blob: 85a1468c4ee1f63a652becde4f75f95065356d09 [file] [log] [blame]
/* arch/arm/mach-msm/cpufreq.c
*
* MSM architecture cpufreq driver
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2013, The Linux Foundation. All rights reserved.
* Author: Mike A. Chan <mikechan@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/earlysuspend.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/cpufreq.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/sched.h>
#include <linux/suspend.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <trace/events/power.h>
#include <mach/socinfo.h>
#include <mach/msm_bus.h>
#include "acpuclock.h"
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <asm/div64.h>
#endif
static DEFINE_MUTEX(l2bw_lock);
static struct clk *cpu_clk[NR_CPUS];
static struct clk *l2_clk;
static unsigned int freq_index[NR_CPUS];
static struct cpufreq_frequency_table *freq_table;
static unsigned int *l2_khz;
static bool is_clk;
static bool is_sync;
static struct msm_bus_vectors *bus_vec_lst;
static struct msm_bus_scale_pdata bus_bw = {
.name = "msm-cpufreq",
.active_only = 1,
};
static u32 bus_client;
struct cpufreq_work_struct {
struct work_struct work;
struct cpufreq_policy *policy;
struct completion complete;
int frequency;
unsigned int index;
int status;
};
static DEFINE_PER_CPU(struct cpufreq_work_struct, cpufreq_work);
static struct workqueue_struct *msm_cpufreq_wq;
struct cpufreq_suspend_t {
struct mutex suspend_mutex;
int device_suspended;
};
static DEFINE_PER_CPU(struct cpufreq_suspend_t, cpufreq_suspend);
static void update_l2_bw(int *also_cpu)
{
int rc = 0, cpu;
unsigned int index = 0;
mutex_lock(&l2bw_lock);
if (also_cpu)
index = freq_index[*also_cpu];
for_each_online_cpu(cpu) {
index = max(index, freq_index[cpu]);
}
if (l2_clk)
rc = clk_set_rate(l2_clk, l2_khz[index] * 1000);
if (rc) {
pr_err("Error setting L2 clock rate!\n");
goto out;
}
if (bus_client)
rc = msm_bus_scale_client_update_request(bus_client, index);
if (rc)
pr_err("Bandwidth req failed (%d)\n", rc);
out:
mutex_unlock(&l2bw_lock);
}
static int set_cpu_freq(struct cpufreq_policy *policy, unsigned int new_freq,
unsigned int index)
{
int ret = 0;
int saved_sched_policy = -EINVAL;
int saved_sched_rt_prio = -EINVAL;
struct cpufreq_freqs freqs;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
freqs.old = policy->cur;
freqs.new = new_freq;
freqs.cpu = policy->cpu;
/*
* Put the caller into SCHED_FIFO priority to avoid cpu starvation
* in the acpuclk_set_rate path while increasing frequencies
*/
if (freqs.new > freqs.old && current->policy != SCHED_FIFO) {
saved_sched_policy = current->policy;
saved_sched_rt_prio = current->rt_priority;
sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
trace_cpu_frequency_switch_start(freqs.old, freqs.new, policy->cpu);
if (is_clk) {
unsigned long rate = new_freq * 1000;
rate = clk_round_rate(cpu_clk[policy->cpu], rate);
ret = clk_set_rate(cpu_clk[policy->cpu], rate);
if (!ret) {
freq_index[policy->cpu] = index;
update_l2_bw(NULL);
}
} else {
ret = acpuclk_set_rate(policy->cpu, new_freq, SETRATE_CPUFREQ);
}
if (!ret) {
trace_cpu_frequency_switch_end(policy->cpu);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
}
/* Restore priority after clock ramp-up */
if (freqs.new > freqs.old && saved_sched_policy >= 0) {
param.sched_priority = saved_sched_rt_prio;
sched_setscheduler_nocheck(current, saved_sched_policy, &param);
}
return ret;
}
static void set_cpu_work(struct work_struct *work)
{
struct cpufreq_work_struct *cpu_work =
container_of(work, struct cpufreq_work_struct, work);
cpu_work->status = set_cpu_freq(cpu_work->policy, cpu_work->frequency,
cpu_work->index);
complete(&cpu_work->complete);
}
static int msm_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
int ret = -EFAULT;
int index;
struct cpufreq_frequency_table *table;
struct cpufreq_work_struct *cpu_work = NULL;
mutex_lock(&per_cpu(cpufreq_suspend, policy->cpu).suspend_mutex);
if (per_cpu(cpufreq_suspend, policy->cpu).device_suspended) {
pr_debug("cpufreq: cpu%d scheduling frequency change "
"in suspend.\n", policy->cpu);
ret = -EFAULT;
goto done;
}
table = cpufreq_frequency_get_table(policy->cpu);
if (cpufreq_frequency_table_target(policy, table, target_freq, relation,
&index)) {
pr_err("cpufreq: invalid target_freq: %d\n", target_freq);
ret = -EINVAL;
goto done;
}
pr_debug("CPU[%d] target %d relation %d (%d-%d) selected %d\n",
policy->cpu, target_freq, relation,
policy->min, policy->max, table[index].frequency);
cpu_work = &per_cpu(cpufreq_work, policy->cpu);
cpu_work->policy = policy;
cpu_work->frequency = table[index].frequency;
cpu_work->index = table[index].index;
cpu_work->status = -ENODEV;
cancel_work_sync(&cpu_work->work);
INIT_COMPLETION(cpu_work->complete);
queue_work_on(policy->cpu, msm_cpufreq_wq, &cpu_work->work);
wait_for_completion(&cpu_work->complete);
ret = cpu_work->status;
done:
mutex_unlock(&per_cpu(cpufreq_suspend, policy->cpu).suspend_mutex);
return ret;
}
static int msm_cpufreq_verify(struct cpufreq_policy *policy)
{
cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
policy->cpuinfo.max_freq);
return 0;
}
static unsigned int msm_cpufreq_get_freq(unsigned int cpu)
{
if (is_clk)
return clk_get_rate(cpu_clk[cpu]) / 1000;
return acpuclk_get_rate(cpu);
}
static int __cpuinit msm_cpufreq_init(struct cpufreq_policy *policy)
{
int cur_freq;
int index;
int ret = 0;
struct cpufreq_frequency_table *table;
struct cpufreq_work_struct *cpu_work = NULL;
table = cpufreq_frequency_get_table(policy->cpu);
if (table == NULL)
return -ENODEV;
/*
* In 8625, 8610, and 8226 both cpu core's frequency can not
* be changed independently. Each cpu is bound to
* same frequency. Hence set the cpumask to all cpu.
*/
if (cpu_is_msm8625() || cpu_is_msm8625q() || cpu_is_msm8226()
|| cpu_is_msm8610() || (is_clk && is_sync))
cpumask_setall(policy->cpus);
if (cpufreq_frequency_table_cpuinfo(policy, table)) {
#ifdef CONFIG_MSM_CPU_FREQ_SET_MIN_MAX
policy->cpuinfo.min_freq = CONFIG_MSM_CPU_FREQ_MIN;
policy->cpuinfo.max_freq = CONFIG_MSM_CPU_FREQ_MAX;
#endif
}
#ifdef CONFIG_MSM_CPU_FREQ_SET_MIN_MAX
policy->min = CONFIG_MSM_CPU_FREQ_MIN;
policy->max = CONFIG_MSM_CPU_FREQ_MAX;
#endif
if (is_clk)
cur_freq = clk_get_rate(cpu_clk[policy->cpu])/1000;
else
cur_freq = acpuclk_get_rate(policy->cpu);
if (cpufreq_frequency_table_target(policy, table, cur_freq,
CPUFREQ_RELATION_H, &index) &&
cpufreq_frequency_table_target(policy, table, cur_freq,
CPUFREQ_RELATION_L, &index)) {
pr_info("cpufreq: cpu%d at invalid freq: %d\n",
policy->cpu, cur_freq);
return -EINVAL;
}
/*
* Call set_cpu_freq unconditionally so that when cpu is set to
* online, frequency limit will always be updated.
*/
ret = set_cpu_freq(policy, table[index].frequency, table[index].index);
if (ret)
return ret;
pr_debug("cpufreq: cpu%d init at %d switching to %d\n",
policy->cpu, cur_freq, table[index].frequency);
policy->cur = table[index].frequency;
policy->cpuinfo.transition_latency =
acpuclk_get_switch_time() * NSEC_PER_USEC;
cpu_work = &per_cpu(cpufreq_work, policy->cpu);
INIT_WORK(&cpu_work->work, set_cpu_work);
init_completion(&cpu_work->complete);
return 0;
}
static int __cpuinit msm_cpufreq_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
int rc;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
per_cpu(cpufreq_suspend, cpu).device_suspended = 0;
break;
case CPU_DOWN_PREPARE:
mutex_lock(&per_cpu(cpufreq_suspend, cpu).suspend_mutex);
per_cpu(cpufreq_suspend, cpu).device_suspended = 1;
mutex_unlock(&per_cpu(cpufreq_suspend, cpu).suspend_mutex);
break;
case CPU_DOWN_FAILED:
per_cpu(cpufreq_suspend, cpu).device_suspended = 0;
break;
/*
* Scale down clock/power of CPU that is dead and scale it back up
* before the CPU is brought up.
*/
case CPU_DEAD:
case CPU_UP_CANCELED:
if (is_clk) {
clk_disable_unprepare(cpu_clk[cpu]);
update_l2_bw(NULL);
}
break;
case CPU_UP_PREPARE:
if (is_clk) {
rc = clk_prepare_enable(cpu_clk[cpu]);
if (rc < 0)
return NOTIFY_BAD;
update_l2_bw(&cpu);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __refdata msm_cpufreq_cpu_notifier = {
.notifier_call = msm_cpufreq_cpu_callback,
};
/*
* Define suspend/resume for cpufreq_driver. Kernel will call
* these during suspend/resume with interrupts disabled. This
* helps the suspend/resume variable get's updated before cpufreq
* governor tries to change the frequency after coming out of suspend.
*/
static int msm_cpufreq_suspend(struct cpufreq_policy *policy)
{
int cpu;
for_each_possible_cpu(cpu) {
per_cpu(cpufreq_suspend, cpu).device_suspended = 1;
}
return 0;
}
static int msm_cpufreq_resume(struct cpufreq_policy *policy)
{
int cpu;
for_each_possible_cpu(cpu) {
per_cpu(cpufreq_suspend, cpu).device_suspended = 0;
}
return 0;
}
static struct freq_attr *msm_freq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver msm_cpufreq_driver = {
/* lps calculations are handled here. */
.flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS,
.init = msm_cpufreq_init,
.verify = msm_cpufreq_verify,
.target = msm_cpufreq_target,
.get = msm_cpufreq_get_freq,
.suspend = msm_cpufreq_suspend,
.resume = msm_cpufreq_resume,
.name = "msm",
.attr = msm_freq_attr,
};
#define PROP_TBL "qcom,cpufreq-table"
#define PROP_PORTS "qcom,cpu-mem-ports"
static int cpufreq_parse_dt(struct device *dev)
{
int ret, len, nf, num_cols = 1, num_paths = 0, i, j, k;
u32 *data, *ports = NULL;
struct msm_bus_vectors *v = NULL;
if (l2_clk)
num_cols++;
/* Parse optional bus ports parameter */
if (of_find_property(dev->of_node, PROP_PORTS, &len)) {
len /= sizeof(*ports);
if (len % 2)
return -EINVAL;
ports = devm_kzalloc(dev, len * sizeof(*ports), GFP_KERNEL);
if (!ports)
return -ENOMEM;
ret = of_property_read_u32_array(dev->of_node, PROP_PORTS,
ports, len);
if (ret)
return ret;
num_paths = len / 2;
num_cols++;
}
/* Parse CPU freq -> L2/Mem BW map table. */
if (!of_find_property(dev->of_node, PROP_TBL, &len))
return -EINVAL;
len /= sizeof(*data);
if (len % num_cols || len == 0)
return -EINVAL;
nf = len / num_cols;
data = devm_kzalloc(dev, len * sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
ret = of_property_read_u32_array(dev->of_node, PROP_TBL, data, len);
if (ret)
return ret;
/* Allocate all data structures. */
freq_table = devm_kzalloc(dev, (nf + 1) * sizeof(*freq_table),
GFP_KERNEL);
if (!freq_table)
return -ENOMEM;
if (l2_clk) {
l2_khz = devm_kzalloc(dev, nf * sizeof(*l2_khz), GFP_KERNEL);
if (!l2_khz)
return -ENOMEM;
}
if (num_paths) {
int sz_u = nf * sizeof(*bus_bw.usecase);
int sz_v = nf * num_paths * sizeof(*bus_vec_lst);
bus_bw.usecase = devm_kzalloc(dev, sz_u, GFP_KERNEL);
v = bus_vec_lst = devm_kzalloc(dev, sz_v, GFP_KERNEL);
if (!bus_bw.usecase || !bus_vec_lst)
return -ENOMEM;
}
j = 0;
for (i = 0; i < nf; i++) {
unsigned long f;
f = clk_round_rate(cpu_clk[0], data[j++] * 1000);
if (IS_ERR_VALUE(f))
break;
f /= 1000;
/*
* Check if this is the last feasible frequency in the table.
*
* The table listing frequencies higher than what the HW can
* support is not an error since the table might be shared
* across CPUs in different speed bins. It's also not
* sufficient to check if the rounded rate is lower than the
* requested rate as it doesn't cover the following example:
*
* Table lists: 2.2 GHz and 2.5 GHz.
* Rounded rate returns: 2.2 GHz and 2.3 GHz.
*
* In this case, we can CPUfreq to use 2.2 GHz and 2.3 GHz
* instead of rejecting the 2.5 GHz table entry.
*/
if (i > 0 && f <= freq_table[i-1].frequency)
break;
freq_table[i].index = i;
freq_table[i].frequency = f;
if (l2_clk) {
f = clk_round_rate(l2_clk, data[j++] * 1000);
if (IS_ERR_VALUE(f)) {
pr_err("Error finding L2 rate for CPU %d KHz\n",
freq_table[i].frequency);
freq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
} else {
f /= 1000;
l2_khz[i] = f;
}
}
if (num_paths) {
unsigned int bw_mbps = data[j++];
bus_bw.usecase[i].num_paths = num_paths;
bus_bw.usecase[i].vectors = v;
for (k = 0; k < num_paths; k++) {
v->src = ports[k * 2];
v->dst = ports[k * 2 + 1];
v->ib = bw_mbps * 1000000ULL;
v++;
}
}
}
bus_bw.num_usecases = i;
freq_table[i].index = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
if (ports)
devm_kfree(dev, ports);
devm_kfree(dev, data);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int msm_cpufreq_show(struct seq_file *m, void *unused)
{
unsigned int i, cpu_freq;
uint64_t ib;
if (!freq_table)
return 0;
seq_printf(m, "%10s%10s", "CPU (KHz)", "L2 (KHz)");
if (bus_bw.usecase)
seq_printf(m, "%12s", "Mem (MBps)");
seq_printf(m, "\n");
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
cpu_freq = freq_table[i].frequency;
if (cpu_freq == CPUFREQ_ENTRY_INVALID)
continue;
seq_printf(m, "%10d", cpu_freq);
seq_printf(m, "%10d", l2_khz ? l2_khz[i] : cpu_freq);
if (bus_bw.usecase) {
ib = bus_bw.usecase[i].vectors[0].ib;
do_div(ib, 1000000);
seq_printf(m, "%12llu", ib);
}
seq_printf(m, "\n");
}
return 0;
}
static int msm_cpufreq_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_cpufreq_show, inode->i_private);
}
const struct file_operations msm_cpufreq_fops = {
.open = msm_cpufreq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
static int __init msm_cpufreq_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
char clk_name[] = "cpu??_clk";
struct clk *c;
int cpu, ret;
l2_clk = devm_clk_get(dev, "l2_clk");
if (IS_ERR(l2_clk))
l2_clk = NULL;
for_each_possible_cpu(cpu) {
snprintf(clk_name, sizeof(clk_name), "cpu%d_clk", cpu);
c = devm_clk_get(dev, clk_name);
if (!IS_ERR(c))
cpu_clk[cpu] = c;
else
is_sync = true;
}
if (!cpu_clk[0])
return -ENODEV;
ret = cpufreq_parse_dt(dev);
if (ret)
return ret;
for_each_possible_cpu(cpu) {
cpufreq_frequency_table_get_attr(freq_table, cpu);
}
if (bus_bw.usecase) {
bus_client = msm_bus_scale_register_client(&bus_bw);
if (!bus_client)
dev_warn(dev, "Unable to register bus client\n");
}
is_clk = true;
#ifdef CONFIG_DEBUG_FS
if (!debugfs_create_file("msm_cpufreq", S_IRUGO, NULL, NULL,
&msm_cpufreq_fops))
return -ENOMEM;
#endif
return 0;
}
static struct of_device_id match_table[] = {
{ .compatible = "qcom,msm-cpufreq" },
{}
};
static struct platform_driver msm_cpufreq_plat_driver = {
.driver = {
.name = "msm-cpufreq",
.of_match_table = match_table,
.owner = THIS_MODULE,
},
};
static int __init msm_cpufreq_register(void)
{
int cpu;
for_each_possible_cpu(cpu) {
mutex_init(&(per_cpu(cpufreq_suspend, cpu).suspend_mutex));
per_cpu(cpufreq_suspend, cpu).device_suspended = 0;
}
platform_driver_probe(&msm_cpufreq_plat_driver, msm_cpufreq_probe);
msm_cpufreq_wq = alloc_workqueue("msm-cpufreq", WQ_HIGHPRI, 0);
register_hotcpu_notifier(&msm_cpufreq_cpu_notifier);
return cpufreq_register_driver(&msm_cpufreq_driver);
}
device_initcall(msm_cpufreq_register);