| /* |
| * JFFS -- Journaling Flash File System, Linux implementation. |
| * |
| * Copyright (C) 1999, 2000 Axis Communications AB. |
| * |
| * Created by Finn Hakansson <finn@axis.com>. |
| * |
| * This is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $ |
| * |
| * Ported to Linux 2.3.x and MTD: |
| * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB |
| * |
| */ |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/jffs.h> |
| #include "jffs_fm.h" |
| |
| #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE |
| static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset); |
| #endif |
| |
| static struct jffs_fm *jffs_alloc_fm(void); |
| static void jffs_free_fm(struct jffs_fm *n); |
| |
| extern kmem_cache_t *fm_cache; |
| extern kmem_cache_t *node_cache; |
| |
| /* This function creates a new shiny flash memory control structure. */ |
| struct jffs_fmcontrol * |
| jffs_build_begin(struct jffs_control *c, int unit) |
| { |
| struct jffs_fmcontrol *fmc; |
| struct mtd_info *mtd; |
| |
| D3(printk("jffs_build_begin()\n")); |
| fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol), |
| GFP_KERNEL); |
| if (!fmc) { |
| D(printk("jffs_build_begin(): Allocation of " |
| "struct jffs_fmcontrol failed!\n")); |
| return (struct jffs_fmcontrol *)0; |
| } |
| DJM(no_jffs_fmcontrol++); |
| |
| mtd = get_mtd_device(NULL, unit); |
| |
| if (!mtd) { |
| kfree(fmc); |
| DJM(no_jffs_fmcontrol--); |
| return NULL; |
| } |
| |
| /* Retrieve the size of the flash memory. */ |
| fmc->flash_size = mtd->size; |
| D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size)); |
| |
| fmc->used_size = 0; |
| fmc->dirty_size = 0; |
| fmc->free_size = mtd->size; |
| fmc->sector_size = mtd->erasesize; |
| fmc->max_chunk_size = fmc->sector_size >> 1; |
| /* min_free_size: |
| 1 sector, obviously. |
| + 1 x max_chunk_size, for when a nodes overlaps the end of a sector |
| + 1 x max_chunk_size again, which ought to be enough to handle |
| the case where a rename causes a name to grow, and GC has |
| to write out larger nodes than the ones it's obsoleting. |
| We should fix it so it doesn't have to write the name |
| _every_ time. Later. |
| + another 2 sectors because people keep getting GC stuck and |
| we don't know why. This scares me - I want formal proof |
| of correctness of whatever number we put here. dwmw2. |
| */ |
| fmc->min_free_size = fmc->sector_size << 2; |
| fmc->mtd = mtd; |
| fmc->c = c; |
| fmc->head = NULL; |
| fmc->tail = NULL; |
| fmc->head_extra = NULL; |
| fmc->tail_extra = NULL; |
| init_MUTEX(&fmc->biglock); |
| return fmc; |
| } |
| |
| |
| /* When the flash memory scan has completed, this function should be called |
| before use of the control structure. */ |
| void |
| jffs_build_end(struct jffs_fmcontrol *fmc) |
| { |
| D3(printk("jffs_build_end()\n")); |
| |
| if (!fmc->head) { |
| fmc->head = fmc->head_extra; |
| fmc->tail = fmc->tail_extra; |
| } |
| else if (fmc->head_extra) { |
| fmc->tail_extra->next = fmc->head; |
| fmc->head->prev = fmc->tail_extra; |
| fmc->head = fmc->head_extra; |
| } |
| fmc->head_extra = NULL; /* These two instructions should be omitted. */ |
| fmc->tail_extra = NULL; |
| D3(jffs_print_fmcontrol(fmc)); |
| } |
| |
| |
| /* Call this function when the file system is unmounted. This function |
| frees all memory used by this module. */ |
| void |
| jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc) |
| { |
| if (fmc) { |
| struct jffs_fm *next = fmc->head; |
| while (next) { |
| struct jffs_fm *cur = next; |
| next = next->next; |
| jffs_free_fm(cur); |
| } |
| put_mtd_device(fmc->mtd); |
| kfree(fmc); |
| DJM(no_jffs_fmcontrol--); |
| } |
| } |
| |
| |
| /* This function returns the size of the first chunk of free space on the |
| flash memory. This function will return something nonzero if the flash |
| memory contains any free space. */ |
| __u32 |
| jffs_free_size1(struct jffs_fmcontrol *fmc) |
| { |
| __u32 head; |
| __u32 tail; |
| __u32 end = fmc->flash_size; |
| |
| if (!fmc->head) { |
| /* There is nothing on the flash. */ |
| return fmc->flash_size; |
| } |
| |
| /* Compute the beginning and ending of the contents of the flash. */ |
| head = fmc->head->offset; |
| tail = fmc->tail->offset + fmc->tail->size; |
| if (tail == end) { |
| tail = 0; |
| } |
| ASSERT(else if (tail > end) { |
| printk(KERN_WARNING "jffs_free_size1(): tail > end\n"); |
| tail = 0; |
| }); |
| |
| if (head <= tail) { |
| return end - tail; |
| } |
| else { |
| return head - tail; |
| } |
| } |
| |
| /* This function will return something nonzero in case there are two free |
| areas on the flash. Like this: |
| |
| +----------------+------------------+----------------+ |
| | FREE 1 | USED / DIRTY | FREE 2 | |
| +----------------+------------------+----------------+ |
| fmc->head -----^ |
| fmc->tail ------------------------^ |
| |
| The value returned, will be the size of the first empty area on the |
| flash, in this case marked "FREE 1". */ |
| __u32 |
| jffs_free_size2(struct jffs_fmcontrol *fmc) |
| { |
| if (fmc->head) { |
| __u32 head = fmc->head->offset; |
| __u32 tail = fmc->tail->offset + fmc->tail->size; |
| if (tail == fmc->flash_size) { |
| tail = 0; |
| } |
| |
| if (tail >= head) { |
| return head; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* Allocate a chunk of flash memory. If there is enough space on the |
| device, a reference to the associated node is stored in the jffs_fm |
| struct. */ |
| int |
| jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node, |
| struct jffs_fm **result) |
| { |
| struct jffs_fm *fm; |
| __u32 free_chunk_size1; |
| __u32 free_chunk_size2; |
| |
| D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, " |
| "node = 0x%p\n", fmc, size, node)); |
| |
| *result = NULL; |
| |
| if (!(fm = jffs_alloc_fm())) { |
| D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n")); |
| return -ENOMEM; |
| } |
| |
| free_chunk_size1 = jffs_free_size1(fmc); |
| free_chunk_size2 = jffs_free_size2(fmc); |
| if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) { |
| printk(KERN_WARNING "Free size accounting screwed\n"); |
| printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size); |
| } |
| |
| D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, " |
| "free_chunk_size2 = %u\n", |
| free_chunk_size1, free_chunk_size2)); |
| |
| if (size <= free_chunk_size1) { |
| if (!(fm->nodes = (struct jffs_node_ref *) |
| kmalloc(sizeof(struct jffs_node_ref), |
| GFP_KERNEL))) { |
| D(printk("jffs_fmalloc(): kmalloc() failed! " |
| "(node_ref)\n")); |
| jffs_free_fm(fm); |
| return -ENOMEM; |
| } |
| DJM(no_jffs_node_ref++); |
| fm->nodes->node = node; |
| fm->nodes->next = NULL; |
| if (fmc->tail) { |
| fm->offset = fmc->tail->offset + fmc->tail->size; |
| if (fm->offset == fmc->flash_size) { |
| fm->offset = 0; |
| } |
| ASSERT(else if (fm->offset > fmc->flash_size) { |
| printk(KERN_WARNING "jffs_fmalloc(): " |
| "offset > flash_end\n"); |
| fm->offset = 0; |
| }); |
| } |
| else { |
| /* There don't have to be files in the file |
| system yet. */ |
| fm->offset = 0; |
| } |
| fm->size = size; |
| fmc->free_size -= size; |
| fmc->used_size += size; |
| } |
| else if (size > free_chunk_size2) { |
| printk(KERN_WARNING "JFFS: Tried to allocate a too " |
| "large flash memory chunk. (size = %u)\n", size); |
| jffs_free_fm(fm); |
| return -ENOSPC; |
| } |
| else { |
| fm->offset = fmc->tail->offset + fmc->tail->size; |
| fm->size = free_chunk_size1; |
| fm->nodes = NULL; |
| fmc->free_size -= fm->size; |
| fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a |
| bug that caused infinite garbage collection. |
| It previously set fmc->dirty_size to size (which is the |
| size of the requested chunk). |
| */ |
| } |
| |
| fm->next = NULL; |
| if (!fmc->head) { |
| fm->prev = NULL; |
| fmc->head = fm; |
| fmc->tail = fm; |
| } |
| else { |
| fm->prev = fmc->tail; |
| fmc->tail->next = fm; |
| fmc->tail = fm; |
| } |
| |
| D3(jffs_print_fmcontrol(fmc)); |
| D3(jffs_print_fm(fm)); |
| *result = fm; |
| return 0; |
| } |
| |
| |
| /* The on-flash space is not needed anymore by the passed node. Remove |
| the reference to the node from the node list. If the data chunk in |
| the flash memory isn't used by any more nodes anymore (fm->nodes == 0), |
| then mark that chunk as dirty. */ |
| int |
| jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node) |
| { |
| struct jffs_node_ref *ref; |
| struct jffs_node_ref *prev; |
| ASSERT(int del = 0); |
| |
| D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n", |
| node->ino, node->version)); |
| |
| ASSERT(if (!fmc || !fm || !fm->nodes) { |
| printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, " |
| "fm->nodes: 0x%p\n", |
| fmc, fm, (fm ? fm->nodes : NULL)); |
| return -1; |
| }); |
| |
| /* Find the reference to the node that is going to be removed |
| and remove it. */ |
| for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) { |
| if (ref->node == node) { |
| if (prev) { |
| prev->next = ref->next; |
| } |
| else { |
| fm->nodes = ref->next; |
| } |
| kfree(ref); |
| DJM(no_jffs_node_ref--); |
| ASSERT(del = 1); |
| break; |
| } |
| prev = ref; |
| } |
| |
| /* If the data chunk in the flash memory isn't used anymore |
| just mark it as obsolete. */ |
| if (!fm->nodes) { |
| /* No node uses this chunk so let's remove it. */ |
| fmc->used_size -= fm->size; |
| fmc->dirty_size += fm->size; |
| #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE |
| if (jffs_mark_obsolete(fmc, fm->offset) < 0) { |
| D1(printk("jffs_fmfree(): Failed to mark an on-flash " |
| "node obsolete!\n")); |
| return -1; |
| } |
| #endif |
| } |
| |
| ASSERT(if (!del) { |
| printk(KERN_WARNING "***jffs_fmfree(): " |
| "Didn't delete any node reference!\n"); |
| }); |
| |
| return 0; |
| } |
| |
| |
| /* This allocation function is used during the initialization of |
| the file system. */ |
| struct jffs_fm * |
| jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size, |
| struct jffs_node *node) |
| { |
| struct jffs_fm *fm; |
| |
| D3(printk("jffs_fmalloced()\n")); |
| |
| if (!(fm = jffs_alloc_fm())) { |
| D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n", |
| fmc, offset, size, node)); |
| return NULL; |
| } |
| fm->offset = offset; |
| fm->size = size; |
| fm->prev = NULL; |
| fm->next = NULL; |
| fm->nodes = NULL; |
| if (node) { |
| /* `node' exists and it should be associated with the |
| jffs_fm structure `fm'. */ |
| if (!(fm->nodes = (struct jffs_node_ref *) |
| kmalloc(sizeof(struct jffs_node_ref), |
| GFP_KERNEL))) { |
| D(printk("jffs_fmalloced(): !fm->nodes\n")); |
| jffs_free_fm(fm); |
| return NULL; |
| } |
| DJM(no_jffs_node_ref++); |
| fm->nodes->node = node; |
| fm->nodes->next = NULL; |
| fmc->used_size += size; |
| fmc->free_size -= size; |
| } |
| else { |
| /* If there is no node, then this is just a chunk of dirt. */ |
| fmc->dirty_size += size; |
| fmc->free_size -= size; |
| } |
| |
| if (fmc->head_extra) { |
| fm->prev = fmc->tail_extra; |
| fmc->tail_extra->next = fm; |
| fmc->tail_extra = fm; |
| } |
| else if (!fmc->head) { |
| fmc->head = fm; |
| fmc->tail = fm; |
| } |
| else if (fmc->tail->offset + fmc->tail->size < offset) { |
| fmc->head_extra = fm; |
| fmc->tail_extra = fm; |
| } |
| else { |
| fm->prev = fmc->tail; |
| fmc->tail->next = fm; |
| fmc->tail = fm; |
| } |
| D3(jffs_print_fmcontrol(fmc)); |
| D3(jffs_print_fm(fm)); |
| return fm; |
| } |
| |
| |
| /* Add a new node to an already existing jffs_fm struct. */ |
| int |
| jffs_add_node(struct jffs_node *node) |
| { |
| struct jffs_node_ref *ref; |
| |
| D3(printk("jffs_add_node(): ino = %u\n", node->ino)); |
| |
| ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref), |
| GFP_KERNEL); |
| if (!ref) |
| return -ENOMEM; |
| |
| DJM(no_jffs_node_ref++); |
| ref->node = node; |
| ref->next = node->fm->nodes; |
| node->fm->nodes = ref; |
| return 0; |
| } |
| |
| |
| /* Free a part of some allocated space. */ |
| void |
| jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size) |
| { |
| D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, " |
| "fm->nodes->node->ino = %u, size = %u\n", |
| fm, (fm ? fm->nodes : 0), |
| (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size)); |
| |
| if (fm->nodes) { |
| kfree(fm->nodes); |
| DJM(no_jffs_node_ref--); |
| fm->nodes = NULL; |
| } |
| fmc->used_size -= fm->size; |
| if (fm == fmc->tail) { |
| fm->size -= size; |
| fmc->free_size += size; |
| } |
| fmc->dirty_size += fm->size; |
| } |
| |
| |
| /* Find the jffs_fm struct that contains the end of the data chunk that |
| begins at the logical beginning of the flash memory and spans `size' |
| bytes. If we want to erase a sector of the flash memory, we use this |
| function to find where the sector limit cuts a chunk of data. */ |
| struct jffs_fm * |
| jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size) |
| { |
| struct jffs_fm *fm; |
| __u32 pos = 0; |
| |
| if (size == 0) { |
| return NULL; |
| } |
| |
| ASSERT(if (!fmc) { |
| printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n"); |
| return NULL; |
| }); |
| |
| fm = fmc->head; |
| |
| while (fm) { |
| pos += fm->size; |
| if (pos < size) { |
| fm = fm->next; |
| } |
| else if (pos > size) { |
| break; |
| } |
| else { |
| fm = NULL; |
| break; |
| } |
| } |
| |
| return fm; |
| } |
| |
| |
| /* Move the head of the fmc structures and delete the obsolete parts. */ |
| void |
| jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size) |
| { |
| struct jffs_fm *fm; |
| struct jffs_fm *del; |
| |
| ASSERT(if (!fmc) { |
| printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n"); |
| return; |
| }); |
| |
| fmc->dirty_size -= erased_size; |
| fmc->free_size += erased_size; |
| |
| for (fm = fmc->head; fm && (erased_size > 0);) { |
| if (erased_size >= fm->size) { |
| erased_size -= fm->size; |
| del = fm; |
| fm = fm->next; |
| fm->prev = NULL; |
| fmc->head = fm; |
| jffs_free_fm(del); |
| } |
| else { |
| fm->size -= erased_size; |
| fm->offset += erased_size; |
| break; |
| } |
| } |
| } |
| |
| |
| /* Return the oldest used node in the flash memory. */ |
| struct jffs_node * |
| jffs_get_oldest_node(struct jffs_fmcontrol *fmc) |
| { |
| struct jffs_fm *fm; |
| struct jffs_node_ref *nref; |
| struct jffs_node *node = NULL; |
| |
| ASSERT(if (!fmc) { |
| printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n"); |
| return NULL; |
| }); |
| |
| for (fm = fmc->head; fm && !fm->nodes; fm = fm->next); |
| |
| if (!fm) { |
| return NULL; |
| } |
| |
| /* The oldest node is the last one in the reference list. This list |
| shouldn't be too long; just one or perhaps two elements. */ |
| for (nref = fm->nodes; nref; nref = nref->next) { |
| node = nref->node; |
| } |
| |
| D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n", |
| (node ? node->ino : 0), (node ? node->version : 0))); |
| |
| return node; |
| } |
| |
| |
| #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE |
| |
| /* Mark an on-flash node as obsolete. |
| |
| Note that this is just an optimization that isn't necessary for the |
| filesystem to work. */ |
| |
| static int |
| jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset) |
| { |
| /* The `accurate_pos' holds the position of the accurate byte |
| in the jffs_raw_inode structure that we are going to mark |
| as obsolete. */ |
| __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET; |
| unsigned char zero = 0x00; |
| size_t len; |
| |
| D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos)); |
| ASSERT(if (!fmc) { |
| printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n"); |
| return -1; |
| }); |
| |
| /* Write 0x00 to the raw inode's accurate member. Don't care |
| about the return value. */ |
| MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero); |
| return 0; |
| } |
| |
| #endif /* JFFS_MARK_OBSOLETE */ |
| |
| /* check if it's possible to erase the wanted range, and if not, return |
| * the range that IS erasable, or a negative error code. |
| */ |
| static long |
| jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size) |
| { |
| u_long ssize; |
| |
| /* assume that sector size for a partition is constant even |
| * if it spans more than one chip (you usually put the same |
| * type of chips in a system) |
| */ |
| |
| ssize = mtd->erasesize; |
| |
| if (offset % ssize) { |
| printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize); |
| /* The offset is not sector size aligned. */ |
| return -1; |
| } |
| else if (offset > mtd->size) { |
| printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size); |
| return -2; |
| } |
| else if (offset + size > mtd->size) { |
| printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size); |
| return -3; |
| } |
| |
| return (size / ssize) * ssize; |
| } |
| |
| |
| /* How much dirty flash memory is possible to erase at the moment? */ |
| long |
| jffs_erasable_size(struct jffs_fmcontrol *fmc) |
| { |
| struct jffs_fm *fm; |
| __u32 size = 0; |
| long ret; |
| |
| ASSERT(if (!fmc) { |
| printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n"); |
| return -1; |
| }); |
| |
| if (!fmc->head) { |
| /* The flash memory is totally empty. No nodes. No dirt. |
| Just return. */ |
| return 0; |
| } |
| |
| /* Calculate how much space that is dirty. */ |
| for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) { |
| if (size && fm->offset == 0) { |
| /* We have reached the beginning of the flash. */ |
| break; |
| } |
| size += fm->size; |
| } |
| |
| /* Someone's signature contained this: |
| There's a fine line between fishing and just standing on |
| the shore like an idiot... */ |
| ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size); |
| |
| ASSERT(if (ret < 0) { |
| printk("jffs_erasable_size: flash_erasable_size() " |
| "returned something less than zero (%ld).\n", ret); |
| printk("jffs_erasable_size: offset = 0x%08x\n", |
| fmc->head->offset); |
| }); |
| |
| /* If there is dirt on the flash (which is the reason to why |
| this function was called in the first place) but no space is |
| possible to erase right now, the initial part of the list of |
| jffs_fm structs, that hold place for dirty space, could perhaps |
| be shortened. The list's initial "dirty" elements are merged |
| into just one large dirty jffs_fm struct. This operation must |
| only be performed if nothing is possible to erase. Otherwise, |
| jffs_clear_end_of_node() won't work as expected. */ |
| if (ret == 0) { |
| struct jffs_fm *head = fmc->head; |
| struct jffs_fm *del; |
| /* While there are two dirty nodes beside each other.*/ |
| while (head->nodes == 0 |
| && head->next |
| && head->next->nodes == 0) { |
| del = head->next; |
| head->size += del->size; |
| head->next = del->next; |
| if (del->next) { |
| del->next->prev = head; |
| } |
| jffs_free_fm(del); |
| } |
| } |
| |
| return (ret >= 0 ? ret : 0); |
| } |
| |
| static struct jffs_fm *jffs_alloc_fm(void) |
| { |
| struct jffs_fm *fm; |
| |
| fm = kmem_cache_alloc(fm_cache,GFP_KERNEL); |
| DJM(if (fm) no_jffs_fm++;); |
| |
| return fm; |
| } |
| |
| static void jffs_free_fm(struct jffs_fm *n) |
| { |
| kmem_cache_free(fm_cache,n); |
| DJM(no_jffs_fm--); |
| } |
| |
| |
| |
| struct jffs_node *jffs_alloc_node(void) |
| { |
| struct jffs_node *n; |
| |
| n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL); |
| if(n != NULL) |
| no_jffs_node++; |
| return n; |
| } |
| |
| void jffs_free_node(struct jffs_node *n) |
| { |
| kmem_cache_free(node_cache,n); |
| no_jffs_node--; |
| } |
| |
| |
| int jffs_get_node_inuse(void) |
| { |
| return no_jffs_node; |
| } |
| |
| void |
| jffs_print_fmcontrol(struct jffs_fmcontrol *fmc) |
| { |
| D(printk("struct jffs_fmcontrol: 0x%p\n", fmc)); |
| D(printk("{\n")); |
| D(printk(" %u, /* flash_size */\n", fmc->flash_size)); |
| D(printk(" %u, /* used_size */\n", fmc->used_size)); |
| D(printk(" %u, /* dirty_size */\n", fmc->dirty_size)); |
| D(printk(" %u, /* free_size */\n", fmc->free_size)); |
| D(printk(" %u, /* sector_size */\n", fmc->sector_size)); |
| D(printk(" %u, /* min_free_size */\n", fmc->min_free_size)); |
| D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size)); |
| D(printk(" 0x%p, /* mtd */\n", fmc->mtd)); |
| D(printk(" 0x%p, /* head */ " |
| "(head->offset = 0x%08x)\n", |
| fmc->head, (fmc->head ? fmc->head->offset : 0))); |
| D(printk(" 0x%p, /* tail */ " |
| "(tail->offset + tail->size = 0x%08x)\n", |
| fmc->tail, |
| (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0))); |
| D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra)); |
| D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra)); |
| D(printk("}\n")); |
| } |
| |
| void |
| jffs_print_fm(struct jffs_fm *fm) |
| { |
| D(printk("struct jffs_fm: 0x%p\n", fm)); |
| D(printk("{\n")); |
| D(printk(" 0x%08x, /* offset */\n", fm->offset)); |
| D(printk(" %u, /* size */\n", fm->size)); |
| D(printk(" 0x%p, /* prev */\n", fm->prev)); |
| D(printk(" 0x%p, /* next */\n", fm->next)); |
| D(printk(" 0x%p, /* nodes */\n", fm->nodes)); |
| D(printk("}\n")); |
| } |
| |
| #if 0 |
| void |
| jffs_print_node_ref(struct jffs_node_ref *ref) |
| { |
| D(printk("struct jffs_node_ref: 0x%p\n", ref)); |
| D(printk("{\n")); |
| D(printk(" 0x%p, /* node */\n", ref->node)); |
| D(printk(" 0x%p, /* next */\n", ref->next)); |
| D(printk("}\n")); |
| } |
| #endif /* 0 */ |
| |