| dev->name); |
| |
| return 0; |
| } |
| |
| |
| static void check_duplex(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| u16 reg0; |
| int silly_count = 1000; |
| |
| mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising); |
| mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET); |
| udelay(500); |
| while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET) |
| /* do nothing */; |
| if (!silly_count) { |
| printk("%s: MII reset failed!\n", dev->name); |
| return; |
| } |
| |
| reg0 = mdio_read(dev, np->phys[0], MII_BMCR); |
| |
| if (!np->mii_if.force_media) { |
| reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; |
| } else { |
| reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); |
| if (np->speed100) |
| reg0 |= BMCR_SPEED100; |
| if (np->mii_if.full_duplex) |
| reg0 |= BMCR_FULLDPLX; |
| printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", |
| dev->name, |
| np->speed100 ? "100" : "10", |
| np->mii_if.full_duplex ? "full" : "half"); |
| } |
| mdio_write(dev, np->phys[0], MII_BMCR, reg0); |
| } |
| |
| |
| static void tx_timeout(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| int old_debug; |
| |
| printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " |
| "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); |
| |
| /* Perhaps we should reinitialize the hardware here. */ |
| |
| /* |
| * Stop and restart the interface. |
| * Cheat and increase the debug level temporarily. |
| */ |
| old_debug = debug; |
| debug = 2; |
| netdev_close(dev); |
| netdev_open(dev); |
| debug = old_debug; |
| |
| /* Trigger an immediate transmit demand. */ |
| |
| dev->trans_start = jiffies; |
| np->stats.tx_errors++; |
| netif_wake_queue(dev); |
| } |
| |
| |
| /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ |
| static void init_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| np->cur_rx = np->cur_tx = np->reap_tx = 0; |
| np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; |
| |
| np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); |
| |
| /* Fill in the Rx buffers. Handle allocation failure gracefully. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); |
| np->rx_info[i].skb = skb; |
| if (skb == NULL) |
| break; |
| np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| skb->dev = dev; /* Mark as being used by this device. */ |
| /* Grrr, we cannot offset to correctly align the IP header. */ |
| np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); |
| } |
| writew(i - 1, np->base + RxDescQIdx); |
| np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); |
| |
| /* Clear the remainder of the Rx buffer ring. */ |
| for ( ; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].rxaddr = 0; |
| np->rx_info[i].skb = NULL; |
| np->rx_info[i].mapping = 0; |
| } |
| /* Mark the last entry as wrapping the ring. */ |
| np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); |
| |
| /* Clear the completion rings. */ |
| for (i = 0; i < DONE_Q_SIZE; i++) { |
| np->rx_done_q[i].status = 0; |
| np->tx_done_q[i].status = 0; |
| } |
| |
| for (i = 0; i < TX_RING_SIZE; i++) |
| memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); |
| |
| return; |
| } |
| |
| |
| static int start_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| unsigned int entry; |
| u32 status; |
| int i; |
| |
| /* |
| * be cautious here, wrapping the queue has weird semantics |
| * and we may not have enough slots even when it seems we do. |
| */ |
| if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { |
| netif_stop_queue(dev); |
| return 1; |
| } |
| |
| #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK)) |
| return NETDEV_TX_OK; |
| } |
| #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ |
| |
| entry = np->cur_tx % TX_RING_SIZE; |
| for (i = 0; i < skb_num_frags(skb); i++) { |
| int wrap_ring = 0; |
| status = TxDescID; |
| |
| if (i == 0) { |
| np->tx_info[entry].skb = skb; |
| status |= TxCRCEn; |
| if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { |
| status |= TxRingWrap; |
| wrap_ring = 1; |
| } |
| if (np->reap_tx) { |
| status |= TxDescIntr; |
| np->reap_tx = 0; |
| } |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| status |= TxCalTCP; |
| np->stats.tx_compressed++; |
| } |
| status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); |
| |
| np->tx_info[entry].mapping = |
| pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE); |
| } else { |
| skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; |
| status |= this_frag->size; |
| np->tx_info[entry].mapping = |
| pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE); |
| } |
| |
| np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); |
| np->tx_ring[entry].status = cpu_to_le32(status); |
| if (debug > 3) |
| printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", |
| dev->name, np->cur_tx, np->dirty_tx, |
| entry, status); |
| if (wrap_ring) { |
| np->tx_info[entry].used_slots = TX_RING_SIZE - entry; |
| np->cur_tx += np->tx_info[entry].used_slots; |
| entry = 0; |
| } else { |
| np->tx_info[entry].used_slots = 1; |
| np->cur_tx += np->tx_info[entry].used_slots; |
| entry++; |
| } |
| /* scavenge the tx descriptors twice per TX_RING_SIZE */ |
| if (np->cur_tx % (TX_RING_SIZE / 2) == 0) |
| np->reap_tx = 1; |
| } |
| |
| /* Non-x86: explicitly flush descriptor cache lines here. */ |
| /* Ensure all descriptors are written back before the transmit is |
| initiated. - Jes */ |
| wmb(); |
| |
| /* Update the producer index. */ |
| writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx); |
| |
| /* 4 is arbitrary, but should be ok */ |
| if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) |
| netif_stop_queue(dev); |
| |
| dev->trans_start = jiffies; |
| |
| return 0; |
| } |
| |
| |
| /* The interrupt handler does all of the Rx thread work and cleans up |
| after the Tx thread. */ |
| static irqreturn_t intr_handler(int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| int boguscnt = max_interrupt_work; |
| int consumer; |
| int tx_status; |
| int handled = 0; |
| |
| do { |
| u32 intr_status = readl(ioaddr + IntrClear); |
| |
| if (debug > 4) |
| printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", |
| dev->name, intr_status); |
| |
| if (intr_status == 0 || intr_status == (u32) -1) |
| break; |
| |
| handled = 1; |
| |
| if (intr_status & (IntrRxDone | IntrRxEmpty)) |
| netdev_rx(dev, np, ioaddr); |
| |
| /* Scavenge the skbuff list based on the Tx-done queue. |
| There are redundant checks here that may be cleaned up |
| after the driver has proven to be reliable. */ |
| consumer = readl(ioaddr + TxConsumerIdx); |
| if (debug > 3) |
| printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", |
| dev->name, consumer); |
| |
| while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { |
| if (debug > 3) |
| printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", |
| dev->name, np->dirty_tx, np->tx_done, tx_status); |
| if ((tx_status & 0xe0000000) == 0xa0000000) { |
| np->stats.tx_packets++; |
| } else if ((tx_status & 0xe0000000) == 0x80000000) { |
| u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); |
| struct sk_buff *skb = np->tx_info[entry].skb; |
| np->tx_info[entry].skb = NULL; |
| pci_unmap_single(np->pci_dev, |
| np->tx_info[entry].mapping, |
| skb_first_frag_len(skb), |
| PCI_DMA_TODEVICE); |
| np->tx_info[entry].mapping = 0; |
| np->dirty_tx += np->tx_info[entry].used_slots; |
| entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; |
| { |
| int i; |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| pci_unmap_single(np->pci_dev, |
| np->tx_info[entry].mapping, |
| skb_shinfo(skb)->frags[i].size, |
| PCI_DMA_TODEVICE); |
| np->dirty_tx++; |
| entry++; |
| } |
| } |
| |
| dev_kfree_skb_irq(skb); |
| } |
| np->tx_done_q[np->tx_done].status = 0; |
| np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; |
| } |
| writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); |
| |
| if (netif_queue_stopped(dev) && |
| (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { |
| /* The ring is no longer full, wake the queue. */ |
| netif_wake_queue(dev); |
| } |
| |
| /* Stats overflow */ |
| if (intr_status & IntrStatsMax) |
| get_stats(dev); |
| |
| /* Media change interrupt. */ |
| if (intr_status & IntrLinkChange) |
| netdev_media_change(dev); |
| |
| /* Abnormal error summary/uncommon events handlers. */ |
| if (intr_status & IntrAbnormalSummary) |
| netdev_error(dev, intr_status); |
| |
| if (--boguscnt < 0) { |
| if (debug > 1) |
| printk(KERN_WARNING "%s: Too much work at interrupt, " |
| "status=%#8.8x.\n", |
| dev->name, intr_status); |
| break; |
| } |
| } while (1); |
| |
| if (debug > 4) |
| printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", |
| dev->name, (int) readl(ioaddr + IntrStatus)); |
| return IRQ_RETVAL(handled); |
| } |
| |
| |
| /* This routine is logically part of the interrupt/poll handler, but separated |
| for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */ |
| static int __netdev_rx(struct net_device *dev, int *quota) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| u32 desc_status; |
| int retcode = 0; |
| |
| /* If EOP is set on the next entry, it's a new packet. Send it up. */ |
| while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { |
| struct sk_buff *skb; |
| u16 pkt_len; |
| int entry; |
| rx_done_desc *desc = &np->rx_done_q[np->rx_done]; |
| |
| if (debug > 4) |
| printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); |
| if (!(desc_status & RxOK)) { |
| /* There was an error. */ |
| if (debug > 2) |
| printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); |
| np->stats.rx_errors++; |
| if (desc_status & RxFIFOErr) |
| np->stats.rx_fifo_errors++; |
| goto next_rx; |
| } |
| |
| if (*quota <= 0) { /* out of rx quota */ |
| retcode = 1; |
| goto out; |
| } |
| (*quota)--; |
| |
| pkt_len = desc_status; /* Implicitly Truncate */ |
| entry = (desc_status >> 16) & 0x7ff; |
| |
| if (debug > 4) |
| printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); |
| /* Check if the packet is long enough to accept without copying |
| to a minimally-sized skbuff. */ |
| if (pkt_len < rx_copybreak |
| && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { |
| skb_reserve(skb, 2); /* 16 byte align the IP header */ |
| pci_dma_sync_single_for_cpu(np->pci_dev, |
| np->rx_info[entry].mapping, |
| pkt_len, PCI_DMA_FROMDEVICE); |
| skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len); |
| pci_dma_sync_single_for_device(np->pci_dev, |
| np->rx_info[entry].mapping, |
| pkt_len, PCI_DMA_FROMDEVICE); |
| skb_put(skb, pkt_len); |
| } else { |
| pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| skb = np->rx_info[entry].skb; |
| skb_put(skb, pkt_len); |
| np->rx_info[entry].skb = NULL; |
| np->rx_info[entry].mapping = 0; |
| } |
| #ifndef final_version /* Remove after testing. */ |
| /* You will want this info for the initial debug. */ |
| if (debug > 5) { |
| printk(KERN_DEBUG " Rx data " MAC_FMT " " MAC_FMT |
| " %2.2x%2.2x.\n", |
| skb->data[0], skb->data[1], skb->data[2], |
| skb->data[3], skb->data[4], skb->data[5], |
| skb->data[6], skb->data[7], skb->data[8], |
| skb->data[9], skb->data[10], skb->data[11], |
| skb->data[12], skb->data[13]); |
| } |
| #endif |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| #ifdef VLAN_SUPPORT |
| if (debug > 4) |
| printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); |
| #endif |
| if (le16_to_cpu(desc->status2) & 0x0100) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| np->stats.rx_compressed++; |
| } |
| /* |
| * This feature doesn't seem to be working, at least |
| * with the two firmware versions I have. If the GFP sees |
| * an IP fragment, it either ignores it completely, or reports |
| * "bad checksum" on it. |
| * |
| * Maybe I missed something -- corrections are welcome. |
| * Until then, the printk stays. :-) -Ion |
| */ |
| else if (le16_to_cpu(desc->status2) & 0x0040) { |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| skb->csum = le16_to_cpu(desc->csum); |
| printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); |
| } |
| #ifdef VLAN_SUPPORT |
| if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) { |
| if (debug > 4) |
| printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid)); |
| /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */ |
| vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid)); |
| } else |
| #endif /* VLAN_SUPPORT */ |
| netdev_receive_skb(skb); |
| dev->last_rx = jiffies; |
| np->stats.rx_packets++; |
| |
| next_rx: |
| np->cur_rx++; |
| desc->status = 0; |
| np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; |
| } |
| writew(np->rx_done, np->base + CompletionQConsumerIdx); |
| |
| out: |
| refill_rx_ring(dev); |
| if (debug > 5) |
| printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", |
| retcode, np->rx_done, desc_status); |
| return retcode; |
| } |
| |
| |
| #ifdef HAVE_NETDEV_POLL |
| static int netdev_poll(struct napi_struct *napi, int budget) |
| { |
| struct netdev_private *np = container_of(napi, struct netdev_private, napi); |
| struct net_device *dev = np->dev; |
| u32 intr_status; |
| void __iomem *ioaddr = np->base; |
| int quota = budget; |
| |
| do { |
| writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear); |
| |
| if (__netdev_rx(dev, "a)) |
| goto out; |
| |
| intr_status = readl(ioaddr + IntrStatus); |
| } while (intr_status & (IntrRxDone | IntrRxEmpty)); |
| |
| netif_rx_complete(dev, napi); |
| intr_status = readl(ioaddr + IntrEnable); |
| intr_status |= IntrRxDone | IntrRxEmpty; |
| writel(intr_status, ioaddr + IntrEnable); |
| |
| out: |
| if (debug > 5) |
| printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", |
| budget - quota); |
| |
| /* Restart Rx engine if stopped. */ |
| return budget - quota; |
| } |
| #endif /* HAVE_NETDEV_POLL */ |
| |
| |
| static void refill_rx_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| struct sk_buff *skb; |
| int entry = -1; |
| |
| /* Refill the Rx ring buffers. */ |
| for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { |
| entry = np->dirty_rx % RX_RING_SIZE; |
| if (np->rx_info[entry].skb == NULL) { |
| skb = dev_alloc_skb(np->rx_buf_sz); |
| np->rx_info[entry].skb = skb; |
| if (skb == NULL) |
| break; /* Better luck next round. */ |
| np->rx_info[entry].mapping = |
| pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| skb->dev = dev; /* Mark as being used by this device. */ |
| np->rx_ring[entry].rxaddr = |
| cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); |
| } |
| if (entry == RX_RING_SIZE - 1) |
| np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); |
| } |
| if (entry >= 0) |
| writew(entry, np->base + RxDescQIdx); |
| } |
| |
| |
| static void netdev_media_change(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| u16 reg0, reg1, reg4, reg5; |
| u32 new_tx_mode; |
| u32 new_intr_timer_ctrl; |
| |
| /* reset status first */ |
| mdio_read(dev, np->phys[0], MII_BMCR); |
| mdio_read(dev, np->phys[0], MII_BMSR); |
| |
| reg0 = mdio_read(dev, np->phys[0], MII_BMCR); |
| reg1 = mdio_read(dev, np->phys[0], MII_BMSR); |
| |
| if (reg1 & BMSR_LSTATUS) { |
| /* link is up */ |
| if (reg0 & BMCR_ANENABLE) { |
| /* autonegotiation is enabled */ |
| reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE); |
| reg5 = mdio_read(dev, np->phys[0], MII_LPA); |
| if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { |
| np->speed100 = 1; |
| np->mii_if.full_duplex = 1; |
| } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { |
| np->speed100 = 1; |
| np->mii_if.full_duplex = 0; |
| } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { |
| np->speed100 = 0; |
| np->mii_if.full_duplex = 1; |
| } else { |
| np->speed100 = 0; |
| np->mii_if.full_duplex = 0; |
| } |
| } else { |
| /* autonegotiation is disabled */ |
| if (reg0 & BMCR_SPEED100) |
| np->speed100 = 1; |
| else |
| np->speed100 = 0; |
| if (reg0 & BMCR_FULLDPLX) |
| np->mii_if.full_duplex = 1; |
| else |
| np->mii_if.full_duplex = 0; |
| } |
| netif_carrier_on(dev); |
| printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", |
| dev->name, |
| np->speed100 ? "100" : "10", |
| np->mii_if.full_duplex ? "full" : "half"); |
| |
| new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ |
| if (np->mii_if.full_duplex) |
| new_tx_mode |= FullDuplex; |
| if (np->tx_mode != new_tx_mode) { |
| np->tx_mode = new_tx_mode; |
| writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode); |
| udelay(1000); |
| writel(np->tx_mode, ioaddr + TxMode); |
| } |
| |
| new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; |
| if (np->speed100) |
| new_intr_timer_ctrl |= Timer10X; |
| if (np->intr_timer_ctrl != new_intr_timer_ctrl) { |
| np->intr_timer_ctrl = new_intr_timer_ctrl; |
| writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl); |
| } |
| } else { |
| netif_carrier_off(dev); |
| printk(KERN_DEBUG "%s: Link is down\n", dev->name); |
| } |
| } |
| |
| |
| static void netdev_error(struct net_device *dev, int intr_status) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* Came close to underrunning the Tx FIFO, increase threshold. */ |
| if (intr_status & IntrTxDataLow) { |
| if (np->tx_threshold <= PKT_BUF_SZ / 16) { |
| writel(++np->tx_threshold, np->base + TxThreshold); |
| printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", |
| dev->name, np->tx_threshold * 16); |
| } else |
| printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); |
| } |
| if (intr_status & IntrRxGFPDead) { |
| np->stats.rx_fifo_errors++; |
| np->stats.rx_errors++; |
| } |
| if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { |
| np->stats.tx_fifo_errors++; |
| np->stats.tx_errors++; |
| } |
| if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) |
| printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", |
| dev->name, intr_status); |
| } |
| |
| |
| static struct net_device_stats *get_stats(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| |
| /* This adapter architecture needs no SMP locks. */ |
| np->stats.tx_bytes = readl(ioaddr + 0x57010); |
| np->stats.rx_bytes = readl(ioaddr + 0x57044); |
| np->stats.tx_packets = readl(ioaddr + 0x57000); |
| np->stats.tx_aborted_errors = |
| readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); |
| np->stats.tx_window_errors = readl(ioaddr + 0x57018); |
| np->stats.collisions = |
| readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); |
| |
| /* The chip only need report frame silently dropped. */ |
| np->stats.rx_dropped += readw(ioaddr + RxDMAStatus); |
| writew(0, ioaddr + RxDMAStatus); |
| np->stats.rx_crc_errors = readl(ioaddr + 0x5703C); |
| np->stats.rx_frame_errors = readl(ioaddr + 0x57040); |
| np->stats.rx_length_errors = readl(ioaddr + 0x57058); |
| np->stats.rx_missed_errors = readl(ioaddr + 0x5707C); |
| |
| return &np->stats; |
| } |
| |
| |
| static void set_rx_mode(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| u32 rx_mode = MinVLANPrio; |
| struct dev_mc_list *mclist; |
| int i; |
| #ifdef VLAN_SUPPORT |
| |
| rx_mode |= VlanMode; |
| if (np->vlgrp) { |
| int vlan_count = 0; |
| void __iomem *filter_addr = ioaddr + HashTable + 8; |
| for (i = 0; i < VLAN_VID_MASK; i++) { |
| if (vlan_group_get_device(np->vlgrp, i)) { |
| if (vlan_count >= 32) |
| break; |
| writew(i, filter_addr); |
| filter_addr += 16; |
| vlan_count++; |
| } |
| } |
| if (i == VLAN_VID_MASK) { |
| rx_mode |= PerfectFilterVlan; |
| while (vlan_count < 32) { |
| writew(0, filter_addr); |
| filter_addr += 16; |
| vlan_count++; |
| } |
| } |
| } |
| #endif /* VLAN_SUPPORT */ |
| |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| rx_mode |= AcceptAll; |
| } else if ((dev->mc_count > multicast_filter_limit) |
| || (dev->flags & IFF_ALLMULTI)) { |
| /* Too many to match, or accept all multicasts. */ |
| rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; |
| } else if (dev->mc_count <= 14) { |
| /* Use the 16 element perfect filter, skip first two entries. */ |
| void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; |
| __be16 *eaddrs; |
| for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2; |
| i++, mclist = mclist->next) { |
| eaddrs = (__be16 *)mclist->dmi_addr; |
| writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8; |
| } |
| eaddrs = (__be16 *)dev->dev_addr; |
| while (i++ < 16) { |
| writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; |
| } |
| rx_mode |= AcceptBroadcast|PerfectFilter; |
| } else { |
| /* Must use a multicast hash table. */ |
| void __iomem *filter_addr; |
| __be16 *eaddrs; |
| __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ |
| |
| memset(mc_filter, 0, sizeof(mc_filter)); |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| /* The chip uses the upper 9 CRC bits |
| as index into the hash table */ |
| int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23; |
| __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; |
| |
| *fptr |= cpu_to_le32(1 << (bit_nr & 31)); |
| } |
| /* Clear the perfect filter list, skip first two entries. */ |
| filter_addr = ioaddr + PerfFilterTable + 2 * 16; |
| eaddrs = (__be16 *)dev->dev_addr; |
| for (i = 2; i < 16; i++) { |
| writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; |
| writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; |
| } |
| for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) |
| writew(mc_filter[i], filter_addr); |
| rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; |
| } |
| writel(rx_mode, ioaddr + RxFilterMode); |
| } |
| |
| static int check_if_running(struct net_device *dev) |
| { |
| if (!netif_running(dev)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| strcpy(info->bus_info, pci_name(np->pci_dev)); |
| } |
| |
| static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| spin_lock_irq(&np->lock); |
| mii_ethtool_gset(&np->mii_if, ecmd); |
| spin_unlock_irq(&np->lock); |
| return 0; |
| } |
| |
| static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int res; |
| spin_lock_irq(&np->lock); |
| res = mii_ethtool_sset(&np->mii_if, ecmd); |
| spin_unlock_irq(&np->lock); |
| check_duplex(dev); |
| return res; |
| } |
| |
| static int nway_reset(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return mii_nway_restart(&np->mii_if); |
| } |
| |
| static u32 get_link(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return mii_link_ok(&np->mii_if); |
| } |
| |
| static u32 get_msglevel(struct net_device *dev) |
| { |
| return debug; |
| } |
| |
| static void set_msglevel(struct net_device *dev, u32 val) |
| { |
| debug = val; |
| } |
| |
| static const struct ethtool_ops ethtool_ops = { |
| .begin = check_if_running, |
| .get_drvinfo = get_drvinfo, |
| .get_settings = get_settings, |
| .set_settings = set_settings, |
| .nway_reset = nway_reset, |
| .get_link = get_link, |
| .get_msglevel = get_msglevel, |
| .set_msglevel = set_msglevel, |
| }; |
| |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| struct mii_ioctl_data *data = if_mii(rq); |
| int rc; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| spin_lock_irq(&np->lock); |
| rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); |
| spin_unlock_irq(&np->lock); |
| |
| if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) |
| check_duplex(dev); |
| |
| return rc; |
| } |
| |
| static int netdev_close(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->base; |
| int i; |
| |
| netif_stop_queue(dev); |
| #ifdef HAVE_NETDEV_POLL |
| napi_disable(&np->napi); |
| #endif |
| |
| if (debug > 1) { |
| printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", |
| dev->name, (int) readl(ioaddr + IntrStatus)); |
| printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", |
| dev->name, np->cur_tx, np->dirty_tx, |
| np->cur_rx, np->dirty_rx); |
| } |
| |
| /* Disable interrupts by clearing the interrupt mask. */ |
| writel(0, ioaddr + IntrEnable); |
| |
| /* Stop the chip's Tx and Rx processes. */ |
| writel(0, ioaddr + GenCtrl); |
| readl(ioaddr + GenCtrl); |
| |
| if (debug > 5) { |
| printk(KERN_DEBUG" Tx ring at %#llx:\n", |
| (long long) np->tx_ring_dma); |
| for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) |
| printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", |
| i, le32_to_cpu(np->tx_ring[i].status), |
| (long long) dma_to_cpu(np->tx_ring[i].addr), |
| le32_to_cpu(np->tx_done_q[i].status)); |
| printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", |
| (long long) np->rx_ring_dma, np->rx_done_q); |
| if (np->rx_done_q) |
| for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { |
| printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", |
| i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); |
| } |
| } |
| |
| free_irq(dev->irq, dev); |
| |
| /* Free all the skbuffs in the Rx queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ |
| if (np->rx_info[i].skb != NULL) { |
| pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(np->rx_info[i].skb); |
| } |
| np->rx_info[i].skb = NULL; |
| np->rx_info[i].mapping = 0; |
| } |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| struct sk_buff *skb = np->tx_info[i].skb; |
| if (skb == NULL) |
| continue; |
| pci_unmap_single(np->pci_dev, |
| np->tx_info[i].mapping, |
| skb_first_frag_len(skb), PCI_DMA_TODEVICE); |
| np->tx_info[i].mapping = 0; |
| dev_kfree_skb(skb); |
| np->tx_info[i].skb = NULL; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int starfire_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| |
| if (netif_running(dev)) { |
| netif_device_detach(dev); |
| netdev_close(dev); |
| } |
| |
| pci_save_state(pdev); |
| pci_set_power_state(pdev, pci_choose_state(pdev,state)); |
| |
| return 0; |
| } |
| |
| static int starfire_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| |
| if (netif_running(dev)) { |
| netdev_open(dev); |
| netif_device_attach(dev); |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM */ |
| |
| |
| static void __devexit starfire_remove_one (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| BUG_ON(!dev); |
| |
| unregister_netdev(dev); |
| |
| if (np->queue_mem) |
| pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma); |
| |
| |
| /* XXX: add wakeup code -- requires firmware for MagicPacket */ |
| pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */ |
| pci_disable_device(pdev); |
| |
| iounmap(np->base); |
| pci_release_regions(pdev); |
| |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); /* Will also free np!! */ |
| } |
| |
| |
| static struct pci_driver starfire_driver = { |
| .name = DRV_NAME, |
| .probe = starfire_init_one, |
| .remove = __devexit_p(starfire_remove_one), |
| #ifdef CONFIG_PM |
| .suspend = starfire_suspend, |
| .resume = starfire_resume, |
| #endif /* CONFIG_PM */ |
| .id_table = starfire_pci_tbl, |
| }; |
| |
| |
| static int __init starfire_init (void) |
| { |
| /* when a module, this is printed whether or not devices are found in probe */ |
| #ifdef MODULE |
| printk(version); |
| #ifdef HAVE_NETDEV_POLL |
| printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); |
| #else |
| printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n"); |
| #endif |
| #endif |
| |
| /* we can do this test only at run-time... sigh */ |
| if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) { |
| printk("This driver has dma_addr_t issues, please send email to maintainer\n"); |
| return -ENODEV; |
| } |
| |
| return pci_register_driver(&starfire_driver); |
| } |
| |
| |
| static void __exit starfire_cleanup (void) |
| { |
| pci_unregister_driver (&starfire_driver); |
| } |
| |
| |
| module_init(starfire_init); |
| module_exit(starfire_cleanup); |
| |
| |
| /* |
| * Local variables: |
| * c-basic-offset: 8 |
| * tab-width: 8 |
| * End: |
| */ |