| /* |
| * Cryptographic API. |
| * |
| * z990 implementation of the DES Cipher Algorithm. |
| * |
| * Copyright (c) 2003 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Author(s): Thomas Spatzier (tspat@de.ibm.com) |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| */ |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/errno.h> |
| #include <asm/scatterlist.h> |
| #include <linux/crypto.h> |
| #include "crypt_z990.h" |
| #include "crypto_des.h" |
| |
| #define DES_BLOCK_SIZE 8 |
| #define DES_KEY_SIZE 8 |
| |
| #define DES3_128_KEY_SIZE (2 * DES_KEY_SIZE) |
| #define DES3_128_BLOCK_SIZE DES_BLOCK_SIZE |
| |
| #define DES3_192_KEY_SIZE (3 * DES_KEY_SIZE) |
| #define DES3_192_BLOCK_SIZE DES_BLOCK_SIZE |
| |
| struct crypt_z990_des_ctx { |
| u8 iv[DES_BLOCK_SIZE]; |
| u8 key[DES_KEY_SIZE]; |
| }; |
| |
| struct crypt_z990_des3_128_ctx { |
| u8 iv[DES_BLOCK_SIZE]; |
| u8 key[DES3_128_KEY_SIZE]; |
| }; |
| |
| struct crypt_z990_des3_192_ctx { |
| u8 iv[DES_BLOCK_SIZE]; |
| u8 key[DES3_192_KEY_SIZE]; |
| }; |
| |
| static int |
| des_setkey(void *ctx, const u8 *key, unsigned int keylen, u32 *flags) |
| { |
| struct crypt_z990_des_ctx *dctx; |
| int ret; |
| |
| dctx = ctx; |
| //test if key is valid (not a weak key) |
| ret = crypto_des_check_key(key, keylen, flags); |
| if (ret == 0){ |
| memcpy(dctx->key, key, keylen); |
| } |
| return ret; |
| } |
| |
| |
| static void |
| des_encrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_DEA_ENCRYPT, dctx->key, dst, src, DES_BLOCK_SIZE); |
| } |
| |
| static void |
| des_decrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_DEA_DECRYPT, dctx->key, dst, src, DES_BLOCK_SIZE); |
| } |
| |
| static struct crypto_alg des_alg = { |
| .cra_name = "des", |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypt_z990_des_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_list = LIST_HEAD_INIT(des_alg.cra_list), |
| .cra_u = { .cipher = { |
| .cia_min_keysize = DES_KEY_SIZE, |
| .cia_max_keysize = DES_KEY_SIZE, |
| .cia_setkey = des_setkey, |
| .cia_encrypt = des_encrypt, |
| .cia_decrypt = des_decrypt } } |
| }; |
| |
| /* |
| * RFC2451: |
| * |
| * For DES-EDE3, there is no known need to reject weak or |
| * complementation keys. Any weakness is obviated by the use of |
| * multiple keys. |
| * |
| * However, if the two independent 64-bit keys are equal, |
| * then the DES3 operation is simply the same as DES. |
| * Implementers MUST reject keys that exhibit this property. |
| * |
| */ |
| static int |
| des3_128_setkey(void *ctx, const u8 *key, unsigned int keylen, u32 *flags) |
| { |
| int i, ret; |
| struct crypt_z990_des3_128_ctx *dctx; |
| const u8* temp_key = key; |
| |
| dctx = ctx; |
| if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE))) { |
| |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| return -EINVAL; |
| } |
| for (i = 0; i < 2; i++, temp_key += DES_KEY_SIZE) { |
| ret = crypto_des_check_key(temp_key, DES_KEY_SIZE, flags); |
| if (ret < 0) |
| return ret; |
| } |
| memcpy(dctx->key, key, keylen); |
| return 0; |
| } |
| |
| static void |
| des3_128_encrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des3_128_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_TDEA_128_ENCRYPT, dctx->key, dst, (void*)src, |
| DES3_128_BLOCK_SIZE); |
| } |
| |
| static void |
| des3_128_decrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des3_128_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_TDEA_128_DECRYPT, dctx->key, dst, (void*)src, |
| DES3_128_BLOCK_SIZE); |
| } |
| |
| static struct crypto_alg des3_128_alg = { |
| .cra_name = "des3_ede128", |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = DES3_128_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypt_z990_des3_128_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_list = LIST_HEAD_INIT(des3_128_alg.cra_list), |
| .cra_u = { .cipher = { |
| .cia_min_keysize = DES3_128_KEY_SIZE, |
| .cia_max_keysize = DES3_128_KEY_SIZE, |
| .cia_setkey = des3_128_setkey, |
| .cia_encrypt = des3_128_encrypt, |
| .cia_decrypt = des3_128_decrypt } } |
| }; |
| |
| /* |
| * RFC2451: |
| * |
| * For DES-EDE3, there is no known need to reject weak or |
| * complementation keys. Any weakness is obviated by the use of |
| * multiple keys. |
| * |
| * However, if the first two or last two independent 64-bit keys are |
| * equal (k1 == k2 or k2 == k3), then the DES3 operation is simply the |
| * same as DES. Implementers MUST reject keys that exhibit this |
| * property. |
| * |
| */ |
| static int |
| des3_192_setkey(void *ctx, const u8 *key, unsigned int keylen, u32 *flags) |
| { |
| int i, ret; |
| struct crypt_z990_des3_192_ctx *dctx; |
| const u8* temp_key; |
| |
| dctx = ctx; |
| temp_key = key; |
| if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) && |
| memcmp(&key[DES_KEY_SIZE], &key[DES_KEY_SIZE * 2], |
| DES_KEY_SIZE))) { |
| |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| return -EINVAL; |
| } |
| for (i = 0; i < 3; i++, temp_key += DES_KEY_SIZE) { |
| ret = crypto_des_check_key(temp_key, DES_KEY_SIZE, flags); |
| if (ret < 0){ |
| return ret; |
| } |
| } |
| memcpy(dctx->key, key, keylen); |
| return 0; |
| } |
| |
| static void |
| des3_192_encrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des3_192_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_TDEA_192_ENCRYPT, dctx->key, dst, (void*)src, |
| DES3_192_BLOCK_SIZE); |
| } |
| |
| static void |
| des3_192_decrypt(void *ctx, u8 *dst, const u8 *src) |
| { |
| struct crypt_z990_des3_192_ctx *dctx; |
| |
| dctx = ctx; |
| crypt_z990_km(KM_TDEA_192_DECRYPT, dctx->key, dst, (void*)src, |
| DES3_192_BLOCK_SIZE); |
| } |
| |
| static struct crypto_alg des3_192_alg = { |
| .cra_name = "des3_ede", |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = DES3_192_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypt_z990_des3_192_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_list = LIST_HEAD_INIT(des3_192_alg.cra_list), |
| .cra_u = { .cipher = { |
| .cia_min_keysize = DES3_192_KEY_SIZE, |
| .cia_max_keysize = DES3_192_KEY_SIZE, |
| .cia_setkey = des3_192_setkey, |
| .cia_encrypt = des3_192_encrypt, |
| .cia_decrypt = des3_192_decrypt } } |
| }; |
| |
| |
| |
| static int |
| init(void) |
| { |
| int ret; |
| |
| if (!crypt_z990_func_available(KM_DEA_ENCRYPT) || |
| !crypt_z990_func_available(KM_TDEA_128_ENCRYPT) || |
| !crypt_z990_func_available(KM_TDEA_192_ENCRYPT)){ |
| return -ENOSYS; |
| } |
| |
| ret = 0; |
| ret |= (crypto_register_alg(&des_alg) == 0)? 0:1; |
| ret |= (crypto_register_alg(&des3_128_alg) == 0)? 0:2; |
| ret |= (crypto_register_alg(&des3_192_alg) == 0)? 0:4; |
| if (ret){ |
| crypto_unregister_alg(&des3_192_alg); |
| crypto_unregister_alg(&des3_128_alg); |
| crypto_unregister_alg(&des_alg); |
| return -EEXIST; |
| } |
| |
| printk(KERN_INFO "crypt_z990: des_z990 loaded.\n"); |
| return 0; |
| } |
| |
| static void __exit |
| fini(void) |
| { |
| crypto_unregister_alg(&des3_192_alg); |
| crypto_unregister_alg(&des3_128_alg); |
| crypto_unregister_alg(&des_alg); |
| } |
| |
| module_init(init); |
| module_exit(fini); |
| |
| MODULE_ALIAS("des"); |
| MODULE_ALIAS("des3_ede"); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("DES & Triple DES EDE Cipher Algorithms"); |