blob: 85a310ac14ebb53c896d1f22810d8fea04c25128 [file] [log] [blame]
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "BMS: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/power_supply.h>
#include <linux/spmi.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/mfd/pm8xxx/batterydata-lib.h>
/* BMS Register Offsets */
#define BMS1_REVISION1 0x0
#define BMS1_REVISION2 0x1
#define BMS1_STATUS1 0x8
#define BMS1_MODE_CTL 0X40
/* Coulomb counter clear registers */
#define BMS1_CC_DATA_CTL 0x42
#define BMS1_CC_CLEAR_CTL 0x43
/* BMS Tolerances */
#define BMS1_TOL_CTL 0X44
/* OCV limit registers */
#define BMS1_OCV_USE_LOW_LIMIT_THR0 0x48
#define BMS1_OCV_USE_LOW_LIMIT_THR1 0x49
#define BMS1_OCV_USE_HIGH_LIMIT_THR0 0x4A
#define BMS1_OCV_USE_HIGH_LIMIT_THR1 0x4B
#define BMS1_OCV_USE_LIMIT_CTL 0x4C
/* Delay control */
#define BMS1_S1_DELAY_CTL 0x5A
/* CC interrupt threshold */
#define BMS1_CC_THR0 0x7A
#define BMS1_CC_THR1 0x7B
#define BMS1_CC_THR2 0x7C
#define BMS1_CC_THR3 0x7D
#define BMS1_CC_THR4 0x7E
/* OCV for r registers */
#define BMS1_OCV_FOR_R_DATA0 0x80
#define BMS1_OCV_FOR_R_DATA1 0x81
#define BMS1_VSENSE_FOR_R_DATA0 0x82
#define BMS1_VSENSE_FOR_R_DATA1 0x83
/* Coulomb counter data */
#define BMS1_CC_DATA0 0x8A
#define BMS1_CC_DATA1 0x8B
#define BMS1_CC_DATA2 0x8C
#define BMS1_CC_DATA3 0x8D
#define BMS1_CC_DATA4 0x8E
/* OCV for soc data */
#define BMS1_OCV_FOR_SOC_DATA0 0x90
#define BMS1_OCV_FOR_SOC_DATA1 0x91
#define BMS1_VSENSE_PON_DATA0 0x94
#define BMS1_VSENSE_PON_DATA1 0x95
#define BMS1_VSENSE_AVG_DATA0 0x98
#define BMS1_VSENSE_AVG_DATA1 0x99
#define BMS1_VBAT_AVG_DATA0 0x9E
#define BMS1_VBAT_AVG_DATA1 0x9F
/* Extra bms registers */
#define BMS1_BMS_DATA_REG_0 0xB0
#define IAVG_STORAGE_REG 0xB1
#define SOC_STORAGE_REG 0xB2
#define BMS1_BMS_DATA_REG_3 0xB3
/* IADC Channel Select */
#define IADC1_BMS_ADC_CH_SEL_CTL 0x48
/* Configuration for saving of shutdown soc/iavg */
#define IGNORE_SOC_TEMP_DECIDEG 50
#define IAVG_STEP_SIZE_MA 50
#define IAVG_START 600
#define SOC_ZERO 0xFF
#define IAVG_SAMPLES 16
#define QPNP_BMS_DEV_NAME "qcom,qpnp-bms"
struct soc_params {
int fcc_uah;
int cc_uah;
int rbatt_mohm;
int iavg_ua;
int uuc_uah;
int ocv_charge_uah;
int delta_time_s;
};
struct raw_soc_params {
uint16_t last_good_ocv_raw;
int64_t cc;
int last_good_ocv_uv;
};
struct qpnp_bms_chip {
struct device *dev;
struct power_supply bms_psy;
struct power_supply *batt_psy;
struct spmi_device *spmi;
u16 base;
u16 iadc_base;
u8 revision1;
u8 revision2;
int charger_status;
bool online;
/* platform data */
int r_sense_uohm;
unsigned int v_cutoff_uv;
int max_voltage_uv;
int r_conn_mohm;
int shutdown_soc_valid_limit;
int adjust_soc_low_threshold;
int adjust_soc_high_threshold;
int chg_term_ua;
enum battery_type batt_type;
unsigned int fcc;
struct single_row_lut *fcc_temp_lut;
struct single_row_lut *fcc_sf_lut;
struct pc_temp_ocv_lut *pc_temp_ocv_lut;
struct sf_lut *pc_sf_lut;
struct sf_lut *rbatt_sf_lut;
int default_rbatt_mohm;
struct delayed_work calculate_soc_delayed_work;
struct mutex bms_output_lock;
struct mutex last_ocv_uv_mutex;
struct mutex soc_invalidation_mutex;
bool use_external_rsense;
bool use_ocv_thresholds;
bool ignore_shutdown_soc;
int shutdown_soc_invalid;
int shutdown_soc;
int shutdown_iavg_ma;
int low_soc_calc_threshold;
int low_soc_calculate_soc_ms;
int calculate_soc_ms;
struct wake_lock soc_wake_lock;
uint16_t ocv_reading_at_100;
int64_t cc_reading_at_100;
uint16_t prev_last_good_ocv_raw;
int last_ocv_uv;
int last_ocv_temp;
int last_cc_uah;
unsigned long tm_sec;
bool first_time_calc_soc;
bool first_time_calc_uuc;
int pon_ocv_uv;
int iavg_samples_ma[IAVG_SAMPLES];
int iavg_index;
int iavg_num_samples;
struct timespec t_soc_queried;
int last_soc;
int last_soc_est;
int charge_time_us;
int catch_up_time_us;
struct single_row_lut *adjusted_fcc_temp_lut;
unsigned int vadc_v0625;
unsigned int vadc_v1250;
int ibat_max_ua;
int prev_iavg_ua;
int prev_uuc_iavg_ma;
int prev_pc_unusable;
int ibat_at_cv_ua;
int soc_at_cv;
int prev_chg_soc;
int calculated_soc;
int prev_voltage_based_soc;
bool use_voltage_soc;
int ocv_high_threshold_uv;
int ocv_low_threshold_uv;
unsigned long last_recalc_time;
};
static struct of_device_id qpnp_bms_match_table[] = {
{ .compatible = QPNP_BMS_DEV_NAME },
{}
};
static char *qpnp_bms_supplicants[] = {
"battery"
};
static enum power_supply_property msm_bms_power_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
};
static bool bms_reset;
static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
if (rc) {
pr_err("SPMI read failed rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count);
if (rc) {
pr_err("SPMI write failed rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = qpnp_read_wrapper(chip, &reg, addr, 1);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = qpnp_write_wrapper(chip, &reg, addr, 1);
if (rc) {
pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n",
addr, val, mask, reg, rc);
return rc;
}
return 0;
}
static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val);
}
static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
return qpnp_masked_write_base(chip, chip->base + addr, mask, val);
}
#define HOLD_OREG_DATA BIT(0)
static int lock_output_data(struct qpnp_bms_chip *chip)
{
int rc;
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL,
HOLD_OREG_DATA, HOLD_OREG_DATA);
if (rc) {
pr_err("couldnt lock bms output rc = %d\n", rc);
return rc;
}
return 0;
}
static int unlock_output_data(struct qpnp_bms_chip *chip)
{
int rc;
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0);
if (rc) {
pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
return rc;
}
return 0;
}
#define V_PER_BIT_MUL_FACTOR 97656
#define V_PER_BIT_DIV_FACTOR 1000
#define VADC_INTRINSIC_OFFSET 0x6000
static int vadc_reading_to_uv(int reading)
{
if (reading <= VADC_INTRINSIC_OFFSET)
return 0;
return (reading - VADC_INTRINSIC_OFFSET)
* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
}
#define VADC_CALIB_UV 625000
#define VBATT_MUL_FACTOR 3
static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv)
{
s64 numerator, denominator;
if (reading_uv == 0)
return 0;
/* don't adjust if not calibrated */
if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) {
pr_debug("No cal yet return %d\n",
VBATT_MUL_FACTOR * reading_uv);
return VBATT_MUL_FACTOR * reading_uv;
}
numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV;
denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625;
if (denominator == 0)
return reading_uv * VBATT_MUL_FACTOR;
return (VADC_CALIB_UV + div_s64(numerator, denominator))
* VBATT_MUL_FACTOR;
}
static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip,
int unadjusted_vbatt)
{
int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR;
if (scaled_vbatt <= 0)
return VADC_INTRINSIC_OFFSET;
return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR)
+ VADC_INTRINSIC_OFFSET;
}
static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip,
uint16_t reading)
{
int uv;
uv = vadc_reading_to_uv(reading);
pr_debug("%u raw converted into %d uv\n", reading, uv);
uv = adjust_vbatt_reading(chip, uv);
pr_debug("adjusted into %d uv\n", uv);
return uv;
}
#define CC_READING_RESOLUTION_N 542535
#define CC_READING_RESOLUTION_D 100000
static int cc_reading_to_uv(int16_t reading)
{
return div_s64(reading * CC_READING_RESOLUTION_N,
CC_READING_RESOLUTION_D);
}
#define QPNP_ADC_GAIN_IDEAL 3291LL
static s64 cc_adjust_for_gain(s64 uv, uint16_t gain)
{
s64 result_uv;
pr_debug("adjusting_uv = %lld\n", uv);
if (gain == 0) {
pr_debug("gain is %d, not adjusting\n", gain);
return uv;
}
pr_debug("adjusting by factor: %lld/%hu = %lld%%\n",
QPNP_ADC_GAIN_IDEAL, gain,
div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain));
result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain);
pr_debug("result_uv = %lld\n", result_uv);
return result_uv;
}
static int convert_vsense_to_uv(struct qpnp_bms_chip *chip,
int16_t reading)
{
struct qpnp_iadc_calib calibration;
qpnp_iadc_get_gain_and_offset(&calibration);
return cc_adjust_for_gain(cc_reading_to_uv(reading),
calibration.gain_raw - calibration.offset_raw);
}
static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv)
{
int rc;
int16_t reading;
rc = qpnp_read_wrapper(chip, (u8 *)&reading,
chip->base + BMS1_VSENSE_AVG_DATA0, 2);
if (rc) {
pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
return rc;
}
*result_uv = convert_vsense_to_uv(chip, reading);
return 0;
}
static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua)
{
int vsense_uv = 0;
if (chip->r_sense_uohm == 0) {
pr_err("r_sense is zero\n");
return -EINVAL;
}
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
read_vsense_avg(chip, &vsense_uv);
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
pr_debug("vsense_uv=%duV\n", vsense_uv);
/* cast for signed division */
*result_ua = div_s64((vsense_uv * 1000000LL), (int)chip->r_sense_uohm);
pr_debug("ibat=%duA\n", *result_ua);
return 0;
}
static int get_battery_voltage(int *result_uv)
{
int rc;
struct qpnp_vadc_result adc_result;
rc = qpnp_vadc_read(VBAT_SNS, &adc_result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
VBAT_SNS, rc);
return rc;
}
pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical,
adc_result.measurement);
*result_uv = (int)adc_result.physical;
return 0;
}
#define CC_36_BIT_MASK 0xFFFFFFFFFLL
static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading)
{
int64_t raw_reading;
int rc;
rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
chip->base + BMS1_CC_DATA0, 5);
if (rc) {
pr_err("Error reading cc: rc = %d\n", rc);
return -ENXIO;
}
raw_reading = raw_reading & CC_36_BIT_MASK;
/* convert 36 bit signed value into 64 signed value */
*reading = (raw_reading >> 35) == 0LL ?
raw_reading : ((-1LL ^ CC_36_BIT_MASK) | raw_reading);
pr_debug("before conversion: %llx, after conversion: %llx\n",
raw_reading, *reading);
return 0;
}
static int calib_vadc(struct qpnp_bms_chip *chip)
{
int rc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(REF_625MV, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
chip->vadc_v0625 = result.physical;
rc = qpnp_vadc_read(REF_125V, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
chip->vadc_v1250 = result.physical;
pr_debug("vadc calib: 0625 = %d, 1250 = %d\n",
chip->vadc_v0625, chip->vadc_v1250);
return 0;
}
static void convert_and_store_ocv(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp)
{
int rc;
pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n",
chip->prev_last_good_ocv_raw,
raw->last_good_ocv_raw);
rc = calib_vadc(chip);
if (rc)
pr_err("Vadc reference voltage read failed, rc = %d\n", rc);
chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip,
raw->last_good_ocv_raw);
chip->last_ocv_uv = raw->last_good_ocv_uv;
chip->last_ocv_temp = batt_temp;
pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv);
}
#define CLEAR_CC BIT(7)
#define CLEAR_SW_CC BIT(6)
/**
* reset both cc and sw-cc.
* note: this should only be ever called from one thread
* or there may be a race condition where CC is never enabled
* again
*/
static void reset_cc(struct qpnp_bms_chip *chip)
{
int rc;
pr_debug("resetting cc manually\n");
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
CLEAR_CC | CLEAR_SW_CC,
CLEAR_CC | CLEAR_SW_CC);
if (rc)
pr_err("cc reset failed: %d\n", rc);
/* wait for 100us for cc to reset */
udelay(100);
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
CLEAR_CC | CLEAR_SW_CC, 0);
if (rc)
pr_err("cc reenable failed: %d\n", rc);
}
#define OCV_RAW_UNINITIALIZED 0xFFFF
static int read_soc_params_raw(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp)
{
int rc;
mutex_lock(&chip->bms_output_lock);
if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
/* software workaround for BMS 1.0
* The coulomb counter does not reset upon PON, so reset it
* manually upon probe. */
if (chip->revision1 == 0 && chip->revision2 == 0)
reset_cc(chip);
}
lock_output_data(chip);
rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw,
chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
if (rc) {
pr_err("Error reading ocv: rc = %d\n", rc);
return -ENXIO;
}
rc = read_cc_raw(chip, &raw->cc);
if (rc) {
pr_err("Failed to read raw cc data, rc = %d\n", rc);
return rc;
}
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
convert_and_store_ocv(chip, raw, batt_temp);
pr_debug("PON_OCV_UV = %d\n", chip->last_ocv_uv);
} else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
convert_and_store_ocv(chip, raw, batt_temp);
/* forget the old cc value upon ocv */
chip->last_cc_uah = INT_MIN;
} else {
raw->last_good_ocv_uv = chip->last_ocv_uv;
}
/* fake a high OCV if done charging */
if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) {
chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
chip->cc_reading_at_100 = 0;
} else {
/*
* force 100% ocv by selecting the highest voltage the
* battery could ever reach
*/
raw->last_good_ocv_uv = chip->max_voltage_uv;
chip->last_ocv_uv = chip->max_voltage_uv;
chip->last_ocv_temp = batt_temp;
}
pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
raw->last_good_ocv_raw, raw->last_good_ocv_uv);
pr_debug("cc_raw= 0x%llx\n", raw->cc);
return 0;
}
static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv,
int batt_temp)
{
int pc;
pc = interpolate_pc(chip->pc_temp_ocv_lut,
batt_temp / 10, ocv_uv / 1000);
pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n",
pc, ocv_uv, batt_temp);
/* Multiply the initial FCC value by the scale factor. */
return pc;
}
static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp)
{
int fcc_uah;
if (chip->adjusted_fcc_temp_lut == NULL) {
/* interpolate_fcc returns a mv value. */
fcc_uah = interpolate_fcc(chip->fcc_temp_lut,
batt_temp) * 1000;
pr_debug("fcc = %d uAh\n", fcc_uah);
return fcc_uah;
} else {
return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut,
batt_temp);
}
}
/* calculate remaining charge at the time of ocv */
static int calculate_ocv_charge(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int fcc_uah)
{
int ocv_uv, pc;
ocv_uv = raw->last_good_ocv_uv;
pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp);
pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc);
return (fcc_uah * pc) / 100;
}
#define CC_RESOLUTION_N 542535
#define CC_RESOLUTION_D 100000
static s64 cc_to_uv(s64 cc)
{
return div_s64(cc * CC_RESOLUTION_N, CC_RESOLUTION_D);
}
#define CC_READING_TICKS 56
#define SLEEP_CLK_HZ 32764
#define SECONDS_PER_HOUR 3600
static s64 cc_uv_to_uvh(s64 cc_uv)
{
return div_s64(cc_uv * CC_READING_TICKS,
SLEEP_CLK_HZ * SECONDS_PER_HOUR);
}
/**
* calculate_cc-
* @chip: the bms chip pointer
* @cc: the cc reading from bms h/w
* @val: return value
* @coulomb_counter: adjusted coulomb counter for 100%
*
* RETURNS: in val pointer coulomb counter based charger in uAh
* (micro Amp hour)
*/
static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc)
{
int64_t cc_voltage_uv, cc_uvh, cc_uah;
struct qpnp_iadc_calib calibration;
qpnp_iadc_get_gain_and_offset(&calibration);
cc_voltage_uv = cc;
cc_voltage_uv -= chip->cc_reading_at_100;
pr_debug("cc = %lld. after subtracting 0x%llx cc = %lld\n",
cc, chip->cc_reading_at_100,
cc_voltage_uv);
cc_voltage_uv = cc_to_uv(cc_voltage_uv);
cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv,
calibration.gain_raw
- calibration.offset_raw);
pr_debug("cc_voltage_uv = %lld uv\n", cc_voltage_uv);
cc_uvh = cc_uv_to_uvh(cc_voltage_uv);
pr_debug("cc_uvh = %lld micro_volt_hour\n", cc_uvh);
cc_uah = div_s64(cc_uvh * 1000000LL, chip->r_sense_uohm);
/* cc_raw had 4 bits of extra precision.
By now it should be within 32 bit range */
return (int)cc_uah;
}
static int get_rbatt(struct qpnp_bms_chip *chip,
int soc_rbatt_mohm, int batt_temp)
{
int rbatt_mohm, scalefactor;
rbatt_mohm = chip->default_rbatt_mohm;
pr_debug("rbatt before scaling = %d\n", rbatt_mohm);
if (chip->rbatt_sf_lut == NULL) {
pr_debug("RBATT = %d\n", rbatt_mohm);
return rbatt_mohm;
}
/* Convert the batt_temp to DegC from deciDegC */
batt_temp = batt_temp / 10;
scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut,
batt_temp, soc_rbatt_mohm);
pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n",
scalefactor, batt_temp, soc_rbatt_mohm);
rbatt_mohm = (rbatt_mohm * scalefactor) / 100;
rbatt_mohm += chip->r_conn_mohm;
pr_debug("adding r_conn_mohm = %d rbatt = %d\n",
chip->r_conn_mohm, rbatt_mohm);
pr_debug("RBATT = %d\n", rbatt_mohm);
return rbatt_mohm;
}
static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah,
int *iavg_ua, int delta_time_s)
{
int delta_cc_uah = 0;
/* if anything fails report the previous iavg_ua */
*iavg_ua = chip->prev_iavg_ua;
if (chip->last_cc_uah == INT_MIN) {
get_battery_current(chip, iavg_ua);
goto out;
}
/* use the previous iavg if called within 15 seconds */
if (delta_time_s < 15) {
*iavg_ua = chip->prev_iavg_ua;
goto out;
}
delta_cc_uah = cc_uah - chip->last_cc_uah;
*iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s);
out:
pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua);
/* remember the iavg */
chip->prev_iavg_ua = *iavg_ua;
/* remember cc_uah */
chip->last_cc_uah = cc_uah;
}
static int calculate_termination_uuc(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp, int uuc_iavg_ma,
int *ret_pc_unusable)
{
int unusable_uv, pc_unusable, uuc_uah;
int i = 0;
int ocv_mv;
int batt_temp_degc = batt_temp / 10;
int rbatt_mohm;
int delta_uv;
int prev_delta_uv = 0;
int prev_rbatt_mohm = 0;
int uuc_rbatt_mohm;
for (i = 0; i <= 100; i++) {
ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
batt_temp_degc, i);
rbatt_mohm = get_rbatt(chip, i, batt_temp);
unusable_uv = (rbatt_mohm * uuc_iavg_ma)
+ (chip->v_cutoff_uv);
delta_uv = ocv_mv * 1000 - unusable_uv;
pr_debug("soc = %d ocv = %d rbat = %d u_uv = %d delta_v = %d\n",
i, ocv_mv, rbatt_mohm, unusable_uv, delta_uv);
if (delta_uv > 0)
break;
prev_delta_uv = delta_uv;
prev_rbatt_mohm = rbatt_mohm;
}
uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv,
prev_rbatt_mohm, prev_delta_uv,
0);
unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv);
pc_unusable = calculate_pc(chip, unusable_uv, batt_temp);
uuc_uah = (params->fcc_uah * pc_unusable) / 100;
pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d uuc = %d\n",
uuc_iavg_ma,
uuc_rbatt_mohm, unusable_uv,
pc_unusable, uuc_uah);
*ret_pc_unusable = pc_unusable;
return uuc_uah;
}
#define TIME_PER_PERCENT_UUC 60
static int adjust_uuc(struct qpnp_bms_chip *chip,
struct soc_params *params,
int new_pc_unusable,
int new_uuc_uah,
int batt_temp)
{
int new_unusable_mv, new_iavg_ma;
int batt_temp_degc = batt_temp / 10;
int max_percent_change;
max_percent_change = max(params->delta_time_s
/ TIME_PER_PERCENT_UUC, 1);
if (chip->prev_pc_unusable == -EINVAL
|| abs(chip->prev_pc_unusable - new_pc_unusable)
<= max_percent_change) {
chip->prev_pc_unusable = new_pc_unusable;
return new_uuc_uah;
}
/* the uuc is trying to change more than 1% restrict it */
if (new_pc_unusable > chip->prev_pc_unusable)
chip->prev_pc_unusable += max_percent_change;
else
chip->prev_pc_unusable -= max_percent_change;
new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100;
/* also find update the iavg_ma accordingly */
new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
batt_temp_degc, chip->prev_pc_unusable);
if (new_unusable_mv < chip->v_cutoff_uv/1000)
new_unusable_mv = chip->v_cutoff_uv/1000;
new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv)
/ params->rbatt_mohm;
if (new_iavg_ma == 0)
new_iavg_ma = 1;
chip->prev_uuc_iavg_ma = new_iavg_ma;
pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n",
new_uuc_uah, chip->prev_pc_unusable,
new_unusable_mv, new_iavg_ma);
return new_uuc_uah;
}
#define MIN_IAVG_MA 250
#define MIN_SECONDS_FOR_VALID_SAMPLE 20
static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp)
{
int uuc_uah_iavg;
int i;
int uuc_iavg_ma = params->iavg_ua / 1000;
int pc_unusable;
/*
* if called first time, fill all the samples with
* the shutdown_iavg_ma
*/
if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) {
pr_debug("Using shutdown_iavg_ma = %d in all samples\n",
chip->shutdown_iavg_ma);
for (i = 0; i < IAVG_SAMPLES; i++)
chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma;
chip->iavg_index = 0;
chip->iavg_num_samples = IAVG_SAMPLES;
}
/*
* if charging use a nominal avg current to keep
* a reasonable UUC while charging
*/
if (uuc_iavg_ma < MIN_IAVG_MA)
uuc_iavg_ma = MIN_IAVG_MA;
chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma;
chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES;
chip->iavg_num_samples++;
if (chip->iavg_num_samples >= IAVG_SAMPLES)
chip->iavg_num_samples = IAVG_SAMPLES;
/* now that this sample is added calcualte the average */
uuc_iavg_ma = 0;
if (chip->iavg_num_samples != 0) {
for (i = 0; i < chip->iavg_num_samples; i++) {
pr_debug("iavg_samples_ma[%d] = %d\n", i,
chip->iavg_samples_ma[i]);
uuc_iavg_ma += chip->iavg_samples_ma[i];
}
uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma,
chip->iavg_num_samples);
}
/*
* if we're in bms reset mode, force uuc to be 3% of fcc
*/
if (bms_reset)
return (params->fcc_uah * 3) / 100;
uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp,
uuc_iavg_ma, &pc_unusable);
pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n",
uuc_iavg_ma, uuc_uah_iavg);
chip->prev_uuc_iavg_ma = uuc_iavg_ma;
/* restrict the uuc such that it can increase only by one percent */
uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable,
uuc_uah_iavg, batt_temp);
chip->first_time_calc_uuc = 0;
return uuc_uah_iavg;
}
static void find_ocv_for_soc(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp,
int shutdown_soc,
int *ret_ocv_uv)
{
s64 ocv_charge_uah;
int pc, new_pc;
int batt_temp_degc = batt_temp / 10;
int ocv_uv;
ocv_charge_uah = (s64)shutdown_soc
* (params->fcc_uah - params->uuc_uah);
ocv_charge_uah = div_s64(ocv_charge_uah, 100)
+ params->cc_uah + params->uuc_uah;
pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah);
pc = clamp(pc, 0, 100);
ocv_uv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp_degc, pc);
pr_debug("s_soc = %d, fcc = %d uuc = %d rc = %d, pc = %d, ocv mv = %d\n",
shutdown_soc, params->fcc_uah,
params->uuc_uah, (int)ocv_charge_uah,
pc, ocv_uv);
new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp_degc, ocv_uv);
pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_uv);
while (abs(new_pc - pc) > 1) {
int delta_mv = 5;
if (new_pc > pc)
delta_mv = -1 * delta_mv;
ocv_uv = ocv_uv + delta_mv;
new_pc = interpolate_pc(chip->pc_temp_ocv_lut,
batt_temp_degc, ocv_uv);
pr_debug("test revlookup pc = %d for ocv = %d\n",
new_pc, ocv_uv);
}
*ret_ocv_uv = ocv_uv * 1000;
params->ocv_charge_uah = (int)ocv_charge_uah;
}
static int get_current_time(unsigned long *now_tm_sec)
{
struct rtc_time tm;
struct rtc_device *rtc;
int rc;
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
if (rtc == NULL) {
pr_err("%s: unable to open rtc device (%s)\n",
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
rc = -EINVAL;
goto close_time;
}
rc = rtc_read_time(rtc, &tm);
if (rc) {
pr_err("Error reading rtc device (%s) : %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rc = rtc_valid_tm(&tm);
if (rc) {
pr_err("Invalid RTC time (%s): %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rtc_tm_to_time(&tm, now_tm_sec);
close_time:
rtc_class_close(rtc);
return rc;
}
static int calculate_delta_time(struct qpnp_bms_chip *chip, int *delta_time_s)
{
unsigned long now_tm_sec = 0;
/* default to delta time = 0 if anything fails */
*delta_time_s = 0;
get_current_time(&now_tm_sec);
*delta_time_s = (now_tm_sec - chip->tm_sec);
pr_debug("tm_sec = %ld, now_tm_sec = %ld delta_s = %d\n",
chip->tm_sec, now_tm_sec, *delta_time_s);
/* remember this time */
chip->tm_sec = now_tm_sec;
return 0;
}
static void calculate_soc_params(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
struct soc_params *params,
int batt_temp)
{
int soc_rbatt;
calculate_delta_time(chip, &params->delta_time_s);
params->fcc_uah = calculate_fcc(chip, batt_temp);
pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp);
/* calculate remainging charge */
params->ocv_charge_uah = calculate_ocv_charge(
chip, raw,
params->fcc_uah);
pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah);
/* calculate cc micro_volt_hour */
params->cc_uah = calculate_cc(chip, raw->cc);
pr_debug("cc_uah = %duAh raw->cc = %llx cc = %lld after subtracting %llx\n",
params->cc_uah, raw->cc,
(int64_t)raw->cc - chip->cc_reading_at_100,
chip->cc_reading_at_100);
soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100)
/ params->fcc_uah;
if (soc_rbatt < 0)
soc_rbatt = 0;
params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp);
calculate_iavg(chip, params->cc_uah, &params->iavg_ua,
params->delta_time_s);
params->uuc_uah = calculate_unusable_charge_uah(chip, params,
batt_temp);
pr_debug("UUC = %uuAh\n", params->uuc_uah);
}
static bool is_shutdown_soc_within_limits(struct qpnp_bms_chip *chip, int soc)
{
if (chip->shutdown_soc_invalid) {
pr_debug("NOT forcing shutdown soc = %d\n", chip->shutdown_soc);
return 0;
}
if (abs(chip->shutdown_soc - soc) > chip->shutdown_soc_valid_limit) {
pr_debug("rejecting shutdown soc = %d, soc = %d limit = %d\n",
chip->shutdown_soc, soc,
chip->shutdown_soc_valid_limit);
chip->shutdown_soc_invalid = 1;
return 0;
}
return 1;
}
#define BMS_OVERRIDE_MODE_EN_BIT BIT(7)
#define EN_VBAT_BIT BIT(0)
#define OVERRIDE_MODE_DELAY_MS 20
static int override_mode_batt_v_and_i(
struct qpnp_bms_chip *chip, int *ibat_ua, int *vbat_uv)
{
int16_t vsense_raw, vbat_raw;
int vsense_uv, rc;
u8 delay;
mutex_lock(&chip->bms_output_lock);
delay = 0x00;
rc = qpnp_write_wrapper(chip, &delay,
chip->base + BMS1_S1_DELAY_CTL, 1);
if (rc)
pr_err("unable to write into BMS1_S1_DELAY, rc: %d\n", rc);
rc = qpnp_masked_write(chip, BMS1_MODE_CTL,
BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT,
BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT);
if (rc)
pr_err("unable to write into BMS1_MODE_CTL, rc: %d\n", rc);
msleep(OVERRIDE_MODE_DELAY_MS);
lock_output_data(chip);
qpnp_read_wrapper(chip, (u8 *)&vsense_raw,
chip->base + BMS1_VSENSE_AVG_DATA0, 2);
qpnp_read_wrapper(chip, (u8 *)&vbat_raw,
chip->base + BMS1_VBAT_AVG_DATA0, 2);
unlock_output_data(chip);
rc = qpnp_masked_write(chip, BMS1_MODE_CTL,
BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT, 0);
delay = 0x0B;
rc = qpnp_write_wrapper(chip, &delay,
chip->base + BMS1_S1_DELAY_CTL, 1);
if (rc)
pr_err("unable to write into BMS1_S1_DELAY, rc: %d\n", rc);
mutex_unlock(&chip->bms_output_lock);
*vbat_uv = convert_vbatt_raw_to_uv(chip, vbat_raw);
vsense_uv = convert_vsense_to_uv(chip, vsense_raw);
*ibat_ua = div_s64(vsense_uv * 1000000LL, (int)chip->r_sense_uohm);
pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x ibat_ua = %d vbat_uv = %d\n",
(uint16_t)vsense_raw, (uint16_t)vbat_raw,
*ibat_ua, *vbat_uv);
return 0;
}
static bool is_battery_charging(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the status property */
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
return ret.intval == POWER_SUPPLY_STATUS_CHARGING;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return false;
}
static bool is_batfet_open(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the status property */
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
return ret.intval == POWER_SUPPLY_STATUS_FULL;
}
/* Default to true if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return true;
}
static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip,
int *ibat_ua, int *vbat_uv)
{
int rc;
if (is_batfet_open(chip)) {
pr_debug("batfet is open using separate vbat and ibat meas\n");
rc = get_battery_voltage(vbat_uv);
if (rc < 0) {
pr_err("adc vbat failed err = %d\n", rc);
return rc;
}
rc = get_battery_current(chip, ibat_ua);
if (rc < 0) {
pr_err("bms ibat failed err = %d\n", rc);
return rc;
}
} else {
return override_mode_batt_v_and_i(chip, ibat_ua, vbat_uv);
}
return 0;
}
static int bound_soc(int soc)
{
soc = max(0, soc);
soc = min(100, soc);
return soc;
}
#define IBAT_TOL_MASK 0x0F
#define OCV_TOL_MASK 0xF0
#define IBAT_TOL_DEFAULT 0x03
#define IBAT_TOL_NOCHG 0x0F
#define OCV_TOL_DEFAULT 0x20
#define OCV_TOL_NO_OCV 0x00
static int stop_ocv_updates(struct qpnp_bms_chip *chip)
{
pr_debug("stopping ocv updates\n");
return qpnp_masked_write(chip, BMS1_TOL_CTL,
OCV_TOL_MASK, OCV_TOL_NO_OCV);
}
static int reset_bms_for_test(struct qpnp_bms_chip *chip)
{
int ibat_ua, vbat_uv, rc;
int ocv_est_uv;
if (!chip) {
pr_err("BMS driver has not been initialized yet!\n");
return -EINVAL;
}
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv);
chip->last_ocv_uv = ocv_est_uv;
chip->last_soc = -EINVAL;
reset_cc(chip);
chip->last_cc_uah = INT_MIN;
stop_ocv_updates(chip);
pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n",
chip->last_ocv_uv, vbat_uv, ibat_ua);
return rc;
}
static int bms_reset_set(const char *val, const struct kernel_param *kp)
{
int rc;
rc = param_set_bool(val, kp);
if (rc) {
pr_err("Unable to set bms_reset: %d\n", rc);
return rc;
}
if (*(bool *)kp->arg) {
struct power_supply *bms_psy = power_supply_get_by_name("bms");
struct qpnp_bms_chip *chip = container_of(bms_psy,
struct qpnp_bms_chip, bms_psy);
rc = reset_bms_for_test(chip);
if (rc) {
pr_err("Unable to modify bms_reset: %d\n", rc);
return rc;
}
}
return 0;
}
static struct kernel_param_ops bms_reset_ops = {
.set = bms_reset_set,
.get = param_get_bool,
};
module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644);
static int charging_adjustments(struct qpnp_bms_chip *chip,
struct soc_params *params, int soc,
int vbat_uv, int ibat_ua, int batt_temp)
{
int chg_soc;
int batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
if (chip->soc_at_cv == -EINVAL) {
/* In constant current charging return the calc soc */
if (batt_terminal_uv <= chip->max_voltage_uv)
pr_debug("CC CHG SOC %d\n", soc);
/* Note the CC to CV point */
if (batt_terminal_uv >= chip->max_voltage_uv) {
chip->soc_at_cv = soc;
chip->prev_chg_soc = soc;
chip->ibat_at_cv_ua = ibat_ua;
pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n",
ibat_ua, soc);
}
return soc;
}
/*
* battery is in CV phase - begin liner inerpolation of soc based on
* battery charge current
*/
/*
* if voltage lessened (possibly because of a system load)
* keep reporting the prev chg soc
*/
if (batt_terminal_uv <= chip->max_voltage_uv - 10000) {
pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n",
batt_terminal_uv,
chip->max_voltage_uv, chip->prev_chg_soc);
return chip->prev_chg_soc;
}
chg_soc = linear_interpolate(chip->soc_at_cv, chip->ibat_at_cv_ua,
100, -1 * chip->chg_term_ua,
ibat_ua);
chg_soc = bound_soc(chg_soc);
/* always report a higher soc */
if (chg_soc > chip->prev_chg_soc) {
int new_ocv_uv;
chip->prev_chg_soc = chg_soc;
find_ocv_for_soc(chip, params, batt_temp, chg_soc, &new_ocv_uv);
chip->last_ocv_uv = new_ocv_uv;
pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n",
new_ocv_uv,
chip->prev_chg_soc);
}
pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc);
return chip->prev_chg_soc;
}
static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params,
int soc, int batt_temp)
{
int ibat_ua = 0, vbat_uv = 0;
int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0;
int delta_ocv_uv = 0;
int n = 0;
int rc_new_uah = 0;
int pc_new = 0;
int soc_new = 0;
int slope = 0;
int rc = 0;
int delta_ocv_uv_limit = 0;
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
if (rc < 0) {
pr_err("simultaneous vbat ibat failed err = %d\n", rc);
goto out;
}
delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000);
ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000;
chip->ibat_max_ua = (ocv_est_uv - chip->v_cutoff_uv) * 1000
/ (params->rbatt_mohm);
pc_est = calculate_pc(chip, ocv_est_uv, batt_temp);
soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100,
(s64)params->fcc_uah - params->uuc_uah);
soc_est = bound_soc(soc_est);
/* never adjust during bms reset mode */
if (bms_reset) {
pr_debug("bms reset mode, SOC adjustment skipped\n");
goto out;
}
if (ibat_ua < 0 && !is_batfet_open(chip)) {
soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua,
batt_temp);
goto out;
}
/*
* do not adjust
* if soc is same as what bms calculated
* if soc_est is between 45 and 25, this is the flat portion of the
* curve where soc_est is not so accurate. We generally don't want to
* adjust when soc_est is inaccurate except for the cases when soc is
* way far off (higher than 50 or lesser than 20).
* Also don't adjust soc if it is above 90 becuase it might be pulled
* low and cause a bad user experience
*/
if (soc_est == soc
|| (is_between(45, chip->adjust_soc_low_threshold, soc_est)
&& is_between(50, chip->adjust_soc_low_threshold - 5, soc))
|| soc >= 90)
goto out;
if (chip->last_soc_est == -EINVAL)
chip->last_soc_est = soc;
n = min(200, max(1 , soc + soc_est + chip->last_soc_est));
chip->last_soc_est = soc_est;
pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
if (pc > 0) {
pc_new = calculate_pc(chip,
chip->last_ocv_uv - (++slope * 1000),
chip->last_ocv_temp);
while (pc_new == pc) {
/* start taking 10mV steps */
slope = slope + 10;
pc_new = calculate_pc(chip,
chip->last_ocv_uv - (slope * 1000),
chip->last_ocv_temp);
}
} else {
/*
* pc is already at the lowest point,
* assume 1 millivolt translates to 1% pc
*/
pc = 1;
pc_new = 0;
slope = 1;
}
delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000,
n * (pc - pc_new));
if (abs(delta_ocv_uv) > delta_ocv_uv_limit) {
pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv,
delta_ocv_uv_limit);
if (delta_ocv_uv > 0)
delta_ocv_uv = delta_ocv_uv_limit;
else
delta_ocv_uv = -1 * delta_ocv_uv_limit;
pr_debug("new delta ocv = %d\n", delta_ocv_uv);
}
chip->last_ocv_uv -= delta_ocv_uv;
if (chip->last_ocv_uv >= chip->max_voltage_uv)
chip->last_ocv_uv = chip->max_voltage_uv;
/* calculate the soc based on this new ocv */
pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
rc_new_uah = (params->fcc_uah * pc_new) / 100;
soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100
/ (params->fcc_uah - params->uuc_uah);
soc_new = bound_soc(soc_new);
/*
* if soc_new is ZERO force it higher so that phone doesnt report soc=0
* soc = 0 should happen only when soc_est == 0
*/
if (soc_new == 0 && soc_est != 0)
soc_new = 1;
soc = soc_new;
out:
pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n",
ibat_ua, vbat_uv, ocv_est_uv, pc_est,
soc_est, n, delta_ocv_uv, chip->last_ocv_uv,
pc_new, soc_new, params->rbatt_mohm, slope);
return soc;
}
static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc)
{
int rc, vbat_uv;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(VBAT_SNS, &result);
if (rc) {
pr_err("error reading vbat_sns adc channel = %d, rc = %d\n",
VBAT_SNS, rc);
return rc;
}
vbat_uv = (int)result.physical;
if (soc == 0 && vbat_uv > chip->v_cutoff_uv) {
pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n",
vbat_uv, chip->v_cutoff_uv);
return 1;
} else if (soc > 0 && vbat_uv < chip->v_cutoff_uv) {
pr_debug("forcing soc to 0, vbat (%d) < cutoff (%d)\n",
vbat_uv, chip->v_cutoff_uv);
return 0;
} else {
pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n",
soc, vbat_uv, chip->v_cutoff_uv);
return soc;
}
}
static int calculate_state_of_charge(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp)
{
int soc, new_ocv_uv;
int shutdown_soc, new_calculated_soc, remaining_usable_charge_uah;
struct soc_params params;
calculate_soc_params(chip, raw, &params, batt_temp);
/* calculate remaining usable charge */
remaining_usable_charge_uah = params.ocv_charge_uah
- params.cc_uah
- params.uuc_uah;
pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);
if (params.fcc_uah - params.uuc_uah <= 0) {
pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
params.fcc_uah,
params.uuc_uah);
new_calculated_soc = 0;
goto done_calculating;
}
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params.fcc_uah - params.uuc_uah));
if (chip->first_time_calc_soc && soc < 0) {
/*
* first time calcualtion and the pon ocv is too low resulting
* in a bad soc. Adjust ocv to get 0 soc
*/
pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc);
find_ocv_for_soc(chip, &params, batt_temp, 0, &new_ocv_uv);
chip->last_ocv_uv = new_ocv_uv;
remaining_usable_charge_uah = params.ocv_charge_uah
- params.cc_uah
- params.uuc_uah;
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params.fcc_uah
- params.uuc_uah));
pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n",
soc, chip->last_ocv_uv);
}
if (soc > 100)
soc = 100;
if (soc < 0) {
pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n",
remaining_usable_charge_uah,
params.ocv_charge_uah,
params.cc_uah, params.uuc_uah);
pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n",
chip->last_ocv_uv, batt_temp,
params.fcc_uah, soc);
soc = 0;
}
mutex_lock(&chip->soc_invalidation_mutex);
shutdown_soc = chip->shutdown_soc;
if (chip->first_time_calc_soc && soc != shutdown_soc
&& is_shutdown_soc_within_limits(chip, soc)) {
/*
* soc for the first time - use shutdown soc
* to adjust pon ocv since it is a small percent away from
* the real soc
*/
pr_debug("soc = %d before forcing shutdown_soc = %d\n",
soc, shutdown_soc);
find_ocv_for_soc(chip, &params, batt_temp,
shutdown_soc, &new_ocv_uv);
chip->pon_ocv_uv = chip->last_ocv_uv;
chip->last_ocv_uv = new_ocv_uv;
remaining_usable_charge_uah = params.ocv_charge_uah
- params.cc_uah
- params.uuc_uah;
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params.fcc_uah
- params.uuc_uah));
pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n",
shutdown_soc, soc, chip->last_ocv_uv);
}
mutex_unlock(&chip->soc_invalidation_mutex);
pr_debug("SOC before adjustment = %d\n", soc);
new_calculated_soc = adjust_soc(chip, &params, soc, batt_temp);
/* clamp soc due to BMS HW inaccuracies in pm8941v2.0 */
if (chip->revision1 == 0 && chip->revision2 == 0)
new_calculated_soc = clamp_soc_based_on_voltage(chip,
new_calculated_soc);
done_calculating:
if (new_calculated_soc != chip->calculated_soc
&& chip->bms_psy.name != NULL) {
power_supply_changed(&chip->bms_psy);
pr_debug("power supply changed\n");
}
chip->calculated_soc = new_calculated_soc;
pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc);
chip->first_time_calc_soc = 0;
get_current_time(&chip->last_recalc_time);
return chip->calculated_soc;
}
static int read_vbat(struct qpnp_bms_chip *chip)
{
int rc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(VBAT_SNS, &result);
if (rc) {
pr_err("error reading vadc VBAT_SNS = %d, rc = %d\n",
VBAT_SNS, rc);
return rc;
}
pr_debug("read %duv from vadc\n", (int)result.physical);
return (int)result.physical;
}
static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip)
{
int voltage_range_uv, voltage_remaining_uv, voltage_based_soc;
int vbat_uv;
vbat_uv = read_vbat(chip);
voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv;
voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv;
voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv;
voltage_based_soc = clamp(voltage_based_soc, 0, 100);
if (chip->prev_voltage_based_soc != voltage_based_soc
&& chip->bms_psy.name != NULL) {
power_supply_changed(&chip->bms_psy);
pr_debug("power supply changed\n");
}
chip->prev_voltage_based_soc = voltage_based_soc;
pr_debug("vbat used = %duv\n", vbat_uv);
pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc);
return voltage_based_soc;
}
static int recalculate_soc(struct qpnp_bms_chip *chip)
{
int batt_temp, rc, soc;
struct qpnp_vadc_result result;
struct raw_soc_params raw;
wake_lock(&chip->soc_wake_lock);
if (chip->use_voltage_soc) {
soc = calculate_soc_from_voltage(chip);
} else {
rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result);
if (rc) {
pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
soc = chip->calculated_soc;
} else {
pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
result.physical,
result.measurement);
batt_temp = (int)result.physical;
mutex_lock(&chip->last_ocv_uv_mutex);
read_soc_params_raw(chip, &raw, batt_temp);
soc = calculate_state_of_charge(chip, &raw, batt_temp);
mutex_unlock(&chip->last_ocv_uv_mutex);
}
}
wake_unlock(&chip->soc_wake_lock);
return soc;
}
static void calculate_soc_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
calculate_soc_delayed_work.work);
int soc = recalculate_soc(chip);
if (soc < chip->low_soc_calc_threshold)
schedule_delayed_work(&chip->calculate_soc_delayed_work,
round_jiffies_relative(msecs_to_jiffies
(chip->low_soc_calculate_soc_ms)));
else
schedule_delayed_work(&chip->calculate_soc_delayed_work,
round_jiffies_relative(msecs_to_jiffies
(chip->calculate_soc_ms)));
}
static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp,
int soc)
{
u8 temp;
int rc;
int iavg_ma = chip->prev_uuc_iavg_ma;
if (iavg_ma > IAVG_START)
temp = (iavg_ma - IAVG_START) / IAVG_STEP_SIZE_MA;
else
temp = 0;
rc = qpnp_write_wrapper(chip, &temp,
chip->base + IAVG_STORAGE_REG, 1);
if (soc == 0)
temp = SOC_ZERO;
else
temp = soc;
/* don't store soc if temperature is below 5degC */
if (batt_temp > IGNORE_SOC_TEMP_DECIDEG)
rc = qpnp_write_wrapper(chip, &temp,
chip->base + SOC_STORAGE_REG, 1);
}
#define SOC_CATCHUP_SEC_MAX 600
#define SOC_CATCHUP_SEC_PER_PERCENT 60
#define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX/SOC_CATCHUP_SEC_PER_PERCENT)
static int scale_soc_while_chg(struct qpnp_bms_chip *chip,
int delta_time_us, int new_soc, int prev_soc)
{
int chg_time_sec;
int catch_up_sec;
int scaled_soc;
int numerator;
/*
* The device must be charging for reporting a higher soc, if
* not ignore this soc and continue reporting the prev_soc.
* Also don't report a high value immediately slowly scale the
* value from prev_soc to the new soc based on a charge time
* weighted average
*/
/* if not charging, return last soc */
if (!is_battery_charging(chip))
return prev_soc;
chg_time_sec = DIV_ROUND_UP(chip->charge_time_us, USEC_PER_SEC);
catch_up_sec = DIV_ROUND_UP(chip->catch_up_time_us, USEC_PER_SEC);
if (catch_up_sec == 0)
return new_soc;
pr_debug("cts= %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec);
/*
* if charging for more than catch_up time, simply return
* new soc
*/
if (chg_time_sec > catch_up_sec)
return new_soc;
numerator = (catch_up_sec - chg_time_sec) * prev_soc
+ chg_time_sec * new_soc;
scaled_soc = numerator / catch_up_sec;
pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n",
chg_time_sec, new_soc, prev_soc, scaled_soc);
return scaled_soc;
}
/*
* bms_fake_battery is set in setups where a battery emulator is used instead
* of a real battery. This makes the bms driver report a different/fake value
* regardless of the calculated state of charge.
*/
static int bms_fake_battery = -EINVAL;
module_param(bms_fake_battery, int, 0644);
static int report_voltage_based_soc(struct qpnp_bms_chip *chip)
{
pr_debug("Reported voltage based soc = %d\n",
chip->prev_voltage_based_soc);
return chip->prev_voltage_based_soc;
}
static int report_cc_based_soc(struct qpnp_bms_chip *chip)
{
int soc;
int delta_time_us;
struct timespec now;
struct qpnp_vadc_result result;
int batt_temp;
int rc;
soc = chip->calculated_soc;
rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
batt_temp = (int)result.physical;
do_posix_clock_monotonic_gettime(&now);
if (chip->t_soc_queried.tv_sec != 0) {
delta_time_us
= (now.tv_sec - chip->t_soc_queried.tv_sec) * USEC_PER_SEC
+ (now.tv_nsec - chip->t_soc_queried.tv_nsec) / 1000;
} else {
/* calculation for the first time */
delta_time_us = 0;
}
/*
* account for charge time - limit it to SOC_CATCHUP_SEC to
* avoid overflows when charging continues for extended periods
*/
if (is_battery_charging(chip)) {
if (chip->charge_time_us == 0) {
/*
* calculating soc for the first time
* after start of chg. Initialize catchup time
*/
if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
chip->catch_up_time_us =
(soc - chip->last_soc)
* SOC_CATCHUP_SEC_PER_PERCENT
* USEC_PER_SEC;
else
chip->catch_up_time_us =
SOC_CATCHUP_SEC_MAX * USEC_PER_SEC;
if (chip->catch_up_time_us < 0)
chip->catch_up_time_us = 0;
}
/* add charge time */
if (chip->charge_time_us < SOC_CATCHUP_SEC_MAX * USEC_PER_SEC)
chip->charge_time_us += delta_time_us;
/* end catchup if calculated soc and last soc are same */
if (chip->last_soc == soc)
chip->catch_up_time_us = 0;
}
/* last_soc < soc ... scale and catch up */
if (chip->last_soc != -EINVAL && chip->last_soc < soc && soc != 100)
soc = scale_soc_while_chg(chip, delta_time_us,
soc, chip->last_soc);
pr_debug("last_soc = %d, calculated_soc = %d, soc = %d\n",
chip->last_soc, chip->calculated_soc, soc);
chip->last_soc = soc;
backup_soc_and_iavg(chip, batt_temp, chip->last_soc);
pr_debug("Reported SOC = %d\n", chip->last_soc);
chip->t_soc_queried = now;
return chip->last_soc;
}
static int report_state_of_charge(struct qpnp_bms_chip *chip)
{
if (bms_fake_battery != -EINVAL) {
pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
return bms_fake_battery;
} else if (chip->use_voltage_soc)
return report_voltage_based_soc(chip);
else
return report_cc_based_soc(chip);
}
/* Returns capacity as a SoC percentage between 0 and 100 */
static int get_prop_bms_capacity(struct qpnp_bms_chip *chip)
{
return report_state_of_charge(chip);
}
/* Returns estimated max current that the battery can supply in uA */
static int get_prop_bms_current_max(struct qpnp_bms_chip *chip)
{
return chip->ibat_max_ua;
}
/* Returns instantaneous current in uA */
static int get_prop_bms_current_now(struct qpnp_bms_chip *chip)
{
int rc, result_ua;
rc = get_battery_current(chip, &result_ua);
if (rc) {
pr_err("failed to get current: %d\n", rc);
return rc;
}
return result_ua;
}
/* Returns full charge design in uAh */
static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip)
{
return chip->fcc;
}
static bool get_prop_bms_online(struct qpnp_bms_chip *chip)
{
return chip->online;
}
static int get_prop_bms_status(struct qpnp_bms_chip *chip)
{
return chip->charger_status;
}
static void set_prop_bms_online(struct qpnp_bms_chip *chip, bool online)
{
chip->online = online;
}
static void set_prop_bms_status(struct qpnp_bms_chip *chip, int status)
{
chip->charger_status = status;
}
static void qpnp_bms_external_power_changed(struct power_supply *psy)
{
}
static int qpnp_bms_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
bms_psy);
switch (psp) {
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = get_prop_bms_capacity(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = get_prop_bms_current_now(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = get_prop_bms_current_max(chip);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = get_prop_bms_charge_full_design(chip);
break;
case POWER_SUPPLY_PROP_STATUS:
val->intval = get_prop_bms_status(chip);
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = get_prop_bms_online(chip);
break;
default:
return -EINVAL;
}
return 0;
}
static int qpnp_bms_power_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
bms_psy);
switch (psp) {
case POWER_SUPPLY_PROP_ONLINE:
set_prop_bms_online(chip, val->intval);
break;
case POWER_SUPPLY_PROP_STATUS:
set_prop_bms_status(chip, (bool)val->intval);
break;
default:
return -EINVAL;
}
return 0;
}
#define OCV_USE_LIMIT_EN BIT(7)
static int set_ocv_voltage_thresholds(struct qpnp_bms_chip *chip,
int low_voltage_threshold,
int high_voltage_threshold)
{
uint16_t low_voltage_raw, high_voltage_raw;
int rc;
low_voltage_raw = convert_vbatt_uv_to_raw(chip,
low_voltage_threshold);
high_voltage_raw = convert_vbatt_uv_to_raw(chip,
high_voltage_threshold);
rc = qpnp_write_wrapper(chip, (u8 *)&low_voltage_raw,
chip->base + BMS1_OCV_USE_LOW_LIMIT_THR0, 2);
if (rc) {
pr_err("Failed to set ocv low voltage threshold: %d\n", rc);
return rc;
}
rc = qpnp_write_wrapper(chip, (u8 *)&high_voltage_raw,
chip->base + BMS1_OCV_USE_HIGH_LIMIT_THR0, 2);
if (rc) {
pr_err("Failed to set ocv high voltage threshold: %d\n", rc);
return rc;
}
rc = qpnp_masked_write(chip, BMS1_OCV_USE_LIMIT_CTL,
OCV_USE_LIMIT_EN, OCV_USE_LIMIT_EN);
if (rc) {
pr_err("Failed to enabled ocv voltage thresholds: %d\n", rc);
return rc;
}
pr_debug("ocv low threshold set to %d uv or 0x%x raw\n",
low_voltage_threshold, low_voltage_raw);
pr_debug("ocv high threshold set to %d uv or 0x%x raw\n",
high_voltage_threshold, high_voltage_raw);
return 0;
}
static void read_shutdown_soc_and_iavg(struct qpnp_bms_chip *chip)
{
int rc;
u8 temp;
if (chip->ignore_shutdown_soc) {
chip->shutdown_soc_invalid = 1;
chip->shutdown_soc = 0;
chip->shutdown_iavg_ma = 0;
} else {
rc = qpnp_read_wrapper(chip, &temp,
chip->base + IAVG_STORAGE_REG, 1);
if (rc) {
pr_err("failed to read addr = %d %d assuming %d\n",
chip->base + IAVG_STORAGE_REG, rc,
IAVG_START);
chip->shutdown_iavg_ma = IAVG_START;
} else {
if (temp == 0) {
chip->shutdown_iavg_ma = IAVG_START;
} else {
chip->shutdown_iavg_ma = IAVG_START
+ IAVG_STEP_SIZE_MA * (temp + 1);
}
}
rc = qpnp_read_wrapper(chip, &temp,
chip->base + SOC_STORAGE_REG, 1);
if (rc) {
pr_err("failed to read addr = %d %d\n",
chip->base + SOC_STORAGE_REG, rc);
} else {
chip->shutdown_soc = temp;
if (chip->shutdown_soc == 0) {
pr_debug("No shutdown soc available\n");
chip->shutdown_soc_invalid = 1;
chip->shutdown_iavg_ma = 0;
} else if (chip->shutdown_soc == SOC_ZERO) {
chip->shutdown_soc = 0;
}
}
}
pr_debug("shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d\n",
chip->shutdown_soc,
chip->shutdown_iavg_ma,
chip->shutdown_soc_invalid);
}
#define PALLADIUM_ID_MIN 0x7F40
#define PALLADIUM_ID_MAX 0x7F5A
#define DESAY_5200_ID_MIN 0x7F7F
#define DESAY_5200_ID_MAX 0x802F
static int32_t read_battery_id(struct qpnp_bms_chip *chip)
{
int rc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(LR_MUX2_BAT_ID, &result);
if (rc) {
pr_err("error reading batt id channel = %d, rc = %d\n",
LR_MUX2_BAT_ID, rc);
return rc;
}
pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
pr_debug("raw_code = 0x%x\n", result.adc_code);
return result.adc_code;
}
static int set_battery_data(struct qpnp_bms_chip *chip)
{
int64_t battery_id;
struct bms_battery_data *batt_data;
if (chip->batt_type == BATT_DESAY) {
batt_data = &desay_5200_data;
} else if (chip->batt_type == BATT_PALLADIUM) {
batt_data = &palladium_1500_data;
} else if (chip->batt_type == BATT_OEM) {
batt_data = &oem_batt_data;
} else {
battery_id = read_battery_id(chip);
if (battery_id < 0) {
pr_err("cannot read battery id err = %lld\n",
battery_id);
return battery_id;
}
if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX,
battery_id)) {
batt_data = &palladium_1500_data;
} else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX,
battery_id)) {
batt_data = &desay_5200_data;
} else {
pr_warn("invalid battid, palladium 1500 assumed batt_id %llx\n",
battery_id);
batt_data = &palladium_1500_data;
}
}
chip->fcc = batt_data->fcc;
chip->fcc_temp_lut = batt_data->fcc_temp_lut;
chip->fcc_sf_lut = batt_data->fcc_sf_lut;
chip->pc_temp_ocv_lut = batt_data->pc_temp_ocv_lut;
chip->pc_sf_lut = batt_data->pc_sf_lut;
chip->rbatt_sf_lut = batt_data->rbatt_sf_lut;
chip->default_rbatt_mohm = batt_data->default_rbatt_mohm;
if (chip->pc_temp_ocv_lut == NULL) {
pr_err("temp ocv lut table is NULL\n");
return -EINVAL;
}
return 0;
}
#define SPMI_PROP_READ(chip_prop, qpnp_spmi_property, retval) \
do { \
retval = of_property_read_u32(chip->spmi->dev.of_node, \
"qcom," qpnp_spmi_property, \
&chip->chip_prop); \
if (retval) { \
pr_err("Error reading " #qpnp_spmi_property \
" property %d\n", rc); \
return -EINVAL; \
} \
} while (0)
static inline int bms_read_properties(struct qpnp_bms_chip *chip)
{
int rc;
SPMI_PROP_READ(r_sense_uohm, "r-sense-uohm", rc);
SPMI_PROP_READ(v_cutoff_uv, "v-cutoff-uv", rc);
SPMI_PROP_READ(max_voltage_uv, "max-voltage-uv", rc);
SPMI_PROP_READ(r_conn_mohm, "r-conn-mohm", rc);
SPMI_PROP_READ(chg_term_ua, "chg-term-ua", rc);
SPMI_PROP_READ(shutdown_soc_valid_limit,
"shutdown-soc-valid-limit", rc);
SPMI_PROP_READ(adjust_soc_high_threshold,
"adjust-soc-high-threshold", rc);
SPMI_PROP_READ(adjust_soc_low_threshold,
"adjust-soc-low-threshold", rc);
SPMI_PROP_READ(batt_type, "batt-type", rc);
SPMI_PROP_READ(low_soc_calc_threshold,
"low-soc-calculate-soc-threshold", rc);
SPMI_PROP_READ(low_soc_calculate_soc_ms,
"low-soc-calculate-soc-ms", rc);
SPMI_PROP_READ(calculate_soc_ms, "calculate-soc-ms", rc);
chip->use_external_rsense = of_property_read_bool(
chip->spmi->dev.of_node,
"qcom,use-external-rsense");
chip->ignore_shutdown_soc = of_property_read_bool(
chip->spmi->dev.of_node,
"qcom,ignore-shutdown-soc");
chip->use_voltage_soc = of_property_read_bool(chip->spmi->dev.of_node,
"qcom,use-voltage-soc");
chip->use_ocv_thresholds = of_property_read_bool(
chip->spmi->dev.of_node,
"qcom,use-ocv-thresholds");
SPMI_PROP_READ(ocv_high_threshold_uv,
"ocv-voltage-high-threshold-uv", rc);
SPMI_PROP_READ(ocv_low_threshold_uv,
"ocv-voltage-low-threshold-uv", rc);
if (chip->adjust_soc_low_threshold >= 45)
chip->adjust_soc_low_threshold = 45;
pr_debug("dts data: r_sense_uohm:%d, v_cutoff_uv:%d, max_v:%d\n",
chip->r_sense_uohm, chip->v_cutoff_uv,
chip->max_voltage_uv);
pr_debug("r_conn:%d, shutdown_soc: %d, adjust_soc_low:%d\n",
chip->r_conn_mohm, chip->shutdown_soc_valid_limit,
chip->adjust_soc_low_threshold);
pr_debug("adjust_soc_high:%d, chg_term_ua:%d, batt_type:%d\n",
chip->adjust_soc_high_threshold, chip->chg_term_ua,
chip->batt_type);
pr_debug("ignore_shutdown_soc:%d, use_voltage_soc:%d\n",
chip->ignore_shutdown_soc, chip->use_voltage_soc);
pr_debug("use external rsense: %d\n", chip->use_external_rsense);
return 0;
}
static inline void bms_initialize_constants(struct qpnp_bms_chip *chip)
{
chip->prev_pc_unusable = -EINVAL;
chip->soc_at_cv = -EINVAL;
chip->calculated_soc = -EINVAL;
chip->last_soc = -EINVAL;
chip->last_soc_est = -EINVAL;
chip->last_cc_uah = INT_MIN;
chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
chip->prev_last_good_ocv_raw = OCV_RAW_UNINITIALIZED;
chip->first_time_calc_soc = 1;
chip->first_time_calc_uuc = 1;
}
#define REG_OFFSET_PERP_TYPE 0x04
#define REG_OFFSET_PERP_SUBTYPE 0x05
#define BMS_BMS_TYPE 0xD
#define BMS_BMS_SUBTYPE 0x1
#define BMS_IADC_TYPE 0x8
#define BMS_IADC_SUBTYPE 0x3
static int register_spmi(struct qpnp_bms_chip *chip, struct spmi_device *spmi)
{
struct spmi_resource *spmi_resource;
struct resource *resource;
int rc;
u8 type, subtype;
chip->dev = &(spmi->dev);
chip->spmi = spmi;
spmi_for_each_container_dev(spmi_resource, spmi) {
if (!spmi_resource) {
pr_err("qpnp_bms: spmi resource absent\n");
return -ENXIO;
}
resource = spmi_get_resource(spmi, spmi_resource,
IORESOURCE_MEM, 0);
if (!(resource && resource->start)) {
pr_err("node %s IO resource absent!\n",
spmi->dev.of_node->full_name);
return -ENXIO;
}
rc = qpnp_read_wrapper(chip, &type,
resource->start + REG_OFFSET_PERP_TYPE, 1);
if (rc) {
pr_err("Peripheral type read failed rc=%d\n", rc);
return rc;
}
rc = qpnp_read_wrapper(chip, &subtype,
resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
if (rc) {
pr_err("Peripheral subtype read failed rc=%d\n", rc);
return rc;
}
if (type == BMS_BMS_TYPE && subtype == BMS_BMS_SUBTYPE) {
chip->base = resource->start;
} else if (type == BMS_IADC_TYPE
&& subtype == BMS_IADC_SUBTYPE) {
chip->iadc_base = resource->start;
} else {
pr_err("Invalid peripheral start=0x%x type=0x%x, subtype=0x%x\n",
resource->start, type, subtype);
}
}
if (chip->base == 0) {
dev_err(&spmi->dev, "BMS peripheral was not registered\n");
return -EINVAL;
}
if (chip->iadc_base == 0) {
dev_err(&spmi->dev, "BMS_IADC peripheral was not registered\n");
return -EINVAL;
}
return 0;
}
#define ADC_CH_SEL_MASK 0x7
static int read_iadc_channel_select(struct qpnp_bms_chip *chip)
{
u8 iadc_channel_select;
int32_t rds_rsense_nohm;
int rc;
rc = qpnp_read_wrapper(chip, &iadc_channel_select,
chip->iadc_base + IADC1_BMS_ADC_CH_SEL_CTL, 1);
if (rc) {
pr_err("Error reading bms_iadc channel register %d\n", rc);
return rc;
}
iadc_channel_select &= ADC_CH_SEL_MASK;
if (iadc_channel_select != EXTERNAL_RSENSE
&& iadc_channel_select != INTERNAL_RSENSE) {
pr_err("IADC1_BMS_IADC configured incorrectly. Selected channel = %d\n",
iadc_channel_select);
return -EINVAL;
}
if (chip->use_external_rsense) {
pr_debug("External rsense selected\n");
if (iadc_channel_select == INTERNAL_RSENSE) {
pr_debug("Internal rsense detected; Changing rsense to external\n");
rc = qpnp_masked_write_iadc(chip,
IADC1_BMS_ADC_CH_SEL_CTL,
ADC_CH_SEL_MASK,
EXTERNAL_RSENSE);
if (rc) {
pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
IADC1_BMS_ADC_CH_SEL_CTL,
EXTERNAL_RSENSE, rc);
return rc;
}
reset_cc(chip);
}
} else {
pr_debug("Internal rsense selected\n");
if (iadc_channel_select == EXTERNAL_RSENSE) {
pr_debug("External rsense detected; Changing rsense to internal\n");
rc = qpnp_masked_write_iadc(chip,
IADC1_BMS_ADC_CH_SEL_CTL,
ADC_CH_SEL_MASK,
INTERNAL_RSENSE);
if (rc) {
pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
IADC1_BMS_ADC_CH_SEL_CTL,
INTERNAL_RSENSE, rc);
return rc;
}
reset_cc(chip);
}
rc = qpnp_iadc_get_rsense(&rds_rsense_nohm);
if (rc) {
pr_err("Unable to read RDS resistance value from IADC; rc = %d\n",
rc);
return rc;
}
chip->r_sense_uohm = rds_rsense_nohm/1000;
pr_debug("rds_rsense = %d nOhm, saved as %d uOhm\n",
rds_rsense_nohm, chip->r_sense_uohm);
}
return 0;
}
static int __devinit qpnp_bms_probe(struct spmi_device *spmi)
{
struct qpnp_bms_chip *chip;
int rc, vbatt;
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (chip == NULL) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
rc = qpnp_vadc_is_ready();
if (rc) {
pr_info("vadc not ready: %d, deferring probe\n", rc);
goto error_read;
}
rc = qpnp_iadc_is_ready();
if (rc) {
pr_info("iadc not ready: %d, deferring probe\n", rc);
goto error_read;
}
rc = register_spmi(chip, spmi);
if (rc) {
pr_err("error registering spmi resource %d\n", rc);
goto error_resource;
}
rc = qpnp_read_wrapper(chip, &chip->revision1,
chip->base + BMS1_REVISION1, 1);
if (rc) {
pr_err("error reading version register %d\n", rc);
goto error_read;
}
rc = qpnp_read_wrapper(chip, &chip->revision2,
chip->base + BMS1_REVISION2, 1);
if (rc) {
pr_err("Error reading version register %d\n", rc);
goto error_read;
}
pr_debug("BMS version: %hhu.%hhu\n", chip->revision2, chip->revision1);
rc = bms_read_properties(chip);
if (rc) {
pr_err("Unable to read all bms properties, rc = %d\n", rc);
goto error_read;
}
rc = read_iadc_channel_select(chip);
if (rc) {
pr_err("Unable to get iadc selected channel = %d\n", rc);
goto error_read;
}
if (chip->use_ocv_thresholds) {
rc = set_ocv_voltage_thresholds(chip,
chip->ocv_low_threshold_uv,
chip->ocv_high_threshold_uv);
if (rc) {
pr_err("Could not set ocv voltage thresholds: %d\n",
rc);
goto error_read;
}
}
rc = set_battery_data(chip);
if (rc) {
pr_err("Bad battery data %d\n", rc);
goto error_read;
}
bms_initialize_constants(chip);
mutex_init(&chip->bms_output_lock);
mutex_init(&chip->last_ocv_uv_mutex);
mutex_init(&chip->soc_invalidation_mutex);
wake_lock_init(&chip->soc_wake_lock, WAKE_LOCK_SUSPEND,
"qpnp_soc_lock");
INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work,
calculate_soc_work);
read_shutdown_soc_and_iavg(chip);
dev_set_drvdata(&spmi->dev, chip);
device_init_wakeup(&spmi->dev, 1);
calculate_soc_work(&(chip->calculate_soc_delayed_work.work));
/* setup & register the battery power supply */
chip->bms_psy.name = "bms";
chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;
chip->bms_psy.properties = msm_bms_power_props;
chip->bms_psy.num_properties = ARRAY_SIZE(msm_bms_power_props);
chip->bms_psy.get_property = qpnp_bms_power_get_property;
chip->bms_psy.set_property = qpnp_bms_power_set_property;
chip->bms_psy.external_power_changed =
qpnp_bms_external_power_changed;
chip->bms_psy.supplied_to = qpnp_bms_supplicants;
chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_bms_supplicants);
rc = power_supply_register(chip->dev, &chip->bms_psy);
if (rc < 0) {
pr_err("power_supply_register bms failed rc = %d\n", rc);
goto unregister_dc;
}
vbatt = 0;
get_battery_voltage(&vbatt);
pr_info("probe success: soc =%d vbatt = %d ocv = %d r_sense_uohm = %u\n",
get_prop_bms_capacity(chip),
vbatt, chip->last_ocv_uv, chip->r_sense_uohm);
return 0;
unregister_dc:
wake_lock_destroy(&chip->soc_wake_lock);
power_supply_unregister(&chip->bms_psy);
dev_set_drvdata(&spmi->dev, NULL);
error_resource:
error_read:
kfree(chip);
return rc;
}
static int __devexit
qpnp_bms_remove(struct spmi_device *spmi)
{
struct qpnp_bms_chip *chip = dev_get_drvdata(&spmi->dev);
dev_set_drvdata(&spmi->dev, NULL);
kfree(chip);
return 0;
}
static int bms_resume(struct device *dev)
{
int rc;
unsigned long soc_calc_period;
unsigned long time_since_last_recalc;
unsigned long tm_now_sec;
struct qpnp_bms_chip *chip = dev_get_drvdata(dev);
rc = get_current_time(&tm_now_sec);
if (rc) {
pr_err("Could not read current time: %d\n", rc);
} else if (tm_now_sec > chip->last_recalc_time) {
time_since_last_recalc = tm_now_sec - chip->last_recalc_time;
pr_debug("Time since last recalc: %lu\n",
time_since_last_recalc);
if (chip->calculated_soc < chip->low_soc_calc_threshold)
soc_calc_period = chip->low_soc_calculate_soc_ms;
else
soc_calc_period = chip->calculate_soc_ms;
if (time_since_last_recalc >= soc_calc_period) {
chip->last_recalc_time = tm_now_sec;
recalculate_soc(chip);
}
}
return 0;
}
static const struct dev_pm_ops qpnp_bms_pm_ops = {
.resume = bms_resume,
};
static struct spmi_driver qpnp_bms_driver = {
.probe = qpnp_bms_probe,
.remove = __devexit_p(qpnp_bms_remove),
.driver = {
.name = QPNP_BMS_DEV_NAME,
.owner = THIS_MODULE,
.of_match_table = qpnp_bms_match_table,
.pm = &qpnp_bms_pm_ops,
},
};
static int __init qpnp_bms_init(void)
{
pr_info("QPNP BMS INIT\n");
return spmi_driver_register(&qpnp_bms_driver);
}
static void __exit qpnp_bms_exit(void)
{
pr_info("QPNP BMS EXIT\n");
return spmi_driver_unregister(&qpnp_bms_driver);
}
module_init(qpnp_bms_init);
module_exit(qpnp_bms_exit);
MODULE_DESCRIPTION("QPNP BMS Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" QPNP_BMS_DEV_NAME);