blob: 47fced1c3625c50e62ec938b008d4d6c0e54667b [file] [log] [blame]
/* Copyright (c) 2012 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* High Level description:
* http://www.ti.com/lit/ds/symlink/bq28400.pdf
* Thechnical Reference:
* http://www.ti.com/lit/ug/sluu431/sluu431.pdf
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/power_supply.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/printk.h>
#define BQ28400_NAME "bq28400"
#define BQ28400_REV "1.0"
/* SBS Commands (page 63) */
#define SBS_MANUFACTURER_ACCESS 0x00
#define SBS_BATTERY_MODE 0x03
#define SBS_TEMPERATURE 0x08
#define SBS_VOLTAGE 0x09
#define SBS_CURRENT 0x0A
#define SBS_AVG_CURRENT 0x0B
#define SBS_MAX_ERROR 0x0C
#define SBS_RSOC 0x0D /* Relative State Of Charge */
#define SBS_REMAIN_CAPACITY 0x0F
#define SBS_FULL_CAPACITY 0x10
#define SBS_CHG_CURRENT 0x14
#define SBS_CHG_VOLTAGE 0x15
#define SBS_BATTERY_STATUS 0x16
#define SBS_CYCLE_COUNT 0x17
#define SBS_DESIGN_CAPACITY 0x18
#define SBS_DESIGN_VOLTAGE 0x19
#define SBS_SPEC_INFO 0x1A
#define SBS_MANUFACTURE_DATE 0x1B
#define SBS_SERIAL_NUMBER 0x1C
#define SBS_MANUFACTURER_NAME 0x20
#define SBS_DEVICE_NAME 0x21
#define SBS_DEVICE_CHEMISTRY 0x22
#define SBS_MANUFACTURER_DATA 0x23
#define SBS_AUTHENTICATE 0x2F
#define SBS_CELL_VOLTAGE1 0x3E
#define SBS_CELL_VOLTAGE2 0x3F
/* Extended SBS Commands (page 71) */
#define SBS_FET_CONTROL 0x46
#define SBS_SAFETY_ALERT 0x50
#define SBS_SAFETY_STATUS 0x51
#define SBS_PE_ALERT 0x52
#define SBS_PE_STATUS 0x53
#define SBS_OPERATION_STATUS 0x54
#define SBS_CHARGING_STATUS 0x55
#define SBS_FET_STATUS 0x56
#define SBS_PACK_VOLTAGE 0x5A
#define SBS_TS0_TEMPERATURE 0x5E
#define SBS_FULL_ACCESS_KEY 0x61
#define SBS_PF_KEY 0x62
#define SBS_AUTH_KEY3 0x63
#define SBS_AUTH_KEY2 0x64
#define SBS_AUTH_KEY1 0x65
#define SBS_AUTH_KEY0 0x66
#define SBS_MANUFACTURER_INFO 0x70
#define SBS_SENSE_RESISTOR 0x71
#define SBS_TEMP_RANGE 0x72
/* SBS Sub-Commands (16 bits) */
/* SBS_MANUFACTURER_ACCESS CMD */
#define SUBCMD_DEVICE_TYPE 0x01
#define SUBCMD_FIRMWARE_VERSION 0x02
#define SUBCMD_HARDWARE_VERSION 0x03
#define SUBCMD_DF_CHECKSUM 0x04
#define SUBCMD_EDV 0x05
#define SUBCMD_CHEMISTRY_ID 0x08
/* SBS_CHARGING_STATUS */
#define CHG_STATUS_BATTERY_DEPLETED BIT(0)
#define CHG_STATUS_OVERCHARGE BIT(1)
#define CHG_STATUS_OVERCHARGE_CURRENT BIT(2)
#define CHG_STATUS_OVERCHARGE_VOLTAGE BIT(3)
#define CHG_STATUS_CELL_BALANCING BIT(6)
#define CHG_STATUS_HOT_TEMP_CHARGING BIT(8)
#define CHG_STATUS_STD1_TEMP_CHARGING BIT(9)
#define CHG_STATUS_STD2_TEMP_CHARGING BIT(10)
#define CHG_STATUS_LOW_TEMP_CHARGING BIT(11)
#define CHG_STATUS_PRECHARGING_EXIT BIT(13)
#define CHG_STATUS_SUSPENDED BIT(14)
#define CHG_STATUS_DISABLED BIT(15)
/* SBS_FET_STATUS */
#define FET_STATUS_DISCHARGE BIT(1)
#define FET_STATUS_CHARGE BIT(2)
#define FET_STATUS_PRECHARGE BIT(3)
/* SBS_BATTERY_STATUS */
#define BAT_STATUS_SBS_ERROR 0x0F
#define BAT_STATUS_EMPTY BIT(4)
#define BAT_STATUS_FULL BIT(5)
#define BAT_STATUS_DISCHARGING BIT(6)
#define BAT_STATUS_OVER_TEMPERATURE BIT(12)
#define BAT_STATUS_OVER_CHARGED BIT(15)
#define ZERO_DEGREE_CELSIUS_IN_TENTH_KELVIN (-2731)
#define BQ_TERMINATION_CURRENT_MA 200
#define BQ_MAX_STR_LEN 32
struct bq28400_device {
struct i2c_client *client;
struct delayed_work periodic_user_space_update_work;
struct dentry *dent;
struct power_supply batt_psy;
struct power_supply *dc_psy;
bool is_charging_enabled;
};
static struct bq28400_device *bq28400_dev;
static enum power_supply_property pm_power_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_MODEL_NAME,
POWER_SUPPLY_PROP_MANUFACTURER,
};
struct debug_reg {
char *name;
u8 reg;
u16 subcmd;
};
#define BQ28400_DEBUG_REG(x) {#x, SBS_##x, 0}
#define BQ28400_DEBUG_SUBREG(x, y) {#y, SBS_##x, SUBCMD_##y}
/* Note: Some register can be read only in Unsealed mode */
static struct debug_reg bq28400_debug_regs[] = {
BQ28400_DEBUG_REG(MANUFACTURER_ACCESS),
BQ28400_DEBUG_REG(BATTERY_MODE),
BQ28400_DEBUG_REG(TEMPERATURE),
BQ28400_DEBUG_REG(VOLTAGE),
BQ28400_DEBUG_REG(CURRENT),
BQ28400_DEBUG_REG(AVG_CURRENT),
BQ28400_DEBUG_REG(MAX_ERROR),
BQ28400_DEBUG_REG(RSOC),
BQ28400_DEBUG_REG(REMAIN_CAPACITY),
BQ28400_DEBUG_REG(FULL_CAPACITY),
BQ28400_DEBUG_REG(CHG_CURRENT),
BQ28400_DEBUG_REG(CHG_VOLTAGE),
BQ28400_DEBUG_REG(BATTERY_STATUS),
BQ28400_DEBUG_REG(CYCLE_COUNT),
BQ28400_DEBUG_REG(DESIGN_CAPACITY),
BQ28400_DEBUG_REG(DESIGN_VOLTAGE),
BQ28400_DEBUG_REG(SPEC_INFO),
BQ28400_DEBUG_REG(MANUFACTURE_DATE),
BQ28400_DEBUG_REG(SERIAL_NUMBER),
BQ28400_DEBUG_REG(MANUFACTURER_NAME),
BQ28400_DEBUG_REG(DEVICE_NAME),
BQ28400_DEBUG_REG(DEVICE_CHEMISTRY),
BQ28400_DEBUG_REG(MANUFACTURER_DATA),
BQ28400_DEBUG_REG(AUTHENTICATE),
BQ28400_DEBUG_REG(CELL_VOLTAGE1),
BQ28400_DEBUG_REG(CELL_VOLTAGE2),
BQ28400_DEBUG_REG(SAFETY_ALERT),
BQ28400_DEBUG_REG(SAFETY_STATUS),
BQ28400_DEBUG_REG(PE_ALERT),
BQ28400_DEBUG_REG(PE_STATUS),
BQ28400_DEBUG_REG(OPERATION_STATUS),
BQ28400_DEBUG_REG(CHARGING_STATUS),
BQ28400_DEBUG_REG(FET_STATUS),
BQ28400_DEBUG_REG(FULL_ACCESS_KEY),
BQ28400_DEBUG_REG(PF_KEY),
BQ28400_DEBUG_REG(MANUFACTURER_INFO),
BQ28400_DEBUG_REG(SENSE_RESISTOR),
BQ28400_DEBUG_REG(TEMP_RANGE),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, DEVICE_TYPE),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, FIRMWARE_VERSION),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, HARDWARE_VERSION),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, DF_CHECKSUM),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, EDV),
BQ28400_DEBUG_SUBREG(MANUFACTURER_ACCESS, CHEMISTRY_ID),
};
static int bq28400_read_reg(struct i2c_client *client, u8 reg)
{
int val;
val = i2c_smbus_read_word_data(client, reg);
if (val < 0)
pr_err("i2c read fail. reg = 0x%x.ret = %d.\n", reg, val);
else
pr_debug("reg = 0x%02X.val = 0x%04X.\n", reg , val);
return val;
}
static int bq28400_write_reg(struct i2c_client *client, u8 reg, u16 val)
{
int ret;
ret = i2c_smbus_write_word_data(client, reg, val);
if (ret < 0)
pr_err("i2c read fail. reg = 0x%x.val = 0x%x.ret = %d.\n",
reg, val, ret);
else
pr_debug("reg = 0x%02X.val = 0x%02X.\n", reg , val);
return ret;
}
static int bq28400_read_subcmd(struct i2c_client *client, u8 reg, u16 subcmd)
{
int ret;
u8 buf[4];
u16 val = 0;
buf[0] = reg;
buf[1] = subcmd & 0xFF;
buf[2] = (subcmd >> 8) & 0xFF;
/* Control sub-command */
ret = i2c_master_send(client, buf, 3);
if (ret < 0) {
pr_err("i2c tx fail. reg = 0x%x.ret = %d.\n", reg, ret);
return ret;
}
udelay(66);
/* Read Result of subcmd */
ret = i2c_master_send(client, buf, 1);
memset(buf, 0xAA, sizeof(buf));
ret = i2c_master_recv(client, buf, 2);
if (ret < 0) {
pr_err("i2c rx fail. reg = 0x%x.ret = %d.\n", reg, ret);
return ret;
}
val = (buf[1] << 8) + buf[0];
pr_debug("reg = 0x%02X.subcmd = 0x%x.val = 0x%04X.\n",
reg , subcmd, val);
return val;
}
static int bq28400_read_block(struct i2c_client *client, u8 reg,
u8 len, u8 *buf)
{
int ret;
u32 val;
ret = i2c_smbus_read_i2c_block_data(client, reg, len, buf);
val = buf[0] + (buf[1] << 8) + (buf[2] << 16) + (buf[3] << 24);
if (ret < 0)
pr_err("i2c read fail. reg = 0x%x.ret = %d.\n", reg, ret);
else
pr_debug("reg = 0x%02X.val = 0x%04X.\n", reg , val);
return val;
}
/*
* Read a string from a device.
* Returns string length on success or error on failure (negative value).
*/
static int bq28400_read_string(struct i2c_client *client, u8 reg, char *str,
u8 max_len)
{
int ret;
int len;
ret = bq28400_read_block(client, reg, max_len, str);
if (ret < 0)
return ret;
len = str[0]; /* Actual length */
if (len > max_len - 2) { /* reduce len byte and null */
pr_err("len = %d invalid.\n", len);
return -EINVAL;
}
memcpy(&str[0], &str[1], len); /* Move sting to the start */
str[len] = 0; /* put NULL after actual size */
pr_debug("len = %d.str = %s.\n", len, str);
return len;
}
#define BQ28400_INVALID_TEMPERATURE -999
/*
* Return the battery temperature in tenths of degree Celsius
* Or -99.9 C if something fails.
*/
static int bq28400_read_temperature(struct i2c_client *client)
{
int temp;
/* temperature resolution 0.1 Kelvin */
temp = bq28400_read_reg(client, SBS_TEMPERATURE);
if (temp < 0)
return BQ28400_INVALID_TEMPERATURE;
temp = temp + ZERO_DEGREE_CELSIUS_IN_TENTH_KELVIN;
pr_debug("temp = %d C\n", temp/10);
return temp;
}
/*
* Return the battery Voltage in milivolts 0..20 V
* Or < 0 if something fails.
*/
static int bq28400_read_voltage(struct i2c_client *client)
{
int mvolt = 0;
mvolt = bq28400_read_reg(client, SBS_VOLTAGE);
if (mvolt < 0)
return mvolt;
pr_debug("volt = %d mV.\n", mvolt);
return mvolt;
}
/*
* Return the battery Current in miliamps
* Or 0 if something fails.
* Positive current indicates charging
* Negative current indicates discharging.
* Current-now is calculated every second.
*/
static int bq28400_read_current(struct i2c_client *client)
{
s16 current_ma = 0;
current_ma = bq28400_read_reg(client, SBS_CURRENT);
pr_debug("current = %d mA.\n", current_ma);
return current_ma;
}
/*
* Return the Average battery Current in miliamps
* Or 0 if something fails.
* Positive current indicates charging
* Negative current indicates discharging.
* Average Current is the rolling 1 minute average current.
*/
static int bq28400_read_avg_current(struct i2c_client *client)
{
s16 current_ma = 0;
current_ma = bq28400_read_reg(client, SBS_AVG_CURRENT);
pr_debug("avg_current=%d mA.\n", current_ma);
return current_ma;
}
/*
* Return the battery Relative-State-Of-Charge 0..100 %
* Or 0 if something fails.
*/
static int bq28400_read_rsoc(struct i2c_client *client)
{
int percentage = 0;
/* This register is only 1 byte */
percentage = i2c_smbus_read_byte_data(client, SBS_RSOC);
if (percentage < 0)
return 0;
pr_debug("percentage = %d.\n", percentage);
return percentage;
}
/*
* Return the battery Capacity in mAh.
* Or 0 if something fails.
*/
static int bq28400_read_full_capacity(struct i2c_client *client)
{
int capacity = 0;
capacity = bq28400_read_reg(client, SBS_FULL_CAPACITY);
if (capacity < 0)
return 0;
pr_debug("full-capacity = %d mAh.\n", capacity);
return capacity;
}
/*
* Return the battery Capacity in mAh.
* Or 0 if something fails.
*/
static int bq28400_read_remain_capacity(struct i2c_client *client)
{
int capacity = 0;
capacity = bq28400_read_reg(client, SBS_REMAIN_CAPACITY);
if (capacity < 0)
return 0;
pr_debug("remain-capacity = %d mAh.\n", capacity);
return capacity;
}
static int bq28400_enable_charging(struct bq28400_device *bq28400_dev,
bool enable)
{
int ret;
static bool is_charging_enabled;
if (bq28400_dev->dc_psy == NULL) {
bq28400_dev->dc_psy = power_supply_get_by_name("dc");
if (bq28400_dev->dc_psy == NULL) {
pr_err("fail to get dc-psy.\n");
return -ENODEV;
}
}
if (is_charging_enabled == enable) {
pr_debug("Charging enable already = %d.\n", enable);
return 0;
}
ret = power_supply_set_online(bq28400_dev->dc_psy, enable);
if (ret < 0) {
pr_err("fail to set dc-psy online to %d.\n", enable);
return ret;
}
is_charging_enabled = enable;
pr_debug("Charging enable = %d.\n", enable);
return 0;
}
static int bq28400_get_prop_status(struct i2c_client *client)
{
int status = POWER_SUPPLY_STATUS_UNKNOWN;
int rsoc;
s16 current_ma = 0;
u16 battery_status;
battery_status = bq28400_read_reg(client, SBS_BATTERY_STATUS);
if (battery_status & BAT_STATUS_EMPTY)
pr_debug("Battery report Empty.\n");
/* Battery may report FULL before rsoc is 100%
* for protection and cell-balancing.
* The FULL report may remain when rsoc drops from 100%.
*/
if (battery_status & BAT_STATUS_FULL) {
pr_debug("Battery report Full.\n");
bq28400_enable_charging(bq28400_dev, false);
return POWER_SUPPLY_STATUS_FULL;
}
rsoc = bq28400_read_rsoc(client);
current_ma = bq28400_read_current(client);
if (rsoc == 100) {
bq28400_enable_charging(bq28400_dev, false);
pr_debug("Full.\n");
return POWER_SUPPLY_STATUS_FULL;
}
/*
* Positive current indicates charging
* Negative current indicates discharging.
* Charging is stopped at termination-current.
*/
if (current_ma < 0) {
bq28400_enable_charging(bq28400_dev, true);
pr_debug("Discharging.\n");
status = POWER_SUPPLY_STATUS_DISCHARGING;
} else if (current_ma > BQ_TERMINATION_CURRENT_MA) {
pr_debug("Charging.\n");
status = POWER_SUPPLY_STATUS_CHARGING;
} else {
pr_debug("Not Charging.\n");
status = POWER_SUPPLY_STATUS_NOT_CHARGING;
}
return status;
}
static int bq28400_get_prop_charge_type(struct i2c_client *client)
{
u16 battery_status;
u16 chg_status;
u16 fet_status;
battery_status = bq28400_read_reg(client, SBS_BATTERY_STATUS);
chg_status = bq28400_read_reg(client, SBS_CHARGING_STATUS);
fet_status = bq28400_read_reg(client, SBS_FET_STATUS);
if (battery_status & BAT_STATUS_DISCHARGING) {
pr_debug("Discharging.\n");
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
if (fet_status & FET_STATUS_PRECHARGE) {
pr_debug("Pre-Charging.\n");
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
}
if (chg_status & CHG_STATUS_HOT_TEMP_CHARGING) {
pr_debug("Hot-Temp-Charging.\n");
return POWER_SUPPLY_CHARGE_TYPE_FAST;
}
if (chg_status & CHG_STATUS_LOW_TEMP_CHARGING) {
pr_debug("Low-Temp-Charging.\n");
return POWER_SUPPLY_CHARGE_TYPE_FAST;
}
if (chg_status & CHG_STATUS_STD1_TEMP_CHARGING) {
pr_debug("STD1-Temp-Charging.\n");
return POWER_SUPPLY_CHARGE_TYPE_FAST;
}
if (chg_status & CHG_STATUS_STD2_TEMP_CHARGING) {
pr_debug("STD2-Temp-Charging.\n");
return POWER_SUPPLY_CHARGE_TYPE_FAST;
}
if (chg_status & CHG_STATUS_BATTERY_DEPLETED)
pr_debug("battery_depleted.\n");
if (chg_status & CHG_STATUS_CELL_BALANCING)
pr_debug("cell_balancing.\n");
if (chg_status & CHG_STATUS_OVERCHARGE) {
pr_err("overcharge fault.\n");
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
if (chg_status & CHG_STATUS_SUSPENDED) {
pr_info("Suspended.\n");
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
if (chg_status & CHG_STATUS_DISABLED) {
pr_info("Disabled.\n");
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
}
static bool bq28400_get_prop_present(struct i2c_client *client)
{
int val;
val = bq28400_read_reg(client, SBS_BATTERY_STATUS);
/* If the bq28400 is inside the battery pack
* then when battery is removed the i2c transfer will fail.
*/
if (val < 0)
return false;
/* TODO - support when bq28400 is not embedded in battery pack */
return true;
}
/*
* User sapce read the battery info.
* Get data online via I2C from the battery gauge.
*/
static int bq28400_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct bq28400_device *dev = container_of(psy,
struct bq28400_device,
batt_psy);
struct i2c_client *client = dev->client;
static char str[BQ_MAX_STR_LEN];
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = bq28400_get_prop_status(client);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = bq28400_get_prop_charge_type(client);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = bq28400_get_prop_present(client);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = bq28400_read_voltage(client);
val->intval *= 1000; /* mV to uV */
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = bq28400_read_rsoc(client);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
/* Positive current indicates drawing */
val->intval = -bq28400_read_current(client);
val->intval *= 1000; /* mA to uA */
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
/* Positive current indicates drawing */
val->intval = -bq28400_read_avg_current(client);
val->intval *= 1000; /* mA to uA */
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = bq28400_read_temperature(client);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
val->intval = bq28400_read_full_capacity(client);
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
val->intval = bq28400_read_remain_capacity(client);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
bq28400_read_string(client, SBS_DEVICE_NAME, str, 20);
val->strval = str;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
bq28400_read_string(client, SBS_MANUFACTURER_NAME, str, 20);
val->strval = str;
break;
default:
pr_err(" psp %d Not supoprted.\n", psp);
ret = -EINVAL;
break;
}
return ret;
}
static int bq28400_set_reg(void *data, u64 val)
{
struct debug_reg *dbg = data;
u8 reg = dbg->reg;
int ret;
struct i2c_client *client = bq28400_dev->client;
ret = bq28400_write_reg(client, reg, val);
return ret;
}
static int bq28400_get_reg(void *data, u64 *val)
{
struct debug_reg *dbg = data;
u8 reg = dbg->reg;
u16 subcmd = dbg->subcmd;
int ret;
struct i2c_client *client = bq28400_dev->client;
if (subcmd)
ret = bq28400_read_subcmd(client, reg, subcmd);
else
ret = bq28400_read_reg(client, reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_fops, bq28400_get_reg, bq28400_set_reg,
"0x%04llx\n");
static int bq28400_create_debugfs_entries(struct bq28400_device *bq28400_dev)
{
int i;
bq28400_dev->dent = debugfs_create_dir(BQ28400_NAME, NULL);
if (IS_ERR(bq28400_dev->dent)) {
pr_err("bq28400 driver couldn't create debugfs dir\n");
return -EFAULT;
}
for (i = 0 ; i < ARRAY_SIZE(bq28400_debug_regs) ; i++) {
char *name = bq28400_debug_regs[i].name;
struct dentry *file;
void *data = &bq28400_debug_regs[i];
file = debugfs_create_file(name, 0644, bq28400_dev->dent,
data, &reg_fops);
if (IS_ERR(file)) {
pr_err("debugfs_create_file %s failed.\n", name);
return -EFAULT;
}
}
return 0;
}
static int bq28400_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
pr_debug("psp = %d.val = %d.\n", psp, val->intval);
return -EINVAL;
}
static void bq28400_external_power_changed(struct power_supply *psy)
{
pr_debug("Notify power_supply_changed.\n");
/* Update LEDs and notify uevents */
power_supply_changed(&bq28400_dev->batt_psy);
}
static int __devinit bq28400_register_psy(struct bq28400_device *bq28400_dev)
{
int ret;
bq28400_dev->batt_psy.name = "battery";
bq28400_dev->batt_psy.type = POWER_SUPPLY_TYPE_BATTERY;
bq28400_dev->batt_psy.num_supplicants = 0;
bq28400_dev->batt_psy.properties = pm_power_props;
bq28400_dev->batt_psy.num_properties = ARRAY_SIZE(pm_power_props);
bq28400_dev->batt_psy.get_property = bq28400_get_property;
bq28400_dev->batt_psy.set_property = bq28400_set_property;
bq28400_dev->batt_psy.external_power_changed =
bq28400_external_power_changed;
ret = power_supply_register(&bq28400_dev->client->dev,
&bq28400_dev->batt_psy);
if (ret) {
pr_err("failed to register power_supply. ret=%d.\n", ret);
return ret;
}
return 0;
}
/**
* Update userspace every 1 minute.
* Normally it takes more than 120 minutes (two hours) to
* charge/discahrge the battery,
* so updating every 1 minute should be enough for 1% change
* detection.
* Any immidiate change detected by the DC charger is notified
* by the bq28400_external_power_changed callback, which notify
* the user space.
*/
static void bq28400_periodic_user_space_update_worker(struct work_struct *work)
{
u32 delay_msec = 60*1000;
pr_debug("Notify user space.\n");
/* Notify user space via kobject_uevent change notification */
power_supply_changed(&bq28400_dev->batt_psy);
schedule_delayed_work(&bq28400_dev->periodic_user_space_update_work,
round_jiffies_relative(msecs_to_jiffies
(delay_msec)));
}
static int __devinit bq28400_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret = 0;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
pr_err(" i2c func fail.\n");
return -EIO;
}
if (bq28400_read_reg(client, SBS_BATTERY_STATUS) < 0) {
pr_err("Device doesn't exist.\n");
return -ENODEV;
}
bq28400_dev = kzalloc(sizeof(*bq28400_dev), GFP_KERNEL);
if (!bq28400_dev) {
pr_err(" alloc fail.\n");
return -ENOMEM;
}
bq28400_dev->client = client;
i2c_set_clientdata(client, bq28400_dev);
ret = bq28400_register_psy(bq28400_dev);
if (ret) {
pr_err(" bq28400_register_psy fail.\n");
goto err_register_psy;
}
ret = bq28400_create_debugfs_entries(bq28400_dev);
if (ret) {
pr_err(" bq28400_create_debugfs_entries fail.\n");
goto err_debugfs;
}
INIT_DELAYED_WORK(&bq28400_dev->periodic_user_space_update_work,
bq28400_periodic_user_space_update_worker);
schedule_delayed_work(&bq28400_dev->periodic_user_space_update_work,
msecs_to_jiffies(1000));
pr_info("Device is ready.\n");
return 0;
err_debugfs:
if (bq28400_dev->dent)
debugfs_remove_recursive(bq28400_dev->dent);
power_supply_unregister(&bq28400_dev->batt_psy);
err_register_psy:
kfree(bq28400_dev);
bq28400_dev = NULL;
pr_info("FAIL.\n");
return ret;
}
static int __devexit bq28400_remove(struct i2c_client *client)
{
struct bq28400_device *bq28400_dev = i2c_get_clientdata(client);
power_supply_unregister(&bq28400_dev->batt_psy);
if (bq28400_dev->dent)
debugfs_remove_recursive(bq28400_dev->dent);
kfree(bq28400_dev);
bq28400_dev = NULL;
return 0;
}
static const struct of_device_id bq28400_match[] = {
{ .compatible = "ti,bq28400-battery", },
{ },
};
static const struct i2c_device_id bq28400_id[] = {
{BQ28400_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(i2c, bq28400_id);
static struct i2c_driver bq28400_driver = {
.driver = {
.name = BQ28400_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(bq28400_match),
},
.probe = bq28400_probe,
.remove = __devexit_p(bq28400_remove),
.id_table = bq28400_id,
};
static int __init bq28400_init(void)
{
pr_info(" bq28400 driver rev %s.\n", BQ28400_REV);
return i2c_add_driver(&bq28400_driver);
}
module_init(bq28400_init);
static void __exit bq28400_exit(void)
{
return i2c_del_driver(&bq28400_driver);
}
module_exit(bq28400_exit);
MODULE_DESCRIPTION("Driver for BQ28400 charger chip");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:" BQ28400_NAME);