blob: 4f22d72bd93927f437392aa4c89bc7a861ed29b6 [file] [log] [blame]
/*
* drivers/serial/msm_serial.c - driver for msm7k serial device and console
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
* Author: Robert Love <rlove@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
# define SUPPORT_SYSRQ
#endif
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/nmi.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <mach/msm_serial_pdata.h>
#include "msm_serial.h"
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
enum msm_clk_states_e {
MSM_CLK_PORT_OFF, /* uart port not in use */
MSM_CLK_OFF, /* clock enabled */
MSM_CLK_REQUEST_OFF, /* disable after TX flushed */
MSM_CLK_ON, /* clock disabled */
};
#endif
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
/* optional low power wakeup, typically on a GPIO RX irq */
struct msm_wakeup {
int irq; /* < 0 indicates low power wakeup disabled */
unsigned char ignore; /* bool */
/* bool: inject char into rx tty on wakeup */
unsigned char inject_rx;
char rx_to_inject;
};
#endif
struct msm_port {
struct uart_port uart;
char name[16];
struct clk *clk;
unsigned int imr;
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
enum msm_clk_states_e clk_state;
struct hrtimer clk_off_timer;
ktime_t clk_off_delay;
#endif
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
struct msm_wakeup wakeup;
#endif
int uim;
};
#define UART_TO_MSM(uart_port) ((struct msm_port *) uart_port)
#define is_console(port) ((port)->cons && \
(port)->cons->index == (port)->line)
static inline void msm_write(struct uart_port *port, unsigned int val,
unsigned int off)
{
__raw_writel(val, port->membase + off);
}
static inline unsigned int msm_read(struct uart_port *port, unsigned int off)
{
return __raw_readl(port->membase + off);
}
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
static inline unsigned int use_low_power_wakeup(struct msm_port *msm_port)
{
return (msm_port->wakeup.irq >= 0);
}
#endif
static void msm_stop_tx(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
msm_port->imr &= ~UART_IMR_TXLEV;
msm_write(port, msm_port->imr, UART_IMR);
}
static void msm_start_tx(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
msm_port->imr |= UART_IMR_TXLEV;
msm_write(port, msm_port->imr, UART_IMR);
}
static void msm_stop_rx(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE);
msm_write(port, msm_port->imr, UART_IMR);
}
static void msm_enable_ms(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
msm_port->imr |= UART_IMR_DELTA_CTS;
msm_write(port, msm_port->imr, UART_IMR);
}
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
/* turn clock off if TX buffer is empty, otherwise reschedule */
static enum hrtimer_restart msm_serial_clock_off(struct hrtimer *timer) {
struct msm_port *msm_port = container_of(timer, struct msm_port,
clk_off_timer);
struct uart_port *port = &msm_port->uart;
struct circ_buf *xmit = &port->state->xmit;
unsigned long flags;
int ret = HRTIMER_NORESTART;
spin_lock_irqsave(&port->lock, flags);
if (msm_port->clk_state == MSM_CLK_REQUEST_OFF) {
if (uart_circ_empty(xmit)) {
struct msm_port *msm_port = UART_TO_MSM(port);
clk_disable(msm_port->clk);
msm_port->clk_state = MSM_CLK_OFF;
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
if (use_low_power_wakeup(msm_port)) {
msm_port->wakeup.ignore = 1;
enable_irq(msm_port->wakeup.irq);
}
#endif
} else {
hrtimer_forward_now(timer, msm_port->clk_off_delay);
ret = HRTIMER_RESTART;
}
}
spin_unlock_irqrestore(&port->lock, flags);
return HRTIMER_NORESTART;
}
/* request to turn off uart clock once pending TX is flushed */
void msm_serial_clock_request_off(struct uart_port *port) {
unsigned long flags;
struct msm_port *msm_port = UART_TO_MSM(port);
spin_lock_irqsave(&port->lock, flags);
if (msm_port->clk_state == MSM_CLK_ON) {
msm_port->clk_state = MSM_CLK_REQUEST_OFF;
/* turn off TX later. unfortunately not all msm uart's have a
* TXDONE available, and TXLEV does not wait until completely
* flushed, so a timer is our only option
*/
hrtimer_start(&msm_port->clk_off_timer,
msm_port->clk_off_delay, HRTIMER_MODE_REL);
}
spin_unlock_irqrestore(&port->lock, flags);
}
/* request to immediately turn on uart clock.
* ignored if there is a pending off request, unless force = 1.
*/
void msm_serial_clock_on(struct uart_port *port, int force) {
unsigned long flags;
struct msm_port *msm_port = UART_TO_MSM(port);
spin_lock_irqsave(&port->lock, flags);
switch (msm_port->clk_state) {
case MSM_CLK_OFF:
clk_enable(msm_port->clk);
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
if (use_low_power_wakeup(msm_port))
disable_irq(msm_port->wakeup.irq);
#endif
force = 1;
case MSM_CLK_REQUEST_OFF:
if (force) {
hrtimer_try_to_cancel(&msm_port->clk_off_timer);
msm_port->clk_state = MSM_CLK_ON;
}
break;
case MSM_CLK_ON: break;
case MSM_CLK_PORT_OFF: break;
}
spin_unlock_irqrestore(&port->lock, flags);
}
#endif
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
static irqreturn_t msm_rx_irq(int irq, void *dev_id)
{
unsigned long flags;
struct uart_port *port = dev_id;
struct msm_port *msm_port = UART_TO_MSM(port);
int inject_wakeup = 0;
spin_lock_irqsave(&port->lock, flags);
if (msm_port->clk_state == MSM_CLK_OFF) {
/* ignore the first irq - it is a pending irq that occured
* before enable_irq() */
if (msm_port->wakeup.ignore)
msm_port->wakeup.ignore = 0;
else
inject_wakeup = 1;
}
msm_serial_clock_on(port, 0);
/* we missed an rx while asleep - it must be a wakeup indicator
*/
if (inject_wakeup) {
struct tty_struct *tty = port->state->port.tty;
tty_insert_flip_char(tty, WAKE_UP_IND, TTY_NORMAL);
tty_flip_buffer_push(tty);
}
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
#endif
static void handle_rx(struct uart_port *port)
{
struct tty_struct *tty = port->state->port.tty;
unsigned int sr;
/*
* Handle overrun. My understanding of the hardware is that overrun
* is not tied to the RX buffer, so we handle the case out of band.
*/
if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
port->icount.overrun++;
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
}
/* and now the main RX loop */
while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) {
unsigned int c;
char flag = TTY_NORMAL;
c = msm_read(port, UART_RF);
if (sr & UART_SR_RX_BREAK) {
port->icount.brk++;
if (uart_handle_break(port))
continue;
} else if (sr & UART_SR_PAR_FRAME_ERR) {
port->icount.frame++;
} else {
port->icount.rx++;
}
/* Mask conditions we're ignorning. */
sr &= port->read_status_mask;
if (sr & UART_SR_RX_BREAK) {
flag = TTY_BREAK;
} else if (sr & UART_SR_PAR_FRAME_ERR) {
flag = TTY_FRAME;
}
if (!uart_handle_sysrq_char(port, c))
tty_insert_flip_char(tty, c, flag);
}
tty_flip_buffer_push(tty);
}
static void handle_tx(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
struct msm_port *msm_port = UART_TO_MSM(port);
int sent_tx;
if (port->x_char) {
msm_write(port, port->x_char, UART_TF);
port->icount.tx++;
port->x_char = 0;
}
while (msm_read(port, UART_SR) & UART_SR_TX_READY) {
if (uart_circ_empty(xmit)) {
/* disable tx interrupts */
msm_port->imr &= ~UART_IMR_TXLEV;
msm_write(port, msm_port->imr, UART_IMR);
break;
}
msm_write(port, xmit->buf[xmit->tail], UART_TF);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
sent_tx = 1;
}
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
if (sent_tx && msm_port->clk_state == MSM_CLK_REQUEST_OFF)
/* new TX - restart the timer */
if (hrtimer_try_to_cancel(&msm_port->clk_off_timer) == 1)
hrtimer_start(&msm_port->clk_off_timer,
msm_port->clk_off_delay, HRTIMER_MODE_REL);
#endif
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static void handle_delta_cts(struct uart_port *port)
{
msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
port->icount.cts++;
wake_up_interruptible(&port->state->port.delta_msr_wait);
}
static irqreturn_t msm_irq(int irq, void *dev_id)
{
unsigned long flags;
struct uart_port *port = dev_id;
struct msm_port *msm_port = UART_TO_MSM(port);
unsigned int misr;
spin_lock_irqsave(&port->lock, flags);
misr = msm_read(port, UART_MISR);
msm_write(port, 0, UART_IMR); /* disable interrupt */
if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE))
handle_rx(port);
if (misr & UART_IMR_TXLEV)
handle_tx(port);
if (misr & UART_IMR_DELTA_CTS)
handle_delta_cts(port);
msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
static unsigned int msm_tx_empty(struct uart_port *port)
{
unsigned int ret;
ret = (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0;
return ret;
}
static unsigned int msm_get_mctrl(struct uart_port *port)
{
return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS;
}
static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
unsigned int mr;
mr = msm_read(port, UART_MR1);
if (!(mctrl & TIOCM_RTS)) {
mr &= ~UART_MR1_RX_RDY_CTL;
msm_write(port, mr, UART_MR1);
msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR);
} else {
mr |= UART_MR1_RX_RDY_CTL;
msm_write(port, mr, UART_MR1);
}
}
static void msm_break_ctl(struct uart_port *port, int break_ctl)
{
if (break_ctl)
msm_write(port, UART_CR_CMD_START_BREAK, UART_CR);
else
msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR);
}
static void msm_set_baud_rate(struct uart_port *port, unsigned int baud)
{
unsigned int baud_code, rxstale, watermark;
switch (baud) {
case 300:
baud_code = UART_CSR_300;
rxstale = 1;
break;
case 600:
baud_code = UART_CSR_600;
rxstale = 1;
break;
case 1200:
baud_code = UART_CSR_1200;
rxstale = 1;
break;
case 2400:
baud_code = UART_CSR_2400;
rxstale = 1;
break;
case 4800:
baud_code = UART_CSR_4800;
rxstale = 1;
break;
case 9600:
baud_code = UART_CSR_9600;
rxstale = 2;
break;
case 14400:
baud_code = UART_CSR_14400;
rxstale = 3;
break;
case 19200:
baud_code = UART_CSR_19200;
rxstale = 4;
break;
case 28800:
baud_code = UART_CSR_28800;
rxstale = 6;
break;
case 38400:
baud_code = UART_CSR_38400;
rxstale = 8;
break;
case 57600:
baud_code = UART_CSR_57600;
rxstale = 16;
break;
case 115200:
default:
baud_code = UART_CSR_115200;
rxstale = 31;
break;
}
msm_write(port, baud_code, UART_CSR);
/* RX stale watermark */
watermark = UART_IPR_STALE_LSB & rxstale;
watermark |= UART_IPR_RXSTALE_LAST;
watermark |= UART_IPR_STALE_TIMEOUT_MSB & (rxstale << 2);
msm_write(port, watermark, UART_IPR);
/* set RX watermark */
watermark = (port->fifosize * 3) / 4;
msm_write(port, watermark, UART_RFWR);
/* set TX watermark */
msm_write(port, 10, UART_TFWR);
}
static void msm_reset(struct uart_port *port)
{
/* reset everything */
msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
msm_write(port, UART_CR_CMD_RESET_TX, UART_CR);
msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR);
msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
msm_write(port, UART_CR_CMD_SET_RFR, UART_CR);
}
static void msm_init_clock(struct uart_port *port)
{
int ret;
struct msm_port *msm_port = UART_TO_MSM(port);
ret = clk_prepare_enable(msm_port->clk);
if (ret) {
pr_err("%s(): Can't enable uartclk. ret:%d\n", __func__, ret);
return;
}
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
msm_port->clk_state = MSM_CLK_ON;
#endif
if (msm_port->uim) {
msm_write(port,
UART_SIM_CFG_STOP_BIT_LEN_N(2) |
UART_SIM_CFG_SIM_CLK_ON |
UART_SIM_CFG_SIM_CLK_STOP_HIGH |
UART_SIM_CFG_MASK_RX |
UART_SIM_CFG_SIM_SEL,
UART_SIM_CFG);
/* (TCXO * 16) / (5 * 372) = TCXO * 16 / 1860 */
msm_write(port, 0x08, UART_MREG);
msm_write(port, 0x19, UART_NREG);
msm_write(port, 0xe8, UART_DREG);
msm_write(port, 0x0e, UART_MNDREG);
} else if (port->uartclk == 19200000) {
/* clock is TCXO (19.2MHz) */
msm_write(port, 0x06, UART_MREG);
msm_write(port, 0xF1, UART_NREG);
msm_write(port, 0x0F, UART_DREG);
msm_write(port, 0x1A, UART_MNDREG);
} else {
/* clock must be TCXO/4 */
msm_write(port, 0x18, UART_MREG);
msm_write(port, 0xF6, UART_NREG);
msm_write(port, 0x0F, UART_DREG);
msm_write(port, 0x0A, UART_MNDREG);
}
}
static void msm_deinit_clock(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
if (msm_port->clk_state != MSM_CLK_OFF)
clk_disable(msm_port->clk);
msm_port->clk_state = MSM_CLK_PORT_OFF;
#else
clk_disable_unprepare(msm_port->clk);
#endif
}
static int msm_startup(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
unsigned int data, rfr_level;
int ret;
snprintf(msm_port->name, sizeof(msm_port->name),
"msm_serial%d", port->line);
ret = request_irq(port->irq, msm_irq, IRQF_TRIGGER_HIGH,
msm_port->name, port);
if (unlikely(ret))
return ret;
#ifndef CONFIG_PM_RUNTIME
msm_init_clock(port);
#endif
pm_runtime_get_sync(port->dev);
if (likely(port->fifosize > 12))
rfr_level = port->fifosize - 12;
else
rfr_level = port->fifosize;
/* set automatic RFR level */
data = msm_read(port, UART_MR1);
data &= ~UART_MR1_AUTO_RFR_LEVEL1;
data &= ~UART_MR1_AUTO_RFR_LEVEL0;
data |= UART_MR1_AUTO_RFR_LEVEL1 & (rfr_level << 2);
data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level;
msm_write(port, data, UART_MR1);
/* make sure that RXSTALE count is non-zero */
data = msm_read(port, UART_IPR);
if (unlikely(!data)) {
data |= UART_IPR_RXSTALE_LAST;
data |= UART_IPR_STALE_LSB;
msm_write(port, data, UART_IPR);
}
msm_reset(port);
msm_write(port, 0x05, UART_CR); /* enable TX & RX */
/* turn on RX and CTS interrupts */
msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE |
UART_IMR_CURRENT_CTS;
msm_write(port, msm_port->imr, UART_IMR);
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
if (use_low_power_wakeup(msm_port)) {
ret = irq_set_irq_wake(msm_port->wakeup.irq, 1);
if (unlikely(ret))
return ret;
ret = request_irq(msm_port->wakeup.irq, msm_rx_irq,
IRQF_TRIGGER_FALLING,
"msm_serial_wakeup", msm_port);
if (unlikely(ret))
return ret;
disable_irq(msm_port->wakeup.irq);
}
#endif
return 0;
}
static void msm_shutdown(struct uart_port *port)
{
struct msm_port *msm_port = UART_TO_MSM(port);
if (msm_port->uim)
msm_write(port,
UART_SIM_CFG_SIM_CLK_STOP_HIGH,
UART_SIM_CFG);
msm_port->imr = 0;
msm_write(port, 0, UART_IMR); /* disable interrupts */
free_irq(port->irq, port);
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
if (use_low_power_wakeup(msm_port)) {
irq_set_irq_wake(msm_port->wakeup.irq, 0);
free_irq(msm_port->wakeup.irq, msm_port);
}
#endif
#ifndef CONFIG_PM_RUNTIME
msm_deinit_clock(port);
#endif
pm_runtime_put_sync(port->dev);
}
static void msm_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
unsigned long flags;
unsigned int baud, mr;
if (!termios->c_cflag)
return;
spin_lock_irqsave(&port->lock, flags);
/* calculate and set baud rate */
baud = uart_get_baud_rate(port, termios, old, 300, 115200);
msm_set_baud_rate(port, baud);
/* calculate parity */
mr = msm_read(port, UART_MR2);
mr &= ~UART_MR2_PARITY_MODE;
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & PARODD)
mr |= UART_MR2_PARITY_MODE_ODD;
else if (termios->c_cflag & CMSPAR)
mr |= UART_MR2_PARITY_MODE_SPACE;
else
mr |= UART_MR2_PARITY_MODE_EVEN;
}
/* calculate bits per char */
mr &= ~UART_MR2_BITS_PER_CHAR;
switch (termios->c_cflag & CSIZE) {
case CS5:
mr |= UART_MR2_BITS_PER_CHAR_5;
break;
case CS6:
mr |= UART_MR2_BITS_PER_CHAR_6;
break;
case CS7:
mr |= UART_MR2_BITS_PER_CHAR_7;
break;
case CS8:
default:
mr |= UART_MR2_BITS_PER_CHAR_8;
break;
}
/* calculate stop bits */
mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO);
if (termios->c_cflag & CSTOPB)
mr |= UART_MR2_STOP_BIT_LEN_TWO;
else
mr |= UART_MR2_STOP_BIT_LEN_ONE;
/* set parity, bits per char, and stop bit */
msm_write(port, mr, UART_MR2);
/* calculate and set hardware flow control */
mr = msm_read(port, UART_MR1);
mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL);
if (termios->c_cflag & CRTSCTS) {
mr |= UART_MR1_CTS_CTL;
mr |= UART_MR1_RX_RDY_CTL;
}
msm_write(port, mr, UART_MR1);
/* Configure status bits to ignore based on termio flags. */
port->read_status_mask = 0;
if (termios->c_iflag & INPCK)
port->read_status_mask |= UART_SR_PAR_FRAME_ERR;
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= UART_SR_RX_BREAK;
uart_update_timeout(port, termios->c_cflag, baud);
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *msm_type(struct uart_port *port)
{
return "MSM";
}
static void msm_release_port(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *resource;
resource_size_t size;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!resource))
return;
size = resource->end - resource->start + 1;
release_mem_region(port->mapbase, size);
iounmap(port->membase);
port->membase = NULL;
}
static int msm_request_port(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *resource;
resource_size_t size;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!resource))
return -ENXIO;
size = resource->end - resource->start + 1;
if (unlikely(!request_mem_region(port->mapbase, size, "msm_serial")))
return -EBUSY;
port->membase = ioremap(port->mapbase, size);
if (!port->membase) {
release_mem_region(port->mapbase, size);
return -EBUSY;
}
return 0;
}
static void msm_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_MSM;
msm_request_port(port);
}
}
static int msm_verify_port(struct uart_port *port, struct serial_struct *ser)
{
if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM))
return -EINVAL;
if (unlikely(port->irq != ser->irq))
return -EINVAL;
return 0;
}
static void msm_power(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
int ret;
struct msm_port *msm_port = UART_TO_MSM(port);
switch (state) {
case 0:
ret = clk_prepare_enable(msm_port->clk);
if (ret)
pr_err("msm_serial: %s(): Can't enable uartclk.\n",
__func__);
break;
case 3:
clk_disable_unprepare(msm_port->clk);
break;
default:
pr_err("msm_serial: %s(): Unknown PM state %d\n",
__func__, state);
}
}
static struct uart_ops msm_uart_pops = {
.tx_empty = msm_tx_empty,
.set_mctrl = msm_set_mctrl,
.get_mctrl = msm_get_mctrl,
.stop_tx = msm_stop_tx,
.start_tx = msm_start_tx,
.stop_rx = msm_stop_rx,
.enable_ms = msm_enable_ms,
.break_ctl = msm_break_ctl,
.startup = msm_startup,
.shutdown = msm_shutdown,
.set_termios = msm_set_termios,
.type = msm_type,
.release_port = msm_release_port,
.request_port = msm_request_port,
.config_port = msm_config_port,
.verify_port = msm_verify_port,
.pm = msm_power,
};
static struct msm_port msm_uart_ports[] = {
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 512,
.line = 0,
},
},
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 512,
.line = 1,
},
},
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 64,
.line = 2,
},
},
};
#define UART_NR 256
static inline struct uart_port * get_port_from_line(unsigned int line)
{
return &msm_uart_ports[line].uart;
}
#ifdef CONFIG_SERIAL_MSM_CONSOLE
/*
* Wait for transmitter & holding register to empty
* Derived from wait_for_xmitr in 8250 serial driver by Russell King
*/
static inline void wait_for_xmitr(struct uart_port *port, int bits)
{
unsigned int status, mr, tmout = 10000;
/* Wait up to 10ms for the character(s) to be sent. */
do {
status = msm_read(port, UART_SR);
if (--tmout == 0)
break;
udelay(1);
} while ((status & bits) != bits);
mr = msm_read(port, UART_MR1);
/* Wait up to 1s for flow control if necessary */
if (mr & UART_MR1_CTS_CTL) {
unsigned int tmout;
for (tmout = 1000000; tmout; tmout--) {
unsigned int isr = msm_read(port, UART_ISR);
/* CTS input is active lo */
if (!(isr & UART_IMR_CURRENT_CTS))
break;
udelay(1);
touch_nmi_watchdog();
}
}
}
static void msm_console_putchar(struct uart_port *port, int c)
{
/* This call can incur significant delay if CTS flowcontrol is enabled
* on port and no serial cable is attached.
*/
wait_for_xmitr(port, UART_SR_TX_READY);
msm_write(port, c, UART_TF);
}
static void msm_console_write(struct console *co, const char *s,
unsigned int count)
{
struct uart_port *port;
struct msm_port *msm_port;
int locked;
BUG_ON(co->index < 0 || co->index >= UART_NR);
port = get_port_from_line(co->index);
msm_port = UART_TO_MSM(port);
/* not pretty, but we can end up here via various convoluted paths */
if (port->sysrq || oops_in_progress)
locked = spin_trylock(&port->lock);
else {
locked = 1;
spin_lock(&port->lock);
}
uart_console_write(port, s, count, msm_console_putchar);
if (locked)
spin_unlock(&port->lock);
}
static int __init msm_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 0, flow, bits, parity;
if (unlikely(co->index >= UART_NR || co->index < 0))
return -ENXIO;
port = get_port_from_line(co->index);
if (unlikely(!port->membase))
return -ENXIO;
port->cons = co;
pm_runtime_get_noresume(port->dev);
#ifndef CONFIG_PM_RUNTIME
msm_init_clock(port);
#endif
pm_runtime_resume(port->dev);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
bits = 8;
parity = 'n';
flow = 'n';
msm_write(port, UART_MR2_BITS_PER_CHAR_8 | UART_MR2_STOP_BIT_LEN_ONE,
UART_MR2); /* 8N1 */
if (baud < 300 || baud > 115200)
baud = 115200;
msm_set_baud_rate(port, baud);
msm_reset(port);
printk(KERN_INFO "msm_serial: console setup on port #%d\n", port->line);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct uart_driver msm_uart_driver;
static struct console msm_console = {
.name = "ttyMSM",
.write = msm_console_write,
.device = uart_console_device,
.setup = msm_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &msm_uart_driver,
};
#define MSM_CONSOLE &msm_console
#else
#define MSM_CONSOLE NULL
#endif
static struct uart_driver msm_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_serial",
.dev_name = "ttyMSM",
.nr = UART_NR,
.cons = MSM_CONSOLE,
};
static int __init msm_serial_probe(struct platform_device *pdev)
{
struct msm_port *msm_port;
struct resource *resource;
struct uart_port *port;
int irq;
struct msm_serial_platform_data *pdata = pdev->dev.platform_data;
if (unlikely(pdev->id < 0 || pdev->id >= UART_NR))
return -ENXIO;
printk(KERN_INFO "msm_serial: detected port #%d\n", pdev->id);
port = get_port_from_line(pdev->id);
port->dev = &pdev->dev;
msm_port = UART_TO_MSM(port);
msm_port->clk = clk_get(&pdev->dev, "core_clk");
if (unlikely(IS_ERR(msm_port->clk)))
return PTR_ERR(msm_port->clk);
port->uartclk = clk_get_rate(msm_port->clk);
if (!port->uartclk)
port->uartclk = 19200000;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!resource))
return -ENXIO;
port->mapbase = resource->start;
irq = platform_get_irq(pdev, 0);
if (unlikely(irq < 0))
return -ENXIO;
port->irq = irq;
platform_set_drvdata(pdev, port);
#ifdef CONFIG_SERIAL_MSM_RX_WAKEUP
if (pdata == NULL)
msm_port->wakeup.irq = -1;
else {
msm_port->wakeup.irq = pdata->wakeup_irq;
msm_port->wakeup.ignore = 1;
msm_port->wakeup.inject_rx = pdata->inject_rx_on_wakeup;
msm_port->wakeup.rx_to_inject = pdata->rx_to_inject;
if (unlikely(msm_port->wakeup.irq <= 0))
return -EINVAL;
}
#endif
#ifdef CONFIG_SERIAL_MSM_CLOCK_CONTROL
msm_port->clk_state = MSM_CLK_PORT_OFF;
hrtimer_init(&msm_port->clk_off_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
msm_port->clk_off_timer.function = msm_serial_clock_off;
msm_port->clk_off_delay = ktime_set(0, 1000000); /* 1 ms */
#endif
pm_runtime_enable(port->dev);
if (pdata != NULL && pdata->userid && pdata->userid <= UART_NR)
port->line = pdata->userid;
return uart_add_one_port(&msm_uart_driver, port);
}
static int __init msm_uim_probe(struct platform_device *pdev)
{
struct msm_port *msm_port;
struct resource *resource;
struct uart_port *port;
int irq;
if (unlikely(pdev->id < 0 || pdev->id >= UART_NR))
return -ENXIO;
pr_info("msm_uim: detected port #%d\n", pdev->id);
port = get_port_from_line(pdev->id);
port->dev = &pdev->dev;
msm_port = UART_TO_MSM(port);
msm_port->uim = true;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!resource))
return -ENXIO;
port->mapbase = resource->start;
irq = platform_get_irq(pdev, 0);
if (unlikely(irq < 0))
return -ENXIO;
port->irq = irq;
platform_set_drvdata(pdev, port);
return uart_add_one_port(&msm_uart_driver, port);
}
static int __devexit msm_serial_remove(struct platform_device *pdev)
{
struct msm_port *msm_port = platform_get_drvdata(pdev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
clk_put(msm_port->clk);
return 0;
}
#ifdef CONFIG_PM
static int msm_serial_suspend(struct device *dev)
{
struct uart_port *port;
struct platform_device *pdev = to_platform_device(dev);
port = get_port_from_line(pdev->id);
if (port) {
uart_suspend_port(&msm_uart_driver, port);
if (is_console(port))
msm_deinit_clock(port);
}
return 0;
}
static int msm_serial_resume(struct device *dev)
{
struct uart_port *port;
struct platform_device *pdev = to_platform_device(dev);
port = get_port_from_line(pdev->id);
if (port) {
if (is_console(port))
msm_init_clock(port);
uart_resume_port(&msm_uart_driver, port);
}
return 0;
}
#else
#define msm_serial_suspend NULL
#define msm_serial_resume NULL
#endif
static int msm_serial_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(pdev->id);
dev_dbg(dev, "pm_runtime: suspending\n");
msm_deinit_clock(port);
return 0;
}
static int msm_serial_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(pdev->id);
dev_dbg(dev, "pm_runtime: resuming\n");
msm_init_clock(port);
return 0;
}
static struct dev_pm_ops msm_serial_dev_pm_ops = {
.suspend = msm_serial_suspend,
.resume = msm_serial_resume,
.runtime_suspend = msm_serial_runtime_suspend,
.runtime_resume = msm_serial_runtime_resume,
};
static struct platform_driver msm_platform_driver = {
.remove = msm_serial_remove,
.driver = {
.name = "msm_serial",
.owner = THIS_MODULE,
.pm = &msm_serial_dev_pm_ops,
},
};
static struct platform_driver msm_platform_uim_driver = {
.remove = msm_serial_remove,
.driver = {
.name = "msm_uim",
.owner = THIS_MODULE,
},
};
static int __init msm_serial_init(void)
{
int ret;
ret = uart_register_driver(&msm_uart_driver);
if (unlikely(ret))
return ret;
ret = platform_driver_probe(&msm_platform_driver, msm_serial_probe);
if (unlikely(ret))
uart_unregister_driver(&msm_uart_driver);
platform_driver_probe(&msm_platform_uim_driver, msm_uim_probe);
printk(KERN_INFO "msm_serial: driver initialized\n");
return ret;
}
static void __exit msm_serial_exit(void)
{
#ifdef CONFIG_SERIAL_MSM_CONSOLE
unregister_console(&msm_console);
#endif
platform_driver_unregister(&msm_platform_driver);
uart_unregister_driver(&msm_uart_driver);
}
module_init(msm_serial_init);
module_exit(msm_serial_exit);
MODULE_AUTHOR("Robert Love <rlove@google.com>");
MODULE_DESCRIPTION("Driver for msm7x serial device");
MODULE_LICENSE("GPL v2");