blob: f35ba53215af4bbf0c516566a850085b0b02ddeb [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_coresight.h>
#include <linux/coresight.h>
#include <linux/coresight-cti.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cdev.h>
#include <linux/usb/usb_qdss.h>
#include <linux/dma-mapping.h>
#include <mach/sps.h>
#include <mach/usb_bam.h>
#include <mach/msm_memory_dump.h>
#include "coresight-priv.h"
#define tmc_writel(drvdata, val, off) __raw_writel((val), drvdata->base + off)
#define tmc_readl(drvdata, off) __raw_readl(drvdata->base + off)
#define tmc_readl_no_log(drvdata, off) __raw_readl_no_log(drvdata->base + off)
#define TMC_LOCK(drvdata) \
do { \
mb(); \
tmc_writel(drvdata, 0x0, CORESIGHT_LAR); \
} while (0)
#define TMC_UNLOCK(drvdata) \
do { \
tmc_writel(drvdata, CORESIGHT_UNLOCK, CORESIGHT_LAR); \
mb(); \
} while (0)
#define TMC_RSZ (0x004)
#define TMC_STS (0x00C)
#define TMC_RRD (0x010)
#define TMC_RRP (0x014)
#define TMC_RWP (0x018)
#define TMC_TRG (0x01C)
#define TMC_CTL (0x020)
#define TMC_RWD (0x024)
#define TMC_MODE (0x028)
#define TMC_LBUFLEVEL (0x02C)
#define TMC_CBUFLEVEL (0x030)
#define TMC_BUFWM (0x034)
#define TMC_RRPHI (0x038)
#define TMC_RWPHI (0x03C)
#define TMC_AXICTL (0x110)
#define TMC_DBALO (0x118)
#define TMC_DBAHI (0x11C)
#define TMC_FFSR (0x300)
#define TMC_FFCR (0x304)
#define TMC_PSCR (0x308)
#define TMC_ITMISCOP0 (0xEE0)
#define TMC_ITTRFLIN (0xEE8)
#define TMC_ITATBDATA0 (0xEEC)
#define TMC_ITATBCTR2 (0xEF0)
#define TMC_ITATBCTR1 (0xEF4)
#define TMC_ITATBCTR0 (0xEF8)
#define BYTES_PER_WORD 4
#define TMC_ETR_BAM_PIPE_INDEX 0
#define TMC_ETR_BAM_NR_PIPES 2
#define TMC_ETFETB_DUMP_MAGIC_OFF (0)
#define TMC_ETFETB_DUMP_MAGIC (0x5D1DB1BF)
#define TMC_ETFETB_DUMP_VER_OFF (4)
#define TMC_ETFETB_DUMP_VER (1)
#define TMC_REG_DUMP_MAGIC_OFF (0)
#define TMC_REG_DUMP_MAGIC (0x5D1DB1BF)
#define TMC_REG_DUMP_VER_OFF (4)
#define TMC_REG_DUMP_VER (1)
enum tmc_config_type {
TMC_CONFIG_TYPE_ETB,
TMC_CONFIG_TYPE_ETR,
TMC_CONFIG_TYPE_ETF,
};
enum tmc_mode {
TMC_MODE_CIRCULAR_BUFFER,
TMC_MODE_SOFTWARE_FIFO,
TMC_MODE_HARDWARE_FIFO,
};
enum tmc_etr_out_mode {
TMC_ETR_OUT_MODE_NONE,
TMC_ETR_OUT_MODE_MEM,
TMC_ETR_OUT_MODE_USB,
};
enum tmc_mem_intf_width {
TMC_MEM_INTF_WIDTH_32BITS = 0x2,
TMC_MEM_INTF_WIDTH_64BITS = 0x3,
TMC_MEM_INTF_WIDTH_128BITS = 0x4,
TMC_MEM_INTF_WIDTH_256BITS = 0x5,
};
struct tmc_etr_bam_data {
struct sps_bam_props props;
uint32_t handle;
struct sps_pipe *pipe;
struct sps_connect connect;
uint32_t src_pipe_idx;
uint32_t dest;
uint32_t dest_pipe_idx;
struct sps_mem_buffer desc_fifo;
struct sps_mem_buffer data_fifo;
bool enable;
};
struct tmc_drvdata {
void __iomem *base;
struct device *dev;
struct coresight_device *csdev;
struct miscdevice miscdev;
struct cdev byte_cntr_dev;
struct class *byte_cntr_class;
struct clk *clk;
spinlock_t spinlock;
bool reset_flush_race;
struct coresight_cti *cti_flush;
struct coresight_cti *cti_reset;
struct mutex read_lock;
int read_count;
bool reading;
bool aborting;
char *reg_buf;
char *buf;
dma_addr_t paddr;
void __iomem *vaddr;
uint32_t size;
struct mutex usb_lock;
struct usb_qdss_ch *usbch;
struct tmc_etr_bam_data *bamdata;
enum tmc_etr_out_mode out_mode;
bool enable_to_bam;
bool enable;
enum tmc_config_type config_type;
uint32_t trigger_cntr;
int byte_cntr_irq;
atomic_t byte_cntr_irq_cnt;
uint32_t byte_cntr_value;
struct mutex byte_cntr_read_lock;
struct mutex byte_cntr_lock;
uint32_t byte_cntr_block_size;
bool byte_cntr_overflow;
bool byte_cntr_present;
bool byte_cntr_enable;
uint32_t byte_cntr_overflow_cnt;
bool byte_cntr_read_active;
wait_queue_head_t wq;
char *byte_cntr_node;
};
static void tmc_wait_for_flush(struct tmc_drvdata *drvdata)
{
int count;
/* Ensure no flush is in progress */
for (count = TIMEOUT_US; BVAL(tmc_readl(drvdata, TMC_FFSR), 0) != 0
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while waiting for TMC flush, TMC_FFSR: %#x\n",
tmc_readl(drvdata, TMC_FFSR));
}
static void tmc_wait_for_ready(struct tmc_drvdata *drvdata)
{
int count;
/* Ensure formatter, unformatter and hardware fifo are empty */
for (count = TIMEOUT_US; BVAL(tmc_readl(drvdata, TMC_STS), 2) != 1
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while waiting for TMC ready, TMC_STS: %#x\n",
tmc_readl(drvdata, TMC_STS));
}
static void tmc_flush_and_stop(struct tmc_drvdata *drvdata)
{
int count;
uint32_t ffcr;
ffcr = tmc_readl(drvdata, TMC_FFCR);
ffcr |= BIT(12);
tmc_writel(drvdata, ffcr, TMC_FFCR);
ffcr |= BIT(6);
tmc_writel(drvdata, ffcr, TMC_FFCR);
/* Ensure flush completes */
for (count = TIMEOUT_US; BVAL(tmc_readl(drvdata, TMC_FFCR), 6) != 0
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while flushing TMC, TMC_FFCR: %#x\n",
tmc_readl(drvdata, TMC_FFCR));
tmc_wait_for_ready(drvdata);
}
static void __tmc_enable(struct tmc_drvdata *drvdata)
{
tmc_writel(drvdata, 0x1, TMC_CTL);
}
static void __tmc_disable(struct tmc_drvdata *drvdata)
{
tmc_writel(drvdata, 0x0, TMC_CTL);
}
static void tmc_etr_fill_usb_bam_data(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
get_bam2bam_connection_info(usb_bam_get_qdss_idx(0),
&bamdata->dest,
&bamdata->dest_pipe_idx,
&bamdata->src_pipe_idx,
&bamdata->desc_fifo,
&bamdata->data_fifo);
}
static void __tmc_etr_enable_to_bam(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
uint32_t axictl;
if (drvdata->enable_to_bam)
return;
/* Configure and enable required CSR registers */
msm_qdss_csr_enable_bam_to_usb();
/* Configure and enable ETR for usb bam output */
TMC_UNLOCK(drvdata);
tmc_writel(drvdata, bamdata->data_fifo.size / BYTES_PER_WORD,
TMC_RSZ);
tmc_writel(drvdata, TMC_MODE_CIRCULAR_BUFFER, TMC_MODE);
axictl = tmc_readl(drvdata, TMC_AXICTL);
axictl |= (0xF << 8);
tmc_writel(drvdata, axictl, TMC_AXICTL);
axictl &= ~(0x1 << 7);
tmc_writel(drvdata, axictl, TMC_AXICTL);
axictl = (axictl & ~0x3) | 0x2;
tmc_writel(drvdata, axictl, TMC_AXICTL);
tmc_writel(drvdata, (uint32_t)bamdata->data_fifo.phys_base, TMC_DBALO);
tmc_writel(drvdata, (((uint64_t)bamdata->data_fifo.phys_base) >> 32)
& 0xFF, TMC_DBAHI);
/* Set FOnFlIn for periodic flush */
tmc_writel(drvdata, 0x133, TMC_FFCR);
tmc_writel(drvdata, drvdata->trigger_cntr, TMC_TRG);
__tmc_enable(drvdata);
TMC_LOCK(drvdata);
drvdata->enable_to_bam = true;
}
static int tmc_etr_bam_enable(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
int ret;
if (bamdata->enable)
return 0;
/* Reset bam to start with */
ret = sps_device_reset(bamdata->handle);
if (ret)
goto err0;
/* Now configure and enable bam */
bamdata->pipe = sps_alloc_endpoint();
if (!bamdata->pipe)
return -ENOMEM;
ret = sps_get_config(bamdata->pipe, &bamdata->connect);
if (ret)
goto err1;
bamdata->connect.mode = SPS_MODE_SRC;
bamdata->connect.source = bamdata->handle;
bamdata->connect.event_thresh = 0x4;
bamdata->connect.src_pipe_index = TMC_ETR_BAM_PIPE_INDEX;
bamdata->connect.options = SPS_O_AUTO_ENABLE;
bamdata->connect.destination = bamdata->dest;
bamdata->connect.dest_pipe_index = bamdata->dest_pipe_idx;
bamdata->connect.desc = bamdata->desc_fifo;
bamdata->connect.data = bamdata->data_fifo;
ret = sps_connect(bamdata->pipe, &bamdata->connect);
if (ret)
goto err1;
bamdata->enable = true;
return 0;
err1:
sps_free_endpoint(bamdata->pipe);
err0:
return ret;
}
static void __tmc_etr_disable_to_bam(struct tmc_drvdata *drvdata)
{
if (!drvdata->enable_to_bam)
return;
/* Ensure periodic flush is disabled in CSR block */
msm_qdss_csr_disable_flush();
TMC_UNLOCK(drvdata);
tmc_wait_for_flush(drvdata);
__tmc_disable(drvdata);
TMC_LOCK(drvdata);
/* Disable CSR configuration */
msm_qdss_csr_disable_bam_to_usb();
drvdata->enable_to_bam = false;
}
static void tmc_etr_bam_disable(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
if (!bamdata->enable)
return;
sps_disconnect(bamdata->pipe);
sps_free_endpoint(bamdata->pipe);
bamdata->enable = false;
}
static void usb_notifier(void *priv, unsigned int event,
struct qdss_request *d_req, struct usb_qdss_ch *ch)
{
struct tmc_drvdata *drvdata = priv;
unsigned long flags;
int ret = 0;
mutex_lock(&drvdata->usb_lock);
if (event == USB_QDSS_CONNECT) {
tmc_etr_fill_usb_bam_data(drvdata);
ret = tmc_etr_bam_enable(drvdata);
if (ret)
dev_err(drvdata->dev, "ETR BAM enable failed\n");
spin_lock_irqsave(&drvdata->spinlock, flags);
__tmc_etr_enable_to_bam(drvdata);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
} else if (event == USB_QDSS_DISCONNECT) {
spin_lock_irqsave(&drvdata->spinlock, flags);
__tmc_etr_disable_to_bam(drvdata);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
tmc_etr_bam_disable(drvdata);
}
mutex_unlock(&drvdata->usb_lock);
}
static uint32_t tmc_etr_get_write_ptr(struct tmc_drvdata *drvdata)
{
uint32_t rwp = 0;
TMC_UNLOCK(drvdata);
rwp = tmc_readl(drvdata, TMC_RWP);
TMC_LOCK(drvdata);
return rwp;
}
static void tmc_etr_byte_cntr_start(struct tmc_drvdata *drvdata)
{
if (!drvdata->byte_cntr_present)
return;
mutex_lock(&drvdata->byte_cntr_lock);
atomic_set(&drvdata->byte_cntr_irq_cnt, 0);
drvdata->byte_cntr_overflow = false;
drvdata->byte_cntr_read_active = false;
drvdata->byte_cntr_enable = true;
if (drvdata->byte_cntr_value != 0)
drvdata->byte_cntr_overflow_cnt = drvdata->size /
(drvdata->byte_cntr_value * 8);
else
drvdata->byte_cntr_overflow_cnt = 0;
coresight_csr_set_byte_cntr(drvdata->byte_cntr_value);
mutex_unlock(&drvdata->byte_cntr_lock);
}
static void tmc_etr_byte_cntr_stop(struct tmc_drvdata *drvdata)
{
if (!drvdata->byte_cntr_present)
return;
mutex_lock(&drvdata->byte_cntr_lock);
coresight_csr_set_byte_cntr(0);
drvdata->byte_cntr_value = 0;
drvdata->byte_cntr_enable = false;
mutex_unlock(&drvdata->byte_cntr_lock);
wake_up(&drvdata->wq);
}
static void __tmc_etb_enable(struct tmc_drvdata *drvdata)
{
/* Zero out the memory to help with debug */
memset(drvdata->buf, 0, drvdata->size);
TMC_UNLOCK(drvdata);
tmc_writel(drvdata, TMC_MODE_CIRCULAR_BUFFER, TMC_MODE);
tmc_writel(drvdata, 0x1133, TMC_FFCR);
tmc_writel(drvdata, drvdata->trigger_cntr, TMC_TRG);
__tmc_enable(drvdata);
TMC_LOCK(drvdata);
}
static void __tmc_etr_enable_to_mem(struct tmc_drvdata *drvdata)
{
uint32_t axictl;
/* Zero out the memory to help with debug */
memset(drvdata->vaddr, 0, drvdata->size);
TMC_UNLOCK(drvdata);
tmc_writel(drvdata, drvdata->size / BYTES_PER_WORD, TMC_RSZ);
tmc_writel(drvdata, TMC_MODE_CIRCULAR_BUFFER, TMC_MODE);
axictl = tmc_readl(drvdata, TMC_AXICTL);
axictl |= (0xF << 8);
tmc_writel(drvdata, axictl, TMC_AXICTL);
axictl &= ~(0x1 << 7);
tmc_writel(drvdata, axictl, TMC_AXICTL);
axictl = (axictl & ~0x3) | 0x2;
tmc_writel(drvdata, axictl, TMC_AXICTL);
tmc_writel(drvdata, (uint32_t)drvdata->paddr, TMC_DBALO);
tmc_writel(drvdata, (((uint64_t)drvdata->paddr) >> 32) & 0xFF,
TMC_DBAHI);
tmc_writel(drvdata, 0x1133, TMC_FFCR);
tmc_writel(drvdata, drvdata->trigger_cntr, TMC_TRG);
__tmc_enable(drvdata);
TMC_LOCK(drvdata);
}
static void __tmc_etf_enable(struct tmc_drvdata *drvdata)
{
TMC_UNLOCK(drvdata);
tmc_writel(drvdata, TMC_MODE_HARDWARE_FIFO, TMC_MODE);
tmc_writel(drvdata, 0x3, TMC_FFCR);
tmc_writel(drvdata, 0x0, TMC_BUFWM);
__tmc_enable(drvdata);
TMC_LOCK(drvdata);
}
static int tmc_enable(struct tmc_drvdata *drvdata, enum tmc_mode mode)
{
int ret;
unsigned long flags;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
mutex_lock(&drvdata->usb_lock);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
coresight_cti_map_trigout(drvdata->cti_flush, 1, 0);
coresight_cti_map_trigin(drvdata->cti_reset, 0, 0);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM) {
tmc_etr_byte_cntr_start(drvdata);
if (!drvdata->reset_flush_race) {
coresight_cti_map_trigout(drvdata->cti_flush,
3, 0);
coresight_cti_map_trigin(drvdata->cti_reset,
2, 0);
}
} else if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB) {
drvdata->usbch = usb_qdss_open("qdss", drvdata,
usb_notifier);
if (IS_ERR(drvdata->usbch)) {
dev_err(drvdata->dev, "usb_qdss_open failed\n");
ret = PTR_ERR(drvdata->usbch);
goto err0;
}
}
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER) {
coresight_cti_map_trigout(drvdata->cti_flush, 1, 0);
coresight_cti_map_trigin(drvdata->cti_reset, 0, 0);
}
}
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
ret = -EBUSY;
goto err1;
}
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
__tmc_etb_enable(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
__tmc_etr_enable_to_mem(drvdata);
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER)
__tmc_etb_enable(drvdata);
else
__tmc_etf_enable(drvdata);
}
drvdata->enable = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
mutex_unlock(&drvdata->usb_lock);
dev_info(drvdata->dev, "TMC enabled\n");
return 0;
err1:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR)
if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
usb_qdss_close(drvdata->usbch);
err0:
mutex_unlock(&drvdata->usb_lock);
clk_disable_unprepare(drvdata->clk);
return ret;
}
static int tmc_enable_sink(struct coresight_device *csdev)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
return tmc_enable(drvdata, TMC_MODE_CIRCULAR_BUFFER);
}
static int tmc_enable_link(struct coresight_device *csdev, int inport,
int outport)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
return tmc_enable(drvdata, TMC_MODE_HARDWARE_FIFO);
}
static void __tmc_reg_dump(struct tmc_drvdata *drvdata)
{
char *reg_hdr;
uint32_t *reg_buf;
if (!drvdata->reg_buf || !drvdata->aborting)
return;
reg_hdr = drvdata->reg_buf - PAGE_SIZE;
reg_buf = (uint32_t *)drvdata->reg_buf;
reg_buf[1] = tmc_readl(drvdata, TMC_RSZ);
reg_buf[3] = tmc_readl(drvdata, TMC_STS);
reg_buf[5] = tmc_readl(drvdata, TMC_RRP);
reg_buf[6] = tmc_readl(drvdata, TMC_RWP);
reg_buf[7] = tmc_readl(drvdata, TMC_TRG);
reg_buf[8] = tmc_readl(drvdata, TMC_CTL);
reg_buf[10] = tmc_readl(drvdata, TMC_MODE);
reg_buf[11] = tmc_readl(drvdata, TMC_LBUFLEVEL);
reg_buf[12] = tmc_readl(drvdata, TMC_CBUFLEVEL);
reg_buf[13] = tmc_readl(drvdata, TMC_BUFWM);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
reg_buf[14] = tmc_readl(drvdata, TMC_RRPHI);
reg_buf[15] = tmc_readl(drvdata, TMC_RWPHI);
reg_buf[68] = tmc_readl(drvdata, TMC_AXICTL);
reg_buf[70] = tmc_readl(drvdata, TMC_DBALO);
reg_buf[71] = tmc_readl(drvdata, TMC_DBAHI);
}
reg_buf[192] = tmc_readl(drvdata, TMC_FFSR);
reg_buf[193] = tmc_readl(drvdata, TMC_FFCR);
reg_buf[194] = tmc_readl(drvdata, TMC_PSCR);
reg_buf[1000] = tmc_readl(drvdata, CORESIGHT_CLAIMSET);
reg_buf[1001] = tmc_readl(drvdata, CORESIGHT_CLAIMCLR);
reg_buf[1005] = tmc_readl(drvdata, CORESIGHT_LSR);
reg_buf[1006] = tmc_readl(drvdata, CORESIGHT_AUTHSTATUS);
reg_buf[1010] = tmc_readl(drvdata, CORESIGHT_DEVID);
reg_buf[1011] = tmc_readl(drvdata, CORESIGHT_DEVTYPE);
reg_buf[1012] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR4);
reg_buf[1013] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR5);
reg_buf[1014] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR6);
reg_buf[1015] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR7);
reg_buf[1016] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR0);
reg_buf[1017] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR1);
reg_buf[1018] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR2);
reg_buf[1019] = tmc_readl(drvdata, CORESIGHT_PERIPHIDR3);
reg_buf[1020] = tmc_readl(drvdata, CORESIGHT_COMPIDR0);
reg_buf[1021] = tmc_readl(drvdata, CORESIGHT_COMPIDR1);
reg_buf[1022] = tmc_readl(drvdata, CORESIGHT_COMPIDR2);
reg_buf[1023] = tmc_readl(drvdata, CORESIGHT_COMPIDR3);
*(uint32_t *)(reg_hdr + TMC_REG_DUMP_MAGIC_OFF) = TMC_REG_DUMP_MAGIC;
}
static void __tmc_etb_dump(struct tmc_drvdata *drvdata)
{
enum tmc_mem_intf_width memwidth;
uint8_t memwords;
char *hdr;
char *bufp;
uint32_t read_data;
int i;
memwidth = BMVAL(tmc_readl(drvdata, CORESIGHT_DEVID), 8, 10);
if (memwidth == TMC_MEM_INTF_WIDTH_32BITS)
memwords = 1;
else if (memwidth == TMC_MEM_INTF_WIDTH_64BITS)
memwords = 2;
else if (memwidth == TMC_MEM_INTF_WIDTH_128BITS)
memwords = 4;
else
memwords = 8;
bufp = drvdata->buf;
while (1) {
for (i = 0; i < memwords; i++) {
read_data = tmc_readl_no_log(drvdata, TMC_RRD);
if (read_data == 0xFFFFFFFF)
goto out;
memcpy(bufp, &read_data, BYTES_PER_WORD);
bufp += BYTES_PER_WORD;
}
}
out:
if (drvdata->aborting) {
hdr = drvdata->buf - PAGE_SIZE;
*(uint32_t *)(hdr + TMC_ETFETB_DUMP_MAGIC_OFF) =
TMC_ETFETB_DUMP_MAGIC;
}
}
static void __tmc_etb_disable(struct tmc_drvdata *drvdata)
{
TMC_UNLOCK(drvdata);
tmc_flush_and_stop(drvdata);
__tmc_etb_dump(drvdata);
__tmc_reg_dump(drvdata);
__tmc_disable(drvdata);
TMC_LOCK(drvdata);
}
static void __tmc_etr_dump(struct tmc_drvdata *drvdata)
{
uint32_t rwp, rwphi;
rwp = tmc_readl(drvdata, TMC_RWP);
rwphi = tmc_readl(drvdata, TMC_RWPHI);
if (BVAL(tmc_readl(drvdata, TMC_STS), 0))
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
else
drvdata->buf = drvdata->vaddr;
}
static void __tmc_etr_disable_to_mem(struct tmc_drvdata *drvdata)
{
TMC_UNLOCK(drvdata);
tmc_flush_and_stop(drvdata);
__tmc_etr_dump(drvdata);
__tmc_reg_dump(drvdata);
__tmc_disable(drvdata);
TMC_LOCK(drvdata);
}
static void __tmc_etf_disable(struct tmc_drvdata *drvdata)
{
TMC_UNLOCK(drvdata);
tmc_flush_and_stop(drvdata);
__tmc_disable(drvdata);
TMC_LOCK(drvdata);
}
static void tmc_disable(struct tmc_drvdata *drvdata, enum tmc_mode mode)
{
unsigned long flags;
mutex_lock(&drvdata->usb_lock);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
__tmc_etb_disable(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
__tmc_etr_disable_to_mem(drvdata);
else if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
__tmc_etr_disable_to_bam(drvdata);
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER)
__tmc_etb_disable(drvdata);
else
__tmc_etf_disable(drvdata);
}
drvdata->enable = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
coresight_cti_unmap_trigin(drvdata->cti_reset, 0, 0);
coresight_cti_unmap_trigout(drvdata->cti_flush, 1, 0);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM) {
tmc_etr_byte_cntr_stop(drvdata);
if (!drvdata->reset_flush_race) {
coresight_cti_unmap_trigin(drvdata->cti_reset,
2, 0);
coresight_cti_unmap_trigout(drvdata->cti_flush,
3, 0);
}
} else if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB) {
tmc_etr_bam_disable(drvdata);
usb_qdss_close(drvdata->usbch);
}
} else {
if (mode == TMC_MODE_CIRCULAR_BUFFER) {
coresight_cti_unmap_trigin(drvdata->cti_reset, 0, 0);
coresight_cti_unmap_trigout(drvdata->cti_flush, 1, 0);
}
}
mutex_unlock(&drvdata->usb_lock);
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "TMC disabled\n");
return;
out:
drvdata->enable = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
mutex_unlock(&drvdata->usb_lock);
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "TMC disabled\n");
}
static void tmc_disable_sink(struct coresight_device *csdev)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
tmc_disable(drvdata, TMC_MODE_CIRCULAR_BUFFER);
}
static void tmc_disable_link(struct coresight_device *csdev, int inport,
int outport)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
tmc_disable(drvdata, TMC_MODE_HARDWARE_FIFO);
}
static void tmc_abort(struct coresight_device *csdev)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
enum tmc_mode mode;
drvdata->aborting = true;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading)
goto out0;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
__tmc_etb_disable(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
__tmc_etr_disable_to_mem(drvdata);
else if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
__tmc_etr_disable_to_bam(drvdata);
} else {
mode = tmc_readl(drvdata, TMC_MODE);
if (mode == TMC_MODE_CIRCULAR_BUFFER)
__tmc_etb_disable(drvdata);
else
goto out1;
}
out0:
drvdata->enable = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC aborted\n");
return;
out1:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
}
static const struct coresight_ops_sink tmc_sink_ops = {
.enable = tmc_enable_sink,
.disable = tmc_disable_sink,
.abort = tmc_abort,
};
static const struct coresight_ops_link tmc_link_ops = {
.enable = tmc_enable_link,
.disable = tmc_disable_link,
};
static const struct coresight_ops tmc_etb_cs_ops = {
.sink_ops = &tmc_sink_ops,
};
static const struct coresight_ops tmc_etr_cs_ops = {
.sink_ops = &tmc_sink_ops,
};
static const struct coresight_ops tmc_etf_cs_ops = {
.sink_ops = &tmc_sink_ops,
.link_ops = &tmc_link_ops,
};
static int tmc_read_prepare(struct tmc_drvdata *drvdata)
{
int ret;
unsigned long flags;
enum tmc_mode mode;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
__tmc_etb_disable(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM) {
__tmc_etr_disable_to_mem(drvdata);
} else {
ret = -ENODEV;
goto err;
}
} else {
mode = tmc_readl(drvdata, TMC_MODE);
if (mode == TMC_MODE_CIRCULAR_BUFFER) {
__tmc_etb_disable(drvdata);
} else {
ret = -ENODEV;
goto err;
}
}
out:
drvdata->reading = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC read start\n");
return 0;
err:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
static void tmc_read_unprepare(struct tmc_drvdata *drvdata)
{
unsigned long flags;
enum tmc_mode mode;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable)
goto out;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
__tmc_etb_enable(drvdata);
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
__tmc_etr_enable_to_mem(drvdata);
} else {
mode = tmc_readl(drvdata, TMC_MODE);
if (mode == TMC_MODE_CIRCULAR_BUFFER)
__tmc_etb_enable(drvdata);
}
out:
drvdata->reading = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC read end\n");
}
static int tmc_open(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
int ret = 0;
mutex_lock(&drvdata->read_lock);
if (drvdata->read_count++)
goto out;
ret = tmc_read_prepare(drvdata);
if (ret)
goto err;
out:
mutex_unlock(&drvdata->read_lock);
nonseekable_open(inode, file);
dev_dbg(drvdata->dev, "%s: successfully opened\n", __func__);
return 0;
err:
drvdata->read_count--;
mutex_unlock(&drvdata->read_lock);
return ret;
}
static ssize_t tmc_read(struct file *file, char __user *data, size_t len,
loff_t *ppos)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
char *bufp = drvdata->buf + *ppos;
if (*ppos + len > drvdata->size)
len = drvdata->size - *ppos;
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (bufp == (char *)(drvdata->vaddr + drvdata->size))
bufp = drvdata->vaddr;
else if (bufp > (char *)(drvdata->vaddr + drvdata->size))
bufp -= drvdata->size;
if ((bufp + len) > (char *)(drvdata->vaddr + drvdata->size))
len = (char *)(drvdata->vaddr + drvdata->size) - bufp;
}
if (copy_to_user(data, bufp, len)) {
dev_dbg(drvdata->dev, "%s: copy_to_user failed\n", __func__);
return -EFAULT;
}
*ppos += len;
dev_dbg(drvdata->dev, "%s: %d bytes copied, %d bytes left\n",
__func__, len, (int) (drvdata->size - *ppos));
return len;
}
static int tmc_release(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = container_of(file->private_data,
struct tmc_drvdata, miscdev);
mutex_lock(&drvdata->read_lock);
if (--drvdata->read_count) {
if (drvdata->read_count < 0) {
WARN_ONCE(1, "mismatched close\n");
drvdata->read_count = 0;
}
goto out;
}
tmc_read_unprepare(drvdata);
out:
mutex_unlock(&drvdata->read_lock);
dev_dbg(drvdata->dev, "%s: released\n", __func__);
return 0;
}
static const struct file_operations tmc_fops = {
.owner = THIS_MODULE,
.open = tmc_open,
.read = tmc_read,
.release = tmc_release,
.llseek = no_llseek,
};
static int tmc_etr_byte_cntr_open(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = container_of(inode->i_cdev,
struct tmc_drvdata,
byte_cntr_dev);
if (drvdata->out_mode != TMC_ETR_OUT_MODE_MEM ||
!drvdata->byte_cntr_enable)
return -EPERM;
if (!mutex_trylock(&drvdata->byte_cntr_read_lock))
return -EPERM;
file->private_data = drvdata;
nonseekable_open(inode, file);
drvdata->byte_cntr_block_size = drvdata->byte_cntr_value * 8;
drvdata->byte_cntr_read_active = true;
dev_dbg(drvdata->dev, "%s: successfully opened\n", __func__);
return 0;
}
static void tmc_etr_read_bytes(struct tmc_drvdata *drvdata, loff_t *ppos,
size_t bytes, size_t *len)
{
if (*len >= bytes) {
atomic_dec(&drvdata->byte_cntr_irq_cnt);
*len = bytes;
} else {
if (((uint32_t)*ppos % bytes) + *len > bytes)
*len = bytes - ((uint32_t)*ppos % bytes);
if ((*len + (uint32_t)*ppos) % bytes == 0)
atomic_dec(&drvdata->byte_cntr_irq_cnt);
}
}
static size_t tmc_etr_flush_bytes(struct tmc_drvdata *drvdata, loff_t *ppos,
size_t bytes)
{
uint32_t rwp = 0;
size_t len = bytes;
rwp = tmc_etr_get_write_ptr(drvdata);
if (rwp >= (drvdata->paddr + *ppos)) {
if (len > (rwp - drvdata->paddr - *ppos))
len = rwp - drvdata->paddr - *ppos;
}
return len;
}
static ssize_t tmc_etr_byte_cntr_read(struct file *file, char __user *data,
size_t len, loff_t *ppos)
{
struct tmc_drvdata *drvdata = file->private_data;
char *bufp = drvdata->vaddr + *ppos;
size_t bytes = drvdata->byte_cntr_block_size;
int ret = 0;
if (!data)
return -EINVAL;
if (drvdata->byte_cntr_overflow)
return -EIO;
mutex_lock(&drvdata->byte_cntr_lock);
/* In case the byte counter is enabled and disabled multiple times
* prevent unexpected data from being given to the user
*/
if (!drvdata->byte_cntr_read_active)
goto read_err0;
if (!drvdata->byte_cntr_enable) {
if (!atomic_read(&drvdata->byte_cntr_irq_cnt)) {
/* Read the last 'block' of data which might be needed
* to be read partially. If already read, return 0
*/
len = tmc_etr_flush_bytes(drvdata, ppos, bytes);
if (!len)
goto read_err0;
} else {
/* Keep reading until you reach the last block of data
*/
tmc_etr_read_bytes(drvdata, ppos, bytes, &len);
}
} else {
if (!atomic_read(&drvdata->byte_cntr_irq_cnt)) {
mutex_unlock(&drvdata->byte_cntr_lock);
if (wait_event_interruptible(drvdata->wq,
(atomic_read(&drvdata->byte_cntr_irq_cnt) > 0) ||
!drvdata->byte_cntr_enable)) {
ret = -ERESTARTSYS;
goto read_err1;
}
mutex_lock(&drvdata->byte_cntr_lock);
if (!drvdata->byte_cntr_read_active) {
ret = 0;
goto read_err0;
}
}
if (drvdata->byte_cntr_overflow) {
ret = -EIO;
goto read_err0;
}
if (!drvdata->byte_cntr_enable &&
!atomic_read(&drvdata->byte_cntr_irq_cnt)) {
len = tmc_etr_flush_bytes(drvdata, ppos, bytes);
if (!len) {
ret = 0;
goto read_err0;
}
} else {
tmc_etr_read_bytes(drvdata, ppos, bytes, &len);
}
}
if (copy_to_user(data, bufp, len)) {
mutex_unlock(&drvdata->byte_cntr_lock);
dev_dbg(drvdata->dev, "%s: copy_to_user failed\n", __func__);
ret = -EFAULT;
goto read_err1;
}
mutex_unlock(&drvdata->byte_cntr_lock);
if (*ppos + len >= drvdata->size)
*ppos = 0;
else
*ppos += len;
dev_dbg(drvdata->dev, "%s: %d bytes copied, %d bytes left\n",
__func__, len, (int) (drvdata->size - *ppos));
return len;
read_err0:
mutex_unlock(&drvdata->byte_cntr_lock);
read_err1:
return ret;
}
static int tmc_etr_byte_cntr_release(struct inode *inode, struct file *file)
{
struct tmc_drvdata *drvdata = file->private_data;
mutex_lock(&drvdata->byte_cntr_lock);
drvdata->byte_cntr_read_active = false;
mutex_unlock(&drvdata->byte_cntr_lock);
mutex_unlock(&drvdata->byte_cntr_read_lock);
dev_dbg(drvdata->dev, "%s: released\n", __func__);
return 0;
}
static const struct file_operations byte_cntr_fops = {
.owner = THIS_MODULE,
.open = tmc_etr_byte_cntr_open,
.read = tmc_etr_byte_cntr_read,
.release = tmc_etr_byte_cntr_release,
.llseek = no_llseek,
};
static ssize_t tmc_show_trigger_cntr(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->trigger_cntr;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t tmc_store_trigger_cntr(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->trigger_cntr = val;
return size;
}
static DEVICE_ATTR(trigger_cntr, S_IRUGO | S_IWUSR, tmc_show_trigger_cntr,
tmc_store_trigger_cntr);
static ssize_t tmc_etr_show_out_mode(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
return scnprintf(buf, PAGE_SIZE, "%s\n",
drvdata->out_mode == TMC_ETR_OUT_MODE_MEM ?
"mem" : "usb");
}
static ssize_t tmc_etr_store_out_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
char str[10] = "";
unsigned long flags;
int ret;
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
mutex_lock(&drvdata->usb_lock);
if (!strcmp(str, "mem")) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_MEM)
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable) {
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
__tmc_etr_disable_to_bam(drvdata);
__tmc_etr_enable_to_mem(drvdata);
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (!drvdata->reset_flush_race) {
coresight_cti_map_trigout(drvdata->cti_flush, 3, 0);
coresight_cti_map_trigin(drvdata->cti_reset, 2, 0);
}
tmc_etr_bam_disable(drvdata);
usb_qdss_close(drvdata->usbch);
} else if (!strcmp(str, "usb")) {
if (drvdata->out_mode == TMC_ETR_OUT_MODE_USB)
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->enable) {
drvdata->out_mode = TMC_ETR_OUT_MODE_USB;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
if (drvdata->reading) {
ret = -EBUSY;
goto err1;
}
__tmc_etr_disable_to_mem(drvdata);
drvdata->out_mode = TMC_ETR_OUT_MODE_USB;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
if (!drvdata->reset_flush_race) {
coresight_cti_unmap_trigin(drvdata->cti_reset, 2, 0);
coresight_cti_unmap_trigout(drvdata->cti_flush, 3, 0);
}
drvdata->usbch = usb_qdss_open("qdss", drvdata,
usb_notifier);
if (IS_ERR(drvdata->usbch)) {
dev_err(drvdata->dev, "usb_qdss_open failed\n");
ret = PTR_ERR(drvdata->usbch);
goto err0;
}
}
out:
mutex_unlock(&drvdata->usb_lock);
return size;
err1:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
err0:
mutex_unlock(&drvdata->usb_lock);
return ret;
}
static DEVICE_ATTR(out_mode, S_IRUGO | S_IWUSR, tmc_etr_show_out_mode,
tmc_etr_store_out_mode);
static ssize_t tmc_etr_show_byte_cntr_value(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->byte_cntr_value;
if (!drvdata->byte_cntr_present)
return -EPERM;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t tmc_etr_store_byte_cntr_value(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct tmc_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (!drvdata->byte_cntr_present || drvdata->byte_cntr_enable)
return -EPERM;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if ((drvdata->size / 8) < val)
return -EINVAL;
if (val && drvdata->size % (val * 8) != 0)
return -EINVAL;
drvdata->byte_cntr_value = val;
return size;
}
static DEVICE_ATTR(byte_cntr_value, S_IRUGO | S_IWUSR,
tmc_etr_show_byte_cntr_value, tmc_etr_store_byte_cntr_value);
static struct attribute *tmc_attrs[] = {
&dev_attr_trigger_cntr.attr,
NULL,
};
static struct attribute_group tmc_attr_grp = {
.attrs = tmc_attrs,
};
static struct attribute *tmc_etr_attrs[] = {
&dev_attr_out_mode.attr,
&dev_attr_byte_cntr_value.attr,
NULL,
};
static struct attribute_group tmc_etr_attr_grp = {
.attrs = tmc_etr_attrs,
};
static const struct attribute_group *tmc_etb_attr_grps[] = {
&tmc_attr_grp,
NULL,
};
static const struct attribute_group *tmc_etr_attr_grps[] = {
&tmc_attr_grp,
&tmc_etr_attr_grp,
NULL,
};
static const struct attribute_group *tmc_etf_attr_grps[] = {
&tmc_attr_grp,
NULL,
};
static int __devinit tmc_etr_bam_init(struct platform_device *pdev,
struct tmc_drvdata *drvdata)
{
struct device *dev = &pdev->dev;
struct resource *res;
struct tmc_etr_bam_data *bamdata;
bamdata = devm_kzalloc(dev, sizeof(*bamdata), GFP_KERNEL);
if (!bamdata)
return -ENOMEM;
drvdata->bamdata = bamdata;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bam-base");
if (!res)
return -ENODEV;
bamdata->props.phys_addr = res->start;
bamdata->props.virt_addr = devm_ioremap(dev, res->start,
resource_size(res));
if (!bamdata->props.virt_addr)
return -ENOMEM;
bamdata->props.virt_size = resource_size(res);
bamdata->props.event_threshold = 0x4; /* Pipe event threshold */
bamdata->props.summing_threshold = 0x10; /* BAM event threshold */
bamdata->props.irq = 0;
bamdata->props.num_pipes = TMC_ETR_BAM_NR_PIPES;
return sps_register_bam_device(&bamdata->props, &bamdata->handle);
}
static void tmc_etr_bam_exit(struct tmc_drvdata *drvdata)
{
struct tmc_etr_bam_data *bamdata = drvdata->bamdata;
if (!bamdata->handle)
return;
sps_deregister_bam_device(bamdata->handle);
}
static irqreturn_t tmc_etr_byte_cntr_irq(int irq, void *data)
{
struct tmc_drvdata *drvdata = data;
atomic_inc(&drvdata->byte_cntr_irq_cnt);
if (atomic_read(&drvdata->byte_cntr_irq_cnt) >
drvdata->byte_cntr_overflow_cnt) {
dev_err(drvdata->dev, "Byte counter overflow\n");
drvdata->byte_cntr_overflow = true;
}
wake_up(&drvdata->wq);
return IRQ_HANDLED;
}
static int tmc_etr_byte_cntr_dev_register(struct tmc_drvdata *drvdata)
{
int ret;
struct device *device;
dev_t dev;
ret = alloc_chrdev_region(&dev, 0, 1, drvdata->byte_cntr_node);
if (ret)
goto err0;
cdev_init(&drvdata->byte_cntr_dev, &byte_cntr_fops);
drvdata->byte_cntr_dev.owner = THIS_MODULE;
drvdata->byte_cntr_dev.ops = &byte_cntr_fops;
ret = cdev_add(&drvdata->byte_cntr_dev, dev, 1);
if (ret)
goto err1;
drvdata->byte_cntr_class = class_create(THIS_MODULE,
drvdata->byte_cntr_node);
if (IS_ERR(drvdata->byte_cntr_class)) {
ret = PTR_ERR(drvdata->byte_cntr_class);
goto err2;
}
device = device_create(drvdata->byte_cntr_class, NULL,
drvdata->byte_cntr_dev.dev, drvdata,
drvdata->byte_cntr_node);
if (IS_ERR(device)) {
ret = PTR_ERR(device);
goto err3;
}
return 0;
err3:
class_destroy(drvdata->byte_cntr_class);
err2:
cdev_del(&drvdata->byte_cntr_dev);
err1:
unregister_chrdev_region(drvdata->byte_cntr_dev.dev, 1);
err0:
return ret;
}
static void tmc_etr_byte_cntr_dev_deregister(struct tmc_drvdata *drvdata)
{
device_destroy(drvdata->byte_cntr_class, drvdata->byte_cntr_dev.dev);
class_destroy(drvdata->byte_cntr_class);
cdev_del(&drvdata->byte_cntr_dev);
unregister_chrdev_region(drvdata->byte_cntr_dev.dev, 1);
}
static int tmc_etr_byte_cntr_init(struct platform_device *pdev,
struct tmc_drvdata *drvdata)
{
int ret = 0;
size_t node_size = strlen("-stream") + 1;
char *node_name = (char *)((struct coresight_platform_data *)
(pdev->dev.platform_data))->name;
if (!drvdata->byte_cntr_present) {
dev_info(&pdev->dev, "Byte Counter feature absent\n");
goto out;
}
drvdata->byte_cntr_irq = platform_get_irq_byname(pdev,
"byte-cntr-irq");
if (drvdata->byte_cntr_irq < 0) {
/* Even though this is an error condition, we do not fail
* the probe as the byte counter feature is optional
*/
dev_err(&pdev->dev, "Byte-cntr-irq not specified\n");
goto err;
}
ret = devm_request_irq(&pdev->dev, drvdata->byte_cntr_irq,
tmc_etr_byte_cntr_irq,
IRQF_TRIGGER_RISING | IRQF_SHARED,
node_name, drvdata);
if (ret) {
dev_err(&pdev->dev, "Request irq failed\n");
goto err;
}
init_waitqueue_head(&drvdata->wq);
node_size += strlen(node_name);
drvdata->byte_cntr_node = devm_kzalloc(&pdev->dev,
node_size, GFP_KERNEL);
if (!drvdata->byte_cntr_node) {
dev_err(&pdev->dev, "Byte cntr node name allocation failed\n");
ret = -ENOMEM;
goto err;
}
strlcpy(drvdata->byte_cntr_node, node_name, node_size);
strlcat(drvdata->byte_cntr_node, "-stream", node_size);
ret = tmc_etr_byte_cntr_dev_register(drvdata);
if (ret) {
dev_err(&pdev->dev, "Byte cntr node not registered\n");
goto err;
}
dev_info(&pdev->dev, "Byte Counter feature enabled\n");
return 0;
err:
drvdata->byte_cntr_present = false;
out:
return ret;
}
static void tmc_etr_byte_cntr_exit(struct tmc_drvdata *drvdata)
{
if (drvdata->byte_cntr_present)
tmc_etr_byte_cntr_dev_deregister(drvdata);
}
static int __devinit tmc_probe(struct platform_device *pdev)
{
int ret;
uint32_t devid;
struct device *dev = &pdev->dev;
struct coresight_platform_data *pdata;
struct tmc_drvdata *drvdata;
struct resource *res;
uint32_t reg_size;
static int etfetb_count;
static int count;
void *baddr;
struct msm_client_dump dump;
struct coresight_cti_data *ctidata;
struct coresight_desc *desc;
if (coresight_fuse_access_disabled())
return -EPERM;
if (pdev->dev.of_node) {
pdata = of_get_coresight_platform_data(dev, pdev->dev.of_node);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
pdev->dev.platform_data = pdata;
}
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
platform_set_drvdata(pdev, drvdata);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tmc-base");
if (!res)
return -ENODEV;
reg_size = resource_size(res);
drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
if (!drvdata->base)
return -ENOMEM;
spin_lock_init(&drvdata->spinlock);
mutex_init(&drvdata->read_lock);
mutex_init(&drvdata->usb_lock);
mutex_init(&drvdata->byte_cntr_lock);
mutex_init(&drvdata->byte_cntr_read_lock);
atomic_set(&drvdata->byte_cntr_irq_cnt, 0);
drvdata->clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(drvdata->clk))
return PTR_ERR(drvdata->clk);
ret = clk_set_rate(drvdata->clk, CORESIGHT_CLK_RATE_TRACE);
if (ret)
return ret;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
devid = tmc_readl(drvdata, CORESIGHT_DEVID);
drvdata->config_type = BMVAL(devid, 6, 7);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
if (pdev->dev.of_node) {
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,memory-size",
&drvdata->size);
if (ret) {
clk_disable_unprepare(drvdata->clk);
return ret;
}
}
} else {
drvdata->size = tmc_readl(drvdata, TMC_RSZ) * BYTES_PER_WORD;
}
clk_disable_unprepare(drvdata->clk);
if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
drvdata->vaddr = dma_zalloc_coherent(&pdev->dev, drvdata->size,
&drvdata->paddr,
GFP_KERNEL);
if (!drvdata->vaddr)
return -ENOMEM;
drvdata->buf = drvdata->vaddr;
drvdata->out_mode = TMC_ETR_OUT_MODE_MEM;
if (pdev->dev.of_node)
drvdata->byte_cntr_present = !of_property_read_bool
(pdev->dev.of_node,
"qcom,byte-cntr-absent");
ret = tmc_etr_byte_cntr_init(pdev, drvdata);
if (ret)
goto err0;
ret = tmc_etr_bam_init(pdev, drvdata);
if (ret)
goto err1;
} else {
baddr = devm_kzalloc(dev, PAGE_SIZE + drvdata->size,
GFP_KERNEL);
if (!baddr)
return -ENOMEM;
drvdata->buf = baddr + PAGE_SIZE;
*(uint32_t *)(baddr + TMC_ETFETB_DUMP_VER_OFF) =
TMC_ETFETB_DUMP_VER;
dump.id = MSM_TMC_ETFETB + etfetb_count;
dump.start_addr = virt_to_phys(baddr);
dump.end_addr = dump.start_addr + PAGE_SIZE + drvdata->size;
ret = msm_dump_table_register(&dump);
/*
* Don't free the buffer in case of error since it can still
* be used to provide dump collection via the device node or
* as part of abort.
*/
if (ret)
dev_info(dev, "TMC ETF-ETB dump setup failed\n");
etfetb_count++;
}
baddr = devm_kzalloc(dev, PAGE_SIZE + reg_size, GFP_KERNEL);
if (baddr) {
drvdata->reg_buf = baddr + PAGE_SIZE;
*(uint32_t *)(baddr + TMC_REG_DUMP_VER_OFF) = TMC_REG_DUMP_VER;
dump.id = MSM_TMC0_REG + count;
dump.start_addr = virt_to_phys(baddr);
dump.end_addr = dump.start_addr + PAGE_SIZE + reg_size;
ret = msm_dump_table_register(&dump);
/*
* Don't free the buffer in case of error since it can still
* be used to dump registers as part of abort to aid post crash
* parsing.
*/
if (ret)
dev_info(dev, "TMC REG dump setup failed\n");
} else {
dev_info(dev, "TMC REG dump space allocation failed\n");
}
count++;
if (pdev->dev.of_node) {
drvdata->reset_flush_race = of_property_read_bool(
pdev->dev.of_node,
"qcom,reset-flush-race");
ctidata = of_get_coresight_cti_data(dev, pdev->dev.of_node);
if (IS_ERR(ctidata)) {
dev_err(dev, "invalid cti data\n");
} else if (ctidata && ctidata->nr_ctis == 2) {
drvdata->cti_flush = coresight_cti_get(
ctidata->names[0]);
if (IS_ERR(drvdata->cti_flush))
dev_err(dev, "failed to get flush cti\n");
drvdata->cti_reset = coresight_cti_get(
ctidata->names[1]);
if (IS_ERR(drvdata->cti_reset))
dev_err(dev, "failed to get reset cti\n");
}
}
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto err2;
}
if (drvdata->config_type == TMC_CONFIG_TYPE_ETB) {
desc->type = CORESIGHT_DEV_TYPE_SINK;
desc->subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_BUFFER;
desc->ops = &tmc_etb_cs_ops;
desc->pdata = pdev->dev.platform_data;
desc->dev = &pdev->dev;
desc->groups = tmc_etb_attr_grps;
desc->owner = THIS_MODULE;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err2;
}
} else if (drvdata->config_type == TMC_CONFIG_TYPE_ETR) {
desc->type = CORESIGHT_DEV_TYPE_SINK;
desc->subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_BUFFER;
desc->ops = &tmc_etr_cs_ops;
desc->pdata = pdev->dev.platform_data;
desc->dev = &pdev->dev;
desc->groups = tmc_etr_attr_grps;
desc->owner = THIS_MODULE;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err2;
}
} else {
desc->type = CORESIGHT_DEV_TYPE_LINKSINK;
desc->subtype.sink_subtype = CORESIGHT_DEV_SUBTYPE_SINK_BUFFER;
desc->subtype.link_subtype = CORESIGHT_DEV_SUBTYPE_LINK_FIFO;
desc->ops = &tmc_etf_cs_ops;
desc->pdata = pdev->dev.platform_data;
desc->dev = &pdev->dev;
desc->groups = tmc_etf_attr_grps;
desc->owner = THIS_MODULE;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err2;
}
}
drvdata->miscdev.name = ((struct coresight_platform_data *)
(pdev->dev.platform_data))->name;
drvdata->miscdev.minor = MISC_DYNAMIC_MINOR;
drvdata->miscdev.fops = &tmc_fops;
ret = misc_register(&drvdata->miscdev);
if (ret)
goto err3;
dev_info(dev, "TMC initialized\n");
return 0;
err3:
coresight_unregister(drvdata->csdev);
err2:
tmc_etr_bam_exit(drvdata);
err1:
tmc_etr_byte_cntr_exit(drvdata);
err0:
if (drvdata->vaddr)
dma_free_coherent(&pdev->dev, drvdata->size,
drvdata->vaddr,
drvdata->paddr);
return ret;
}
static int __devexit tmc_remove(struct platform_device *pdev)
{
struct tmc_drvdata *drvdata = platform_get_drvdata(pdev);
tmc_etr_byte_cntr_exit(drvdata);
misc_deregister(&drvdata->miscdev);
coresight_unregister(drvdata->csdev);
tmc_etr_bam_exit(drvdata);
if (drvdata->vaddr)
dma_free_coherent(&pdev->dev, drvdata->size, drvdata->vaddr,
drvdata->paddr);
return 0;
}
static struct of_device_id tmc_match[] = {
{.compatible = "arm,coresight-tmc"},
{}
};
EXPORT_COMPAT("arm,coresight-tmc");
static struct platform_driver tmc_driver = {
.probe = tmc_probe,
.remove = __devexit_p(tmc_remove),
.driver = {
.name = "coresight-tmc",
.owner = THIS_MODULE,
.of_match_table = tmc_match,
},
};
static int __init tmc_init(void)
{
return platform_driver_register(&tmc_driver);
}
module_init(tmc_init);
static void __exit tmc_exit(void)
{
platform_driver_unregister(&tmc_driver);
}
module_exit(tmc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Trace Memory Controller driver");