| /* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "BMS: %s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/power_supply.h> |
| #include <linux/spmi.h> |
| #include <linux/rtc.h> |
| #include <linux/delay.h> |
| #include <linux/qpnp/qpnp-adc.h> |
| #include <linux/mfd/pm8xxx/batterydata-lib.h> |
| |
| /* BMS Register Offsets */ |
| #define BMS1_REVISION1 0x0 |
| #define BMS1_REVISION2 0x1 |
| #define BMS1_STATUS1 0x8 |
| #define BMS1_MODE_CTL 0X40 |
| /* Coulomb counter clear registers */ |
| #define BMS1_CC_DATA_CTL 0x42 |
| #define BMS1_CC_CLEAR_CTL 0x43 |
| /* BMS Tolerances */ |
| #define BMS1_TOL_CTL 0X44 |
| /* OCV limit registers */ |
| #define BMS1_OCV_USE_LOW_LIMIT_THR0 0x48 |
| #define BMS1_OCV_USE_LOW_LIMIT_THR1 0x49 |
| #define BMS1_OCV_USE_HIGH_LIMIT_THR0 0x4A |
| #define BMS1_OCV_USE_HIGH_LIMIT_THR1 0x4B |
| #define BMS1_OCV_USE_LIMIT_CTL 0x4C |
| /* Delay control */ |
| #define BMS1_S1_DELAY_CTL 0x5A |
| /* CC interrupt threshold */ |
| #define BMS1_CC_THR0 0x7A |
| #define BMS1_CC_THR1 0x7B |
| #define BMS1_CC_THR2 0x7C |
| #define BMS1_CC_THR3 0x7D |
| #define BMS1_CC_THR4 0x7E |
| /* OCV for r registers */ |
| #define BMS1_OCV_FOR_R_DATA0 0x80 |
| #define BMS1_OCV_FOR_R_DATA1 0x81 |
| #define BMS1_VSENSE_FOR_R_DATA0 0x82 |
| #define BMS1_VSENSE_FOR_R_DATA1 0x83 |
| /* Coulomb counter data */ |
| #define BMS1_CC_DATA0 0x8A |
| #define BMS1_CC_DATA1 0x8B |
| #define BMS1_CC_DATA2 0x8C |
| #define BMS1_CC_DATA3 0x8D |
| #define BMS1_CC_DATA4 0x8E |
| /* OCV for soc data */ |
| #define BMS1_OCV_FOR_SOC_DATA0 0x90 |
| #define BMS1_OCV_FOR_SOC_DATA1 0x91 |
| #define BMS1_VSENSE_PON_DATA0 0x94 |
| #define BMS1_VSENSE_PON_DATA1 0x95 |
| #define BMS1_VSENSE_AVG_DATA0 0x98 |
| #define BMS1_VSENSE_AVG_DATA1 0x99 |
| #define BMS1_VBAT_AVG_DATA0 0x9E |
| #define BMS1_VBAT_AVG_DATA1 0x9F |
| /* Extra bms registers */ |
| #define BMS1_BMS_DATA_REG_0 0xB0 |
| #define IAVG_STORAGE_REG 0xB1 |
| #define SOC_STORAGE_REG 0xB2 |
| #define BMS1_BMS_DATA_REG_3 0xB3 |
| /* IADC Channel Select */ |
| #define IADC1_BMS_ADC_CH_SEL_CTL 0x48 |
| |
| /* Configuration for saving of shutdown soc/iavg */ |
| #define IGNORE_SOC_TEMP_DECIDEG 50 |
| #define IAVG_STEP_SIZE_MA 50 |
| #define IAVG_START 600 |
| #define SOC_ZERO 0xFF |
| |
| #define IAVG_SAMPLES 16 |
| |
| #define QPNP_BMS_DEV_NAME "qcom,qpnp-bms" |
| |
| struct soc_params { |
| int fcc_uah; |
| int cc_uah; |
| int rbatt_mohm; |
| int iavg_ua; |
| int uuc_uah; |
| int ocv_charge_uah; |
| int delta_time_s; |
| }; |
| |
| struct raw_soc_params { |
| uint16_t last_good_ocv_raw; |
| int64_t cc; |
| int last_good_ocv_uv; |
| }; |
| |
| struct qpnp_bms_chip { |
| struct device *dev; |
| struct power_supply bms_psy; |
| struct power_supply *batt_psy; |
| struct spmi_device *spmi; |
| u16 base; |
| u16 iadc_base; |
| |
| u8 revision1; |
| u8 revision2; |
| int charger_status; |
| bool online; |
| /* platform data */ |
| int r_sense_uohm; |
| unsigned int v_cutoff_uv; |
| int max_voltage_uv; |
| int r_conn_mohm; |
| int shutdown_soc_valid_limit; |
| int adjust_soc_low_threshold; |
| int adjust_soc_high_threshold; |
| int chg_term_ua; |
| enum battery_type batt_type; |
| unsigned int fcc; |
| struct single_row_lut *fcc_temp_lut; |
| struct single_row_lut *fcc_sf_lut; |
| struct pc_temp_ocv_lut *pc_temp_ocv_lut; |
| struct sf_lut *pc_sf_lut; |
| struct sf_lut *rbatt_sf_lut; |
| int default_rbatt_mohm; |
| |
| struct delayed_work calculate_soc_delayed_work; |
| |
| struct mutex bms_output_lock; |
| struct mutex last_ocv_uv_mutex; |
| struct mutex soc_invalidation_mutex; |
| |
| bool use_external_rsense; |
| bool use_ocv_thresholds; |
| |
| bool ignore_shutdown_soc; |
| int shutdown_soc_invalid; |
| int shutdown_soc; |
| int shutdown_iavg_ma; |
| |
| int low_soc_calc_threshold; |
| int low_soc_calculate_soc_ms; |
| int calculate_soc_ms; |
| struct wake_lock soc_wake_lock; |
| |
| uint16_t ocv_reading_at_100; |
| int64_t cc_reading_at_100; |
| uint16_t prev_last_good_ocv_raw; |
| int last_ocv_uv; |
| int last_ocv_temp; |
| int last_cc_uah; |
| unsigned long tm_sec; |
| bool first_time_calc_soc; |
| bool first_time_calc_uuc; |
| int pon_ocv_uv; |
| |
| int iavg_samples_ma[IAVG_SAMPLES]; |
| int iavg_index; |
| int iavg_num_samples; |
| struct timespec t_soc_queried; |
| int last_soc; |
| int last_soc_est; |
| |
| int charge_time_us; |
| int catch_up_time_us; |
| struct single_row_lut *adjusted_fcc_temp_lut; |
| |
| unsigned int vadc_v0625; |
| unsigned int vadc_v1250; |
| |
| int ibat_max_ua; |
| int prev_iavg_ua; |
| int prev_uuc_iavg_ma; |
| int prev_pc_unusable; |
| int ibat_at_cv_ua; |
| int soc_at_cv; |
| int prev_chg_soc; |
| int calculated_soc; |
| int prev_voltage_based_soc; |
| bool use_voltage_soc; |
| |
| int ocv_high_threshold_uv; |
| int ocv_low_threshold_uv; |
| unsigned long last_recalc_time; |
| }; |
| |
| static struct of_device_id qpnp_bms_match_table[] = { |
| { .compatible = QPNP_BMS_DEV_NAME }, |
| {} |
| }; |
| |
| static char *qpnp_bms_supplicants[] = { |
| "battery" |
| }; |
| |
| static enum power_supply_property msm_bms_power_props[] = { |
| POWER_SUPPLY_PROP_STATUS, |
| POWER_SUPPLY_PROP_ONLINE, |
| POWER_SUPPLY_PROP_CAPACITY, |
| POWER_SUPPLY_PROP_CURRENT_NOW, |
| POWER_SUPPLY_PROP_CURRENT_MAX, |
| POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, |
| }; |
| |
| static bool bms_reset; |
| |
| static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val, |
| u16 base, int count) |
| { |
| int rc; |
| struct spmi_device *spmi = chip->spmi; |
| |
| rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count); |
| if (rc) { |
| pr_err("SPMI read failed rc=%d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val, |
| u16 base, int count) |
| { |
| int rc; |
| struct spmi_device *spmi = chip->spmi; |
| |
| rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count); |
| if (rc) { |
| pr_err("SPMI write failed rc=%d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| int rc; |
| u8 reg; |
| |
| rc = qpnp_read_wrapper(chip, ®, addr, 1); |
| if (rc) { |
| pr_err("read failed addr = %03X, rc = %d\n", addr, rc); |
| return rc; |
| } |
| reg &= ~mask; |
| reg |= val & mask; |
| rc = qpnp_write_wrapper(chip, ®, addr, 1); |
| if (rc) { |
| pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n", |
| addr, val, mask, reg, rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val); |
| } |
| |
| static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| return qpnp_masked_write_base(chip, chip->base + addr, mask, val); |
| } |
| |
| #define HOLD_OREG_DATA BIT(0) |
| static int lock_output_data(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, |
| HOLD_OREG_DATA, HOLD_OREG_DATA); |
| if (rc) { |
| pr_err("couldnt lock bms output rc = %d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int unlock_output_data(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0); |
| if (rc) { |
| pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| #define V_PER_BIT_MUL_FACTOR 97656 |
| #define V_PER_BIT_DIV_FACTOR 1000 |
| #define VADC_INTRINSIC_OFFSET 0x6000 |
| |
| static int vadc_reading_to_uv(int reading) |
| { |
| if (reading <= VADC_INTRINSIC_OFFSET) |
| return 0; |
| |
| return (reading - VADC_INTRINSIC_OFFSET) |
| * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR; |
| } |
| |
| #define VADC_CALIB_UV 625000 |
| #define VBATT_MUL_FACTOR 3 |
| |
| static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv) |
| { |
| s64 numerator, denominator; |
| |
| if (reading_uv == 0) |
| return 0; |
| |
| /* don't adjust if not calibrated */ |
| if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) { |
| pr_debug("No cal yet return %d\n", |
| VBATT_MUL_FACTOR * reading_uv); |
| return VBATT_MUL_FACTOR * reading_uv; |
| } |
| |
| numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV; |
| denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625; |
| if (denominator == 0) |
| return reading_uv * VBATT_MUL_FACTOR; |
| return (VADC_CALIB_UV + div_s64(numerator, denominator)) |
| * VBATT_MUL_FACTOR; |
| } |
| |
| static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip, |
| int unadjusted_vbatt) |
| { |
| int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR; |
| |
| if (scaled_vbatt <= 0) |
| return VADC_INTRINSIC_OFFSET; |
| return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR) |
| + VADC_INTRINSIC_OFFSET; |
| } |
| |
| static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip, |
| uint16_t reading) |
| { |
| int uv; |
| |
| uv = vadc_reading_to_uv(reading); |
| pr_debug("%u raw converted into %d uv\n", reading, uv); |
| uv = adjust_vbatt_reading(chip, uv); |
| pr_debug("adjusted into %d uv\n", uv); |
| return uv; |
| } |
| |
| #define CC_READING_RESOLUTION_N 542535 |
| #define CC_READING_RESOLUTION_D 100000 |
| static int cc_reading_to_uv(int16_t reading) |
| { |
| return div_s64(reading * CC_READING_RESOLUTION_N, |
| CC_READING_RESOLUTION_D); |
| } |
| |
| #define QPNP_ADC_GAIN_IDEAL 3291LL |
| static s64 cc_adjust_for_gain(s64 uv, uint16_t gain) |
| { |
| s64 result_uv; |
| |
| pr_debug("adjusting_uv = %lld\n", uv); |
| if (gain == 0) { |
| pr_debug("gain is %d, not adjusting\n", gain); |
| return uv; |
| } |
| pr_debug("adjusting by factor: %lld/%hu = %lld%%\n", |
| QPNP_ADC_GAIN_IDEAL, gain, |
| div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain)); |
| |
| result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain); |
| pr_debug("result_uv = %lld\n", result_uv); |
| return result_uv; |
| } |
| |
| static int convert_vsense_to_uv(struct qpnp_bms_chip *chip, |
| int16_t reading) |
| { |
| struct qpnp_iadc_calib calibration; |
| |
| qpnp_iadc_get_gain_and_offset(&calibration); |
| return cc_adjust_for_gain(cc_reading_to_uv(reading), |
| calibration.gain_raw - calibration.offset_raw); |
| } |
| |
| static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv) |
| { |
| int rc; |
| int16_t reading; |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&reading, |
| chip->base + BMS1_VSENSE_AVG_DATA0, 2); |
| |
| if (rc) { |
| pr_err("fail to read VSENSE_AVG rc = %d\n", rc); |
| return rc; |
| } |
| |
| *result_uv = convert_vsense_to_uv(chip, reading); |
| return 0; |
| } |
| |
| static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua) |
| { |
| int vsense_uv = 0; |
| |
| if (chip->r_sense_uohm == 0) { |
| pr_err("r_sense is zero\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&chip->bms_output_lock); |
| lock_output_data(chip); |
| read_vsense_avg(chip, &vsense_uv); |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| pr_debug("vsense_uv=%duV\n", vsense_uv); |
| /* cast for signed division */ |
| *result_ua = div_s64((vsense_uv * 1000000LL), (int)chip->r_sense_uohm); |
| pr_debug("ibat=%duA\n", *result_ua); |
| return 0; |
| } |
| |
| static int get_battery_voltage(int *result_uv) |
| { |
| int rc; |
| struct qpnp_vadc_result adc_result; |
| |
| rc = qpnp_vadc_read(VBAT_SNS, &adc_result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| VBAT_SNS, rc); |
| return rc; |
| } |
| pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical, |
| adc_result.measurement); |
| *result_uv = (int)adc_result.physical; |
| return 0; |
| } |
| |
| #define CC_36_BIT_MASK 0xFFFFFFFFFLL |
| |
| static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading) |
| { |
| int64_t raw_reading; |
| int rc; |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading, |
| chip->base + BMS1_CC_DATA0, 5); |
| if (rc) { |
| pr_err("Error reading cc: rc = %d\n", rc); |
| return -ENXIO; |
| } |
| |
| raw_reading = raw_reading & CC_36_BIT_MASK; |
| /* convert 36 bit signed value into 64 signed value */ |
| *reading = (raw_reading >> 35) == 0LL ? |
| raw_reading : ((-1LL ^ CC_36_BIT_MASK) | raw_reading); |
| pr_debug("before conversion: %llx, after conversion: %llx\n", |
| raw_reading, *reading); |
| |
| return 0; |
| } |
| |
| static int calib_vadc(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(REF_625MV, &result); |
| if (rc) { |
| pr_debug("vadc read failed with rc = %d\n", rc); |
| return rc; |
| } |
| chip->vadc_v0625 = result.physical; |
| |
| rc = qpnp_vadc_read(REF_125V, &result); |
| if (rc) { |
| pr_debug("vadc read failed with rc = %d\n", rc); |
| return rc; |
| } |
| chip->vadc_v1250 = result.physical; |
| pr_debug("vadc calib: 0625 = %d, 1250 = %d\n", |
| chip->vadc_v0625, chip->vadc_v1250); |
| return 0; |
| } |
| |
| static void convert_and_store_ocv(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp) |
| { |
| int rc; |
| |
| pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n", |
| chip->prev_last_good_ocv_raw, |
| raw->last_good_ocv_raw); |
| rc = calib_vadc(chip); |
| if (rc) |
| pr_err("Vadc reference voltage read failed, rc = %d\n", rc); |
| chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; |
| raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip, |
| raw->last_good_ocv_raw); |
| chip->last_ocv_uv = raw->last_good_ocv_uv; |
| chip->last_ocv_temp = batt_temp; |
| pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv); |
| } |
| |
| #define CLEAR_CC BIT(7) |
| #define CLEAR_SW_CC BIT(6) |
| /** |
| * reset both cc and sw-cc. |
| * note: this should only be ever called from one thread |
| * or there may be a race condition where CC is never enabled |
| * again |
| */ |
| static void reset_cc(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| pr_debug("resetting cc manually\n"); |
| rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL, |
| CLEAR_CC | CLEAR_SW_CC, |
| CLEAR_CC | CLEAR_SW_CC); |
| if (rc) |
| pr_err("cc reset failed: %d\n", rc); |
| |
| /* wait for 100us for cc to reset */ |
| udelay(100); |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL, |
| CLEAR_CC | CLEAR_SW_CC, 0); |
| if (rc) |
| pr_err("cc reenable failed: %d\n", rc); |
| } |
| |
| #define OCV_RAW_UNINITIALIZED 0xFFFF |
| static int read_soc_params_raw(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp) |
| { |
| int rc; |
| |
| mutex_lock(&chip->bms_output_lock); |
| |
| if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) { |
| /* software workaround for BMS 1.0 |
| * The coulomb counter does not reset upon PON, so reset it |
| * manually upon probe. */ |
| if (chip->revision1 == 0 && chip->revision2 == 0) |
| reset_cc(chip); |
| } |
| |
| lock_output_data(chip); |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw, |
| chip->base + BMS1_OCV_FOR_SOC_DATA0, 2); |
| if (rc) { |
| pr_err("Error reading ocv: rc = %d\n", rc); |
| return -ENXIO; |
| } |
| |
| rc = read_cc_raw(chip, &raw->cc); |
| if (rc) { |
| pr_err("Failed to read raw cc data, rc = %d\n", rc); |
| return rc; |
| } |
| |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) { |
| convert_and_store_ocv(chip, raw, batt_temp); |
| pr_debug("PON_OCV_UV = %d\n", chip->last_ocv_uv); |
| } else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) { |
| convert_and_store_ocv(chip, raw, batt_temp); |
| /* forget the old cc value upon ocv */ |
| chip->last_cc_uah = INT_MIN; |
| } else { |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| } |
| |
| /* fake a high OCV if done charging */ |
| if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) { |
| chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED; |
| chip->cc_reading_at_100 = 0; |
| } else { |
| /* |
| * force 100% ocv by selecting the highest voltage the |
| * battery could ever reach |
| */ |
| raw->last_good_ocv_uv = chip->max_voltage_uv; |
| chip->last_ocv_uv = chip->max_voltage_uv; |
| chip->last_ocv_temp = batt_temp; |
| } |
| pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n", |
| raw->last_good_ocv_raw, raw->last_good_ocv_uv); |
| pr_debug("cc_raw= 0x%llx\n", raw->cc); |
| return 0; |
| } |
| |
| static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv, |
| int batt_temp) |
| { |
| int pc; |
| |
| pc = interpolate_pc(chip->pc_temp_ocv_lut, |
| batt_temp / 10, ocv_uv / 1000); |
| pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n", |
| pc, ocv_uv, batt_temp); |
| /* Multiply the initial FCC value by the scale factor. */ |
| return pc; |
| } |
| |
| static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp) |
| { |
| int fcc_uah; |
| |
| if (chip->adjusted_fcc_temp_lut == NULL) { |
| /* interpolate_fcc returns a mv value. */ |
| fcc_uah = interpolate_fcc(chip->fcc_temp_lut, |
| batt_temp) * 1000; |
| pr_debug("fcc = %d uAh\n", fcc_uah); |
| return fcc_uah; |
| } else { |
| return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut, |
| batt_temp); |
| } |
| } |
| |
| /* calculate remaining charge at the time of ocv */ |
| static int calculate_ocv_charge(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int fcc_uah) |
| { |
| int ocv_uv, pc; |
| |
| ocv_uv = raw->last_good_ocv_uv; |
| pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp); |
| pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc); |
| return (fcc_uah * pc) / 100; |
| } |
| |
| #define CC_RESOLUTION_N 542535 |
| #define CC_RESOLUTION_D 100000 |
| |
| static s64 cc_to_uv(s64 cc) |
| { |
| return div_s64(cc * CC_RESOLUTION_N, CC_RESOLUTION_D); |
| } |
| |
| #define CC_READING_TICKS 56 |
| #define SLEEP_CLK_HZ 32764 |
| #define SECONDS_PER_HOUR 3600 |
| |
| static s64 cc_uv_to_uvh(s64 cc_uv) |
| { |
| return div_s64(cc_uv * CC_READING_TICKS, |
| SLEEP_CLK_HZ * SECONDS_PER_HOUR); |
| } |
| |
| /** |
| * calculate_cc- |
| * @chip: the bms chip pointer |
| * @cc: the cc reading from bms h/w |
| * @val: return value |
| * @coulomb_counter: adjusted coulomb counter for 100% |
| * |
| * RETURNS: in val pointer coulomb counter based charger in uAh |
| * (micro Amp hour) |
| */ |
| static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc) |
| { |
| int64_t cc_voltage_uv, cc_uvh, cc_uah; |
| struct qpnp_iadc_calib calibration; |
| |
| qpnp_iadc_get_gain_and_offset(&calibration); |
| cc_voltage_uv = cc; |
| cc_voltage_uv -= chip->cc_reading_at_100; |
| pr_debug("cc = %lld. after subtracting 0x%llx cc = %lld\n", |
| cc, chip->cc_reading_at_100, |
| cc_voltage_uv); |
| cc_voltage_uv = cc_to_uv(cc_voltage_uv); |
| cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv, |
| calibration.gain_raw |
| - calibration.offset_raw); |
| pr_debug("cc_voltage_uv = %lld uv\n", cc_voltage_uv); |
| cc_uvh = cc_uv_to_uvh(cc_voltage_uv); |
| pr_debug("cc_uvh = %lld micro_volt_hour\n", cc_uvh); |
| cc_uah = div_s64(cc_uvh * 1000000LL, chip->r_sense_uohm); |
| /* cc_raw had 4 bits of extra precision. |
| By now it should be within 32 bit range */ |
| return (int)cc_uah; |
| } |
| |
| static int get_rbatt(struct qpnp_bms_chip *chip, |
| int soc_rbatt_mohm, int batt_temp) |
| { |
| int rbatt_mohm, scalefactor; |
| |
| rbatt_mohm = chip->default_rbatt_mohm; |
| pr_debug("rbatt before scaling = %d\n", rbatt_mohm); |
| if (chip->rbatt_sf_lut == NULL) { |
| pr_debug("RBATT = %d\n", rbatt_mohm); |
| return rbatt_mohm; |
| } |
| /* Convert the batt_temp to DegC from deciDegC */ |
| batt_temp = batt_temp / 10; |
| scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut, |
| batt_temp, soc_rbatt_mohm); |
| pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n", |
| scalefactor, batt_temp, soc_rbatt_mohm); |
| rbatt_mohm = (rbatt_mohm * scalefactor) / 100; |
| |
| rbatt_mohm += chip->r_conn_mohm; |
| pr_debug("adding r_conn_mohm = %d rbatt = %d\n", |
| chip->r_conn_mohm, rbatt_mohm); |
| |
| pr_debug("RBATT = %d\n", rbatt_mohm); |
| return rbatt_mohm; |
| } |
| |
| static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah, |
| int *iavg_ua, int delta_time_s) |
| { |
| int delta_cc_uah = 0; |
| |
| /* if anything fails report the previous iavg_ua */ |
| *iavg_ua = chip->prev_iavg_ua; |
| |
| if (chip->last_cc_uah == INT_MIN) { |
| get_battery_current(chip, iavg_ua); |
| goto out; |
| } |
| |
| /* use the previous iavg if called within 15 seconds */ |
| if (delta_time_s < 15) { |
| *iavg_ua = chip->prev_iavg_ua; |
| goto out; |
| } |
| |
| delta_cc_uah = cc_uah - chip->last_cc_uah; |
| |
| *iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s); |
| |
| out: |
| pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua); |
| /* remember the iavg */ |
| chip->prev_iavg_ua = *iavg_ua; |
| |
| /* remember cc_uah */ |
| chip->last_cc_uah = cc_uah; |
| } |
| |
| static int calculate_termination_uuc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp, int uuc_iavg_ma, |
| int *ret_pc_unusable) |
| { |
| int unusable_uv, pc_unusable, uuc_uah; |
| int i = 0; |
| int ocv_mv; |
| int batt_temp_degc = batt_temp / 10; |
| int rbatt_mohm; |
| int delta_uv; |
| int prev_delta_uv = 0; |
| int prev_rbatt_mohm = 0; |
| int uuc_rbatt_mohm; |
| |
| for (i = 0; i <= 100; i++) { |
| ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut, |
| batt_temp_degc, i); |
| rbatt_mohm = get_rbatt(chip, i, batt_temp); |
| unusable_uv = (rbatt_mohm * uuc_iavg_ma) |
| + (chip->v_cutoff_uv); |
| delta_uv = ocv_mv * 1000 - unusable_uv; |
| |
| pr_debug("soc = %d ocv = %d rbat = %d u_uv = %d delta_v = %d\n", |
| i, ocv_mv, rbatt_mohm, unusable_uv, delta_uv); |
| |
| if (delta_uv > 0) |
| break; |
| |
| prev_delta_uv = delta_uv; |
| prev_rbatt_mohm = rbatt_mohm; |
| } |
| |
| uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv, |
| prev_rbatt_mohm, prev_delta_uv, |
| 0); |
| |
| unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv); |
| |
| pc_unusable = calculate_pc(chip, unusable_uv, batt_temp); |
| uuc_uah = (params->fcc_uah * pc_unusable) / 100; |
| pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d uuc = %d\n", |
| uuc_iavg_ma, |
| uuc_rbatt_mohm, unusable_uv, |
| pc_unusable, uuc_uah); |
| *ret_pc_unusable = pc_unusable; |
| return uuc_uah; |
| } |
| |
| #define TIME_PER_PERCENT_UUC 60 |
| static int adjust_uuc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int new_pc_unusable, |
| int new_uuc_uah, |
| int batt_temp) |
| { |
| int new_unusable_mv, new_iavg_ma; |
| int batt_temp_degc = batt_temp / 10; |
| int max_percent_change; |
| |
| max_percent_change = max(params->delta_time_s |
| / TIME_PER_PERCENT_UUC, 1); |
| |
| if (chip->prev_pc_unusable == -EINVAL |
| || abs(chip->prev_pc_unusable - new_pc_unusable) |
| <= max_percent_change) { |
| chip->prev_pc_unusable = new_pc_unusable; |
| return new_uuc_uah; |
| } |
| |
| /* the uuc is trying to change more than 1% restrict it */ |
| if (new_pc_unusable > chip->prev_pc_unusable) |
| chip->prev_pc_unusable += max_percent_change; |
| else |
| chip->prev_pc_unusable -= max_percent_change; |
| |
| new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100; |
| |
| /* also find update the iavg_ma accordingly */ |
| new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut, |
| batt_temp_degc, chip->prev_pc_unusable); |
| if (new_unusable_mv < chip->v_cutoff_uv/1000) |
| new_unusable_mv = chip->v_cutoff_uv/1000; |
| |
| new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv) |
| / params->rbatt_mohm; |
| if (new_iavg_ma == 0) |
| new_iavg_ma = 1; |
| chip->prev_uuc_iavg_ma = new_iavg_ma; |
| pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n", |
| new_uuc_uah, chip->prev_pc_unusable, |
| new_unusable_mv, new_iavg_ma); |
| |
| return new_uuc_uah; |
| } |
| |
| #define MIN_IAVG_MA 250 |
| #define MIN_SECONDS_FOR_VALID_SAMPLE 20 |
| static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp) |
| { |
| int uuc_uah_iavg; |
| int i; |
| int uuc_iavg_ma = params->iavg_ua / 1000; |
| int pc_unusable; |
| |
| /* |
| * if called first time, fill all the samples with |
| * the shutdown_iavg_ma |
| */ |
| if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) { |
| pr_debug("Using shutdown_iavg_ma = %d in all samples\n", |
| chip->shutdown_iavg_ma); |
| for (i = 0; i < IAVG_SAMPLES; i++) |
| chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma; |
| |
| chip->iavg_index = 0; |
| chip->iavg_num_samples = IAVG_SAMPLES; |
| } |
| |
| /* |
| * if charging use a nominal avg current to keep |
| * a reasonable UUC while charging |
| */ |
| if (uuc_iavg_ma < MIN_IAVG_MA) |
| uuc_iavg_ma = MIN_IAVG_MA; |
| chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma; |
| chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES; |
| chip->iavg_num_samples++; |
| if (chip->iavg_num_samples >= IAVG_SAMPLES) |
| chip->iavg_num_samples = IAVG_SAMPLES; |
| |
| /* now that this sample is added calcualte the average */ |
| uuc_iavg_ma = 0; |
| if (chip->iavg_num_samples != 0) { |
| for (i = 0; i < chip->iavg_num_samples; i++) { |
| pr_debug("iavg_samples_ma[%d] = %d\n", i, |
| chip->iavg_samples_ma[i]); |
| uuc_iavg_ma += chip->iavg_samples_ma[i]; |
| } |
| |
| uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma, |
| chip->iavg_num_samples); |
| } |
| |
| /* |
| * if we're in bms reset mode, force uuc to be 3% of fcc |
| */ |
| if (bms_reset) |
| return (params->fcc_uah * 3) / 100; |
| |
| uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp, |
| uuc_iavg_ma, &pc_unusable); |
| pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n", |
| uuc_iavg_ma, uuc_uah_iavg); |
| |
| chip->prev_uuc_iavg_ma = uuc_iavg_ma; |
| /* restrict the uuc such that it can increase only by one percent */ |
| uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable, |
| uuc_uah_iavg, batt_temp); |
| |
| chip->first_time_calc_uuc = 0; |
| return uuc_uah_iavg; |
| } |
| |
| static void find_ocv_for_soc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp, |
| int shutdown_soc, |
| int *ret_ocv_uv) |
| { |
| s64 ocv_charge_uah; |
| int pc, new_pc; |
| int batt_temp_degc = batt_temp / 10; |
| int ocv_uv; |
| |
| ocv_charge_uah = (s64)shutdown_soc |
| * (params->fcc_uah - params->uuc_uah); |
| ocv_charge_uah = div_s64(ocv_charge_uah, 100) |
| + params->cc_uah + params->uuc_uah; |
| pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah); |
| pc = clamp(pc, 0, 100); |
| |
| ocv_uv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp_degc, pc); |
| |
| pr_debug("s_soc = %d, fcc = %d uuc = %d rc = %d, pc = %d, ocv mv = %d\n", |
| shutdown_soc, params->fcc_uah, |
| params->uuc_uah, (int)ocv_charge_uah, |
| pc, ocv_uv); |
| new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp_degc, ocv_uv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_uv); |
| |
| while (abs(new_pc - pc) > 1) { |
| int delta_mv = 5; |
| |
| if (new_pc > pc) |
| delta_mv = -1 * delta_mv; |
| |
| ocv_uv = ocv_uv + delta_mv; |
| new_pc = interpolate_pc(chip->pc_temp_ocv_lut, |
| batt_temp_degc, ocv_uv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", |
| new_pc, ocv_uv); |
| } |
| |
| *ret_ocv_uv = ocv_uv * 1000; |
| params->ocv_charge_uah = (int)ocv_charge_uah; |
| } |
| |
| static int get_current_time(unsigned long *now_tm_sec) |
| { |
| struct rtc_time tm; |
| struct rtc_device *rtc; |
| int rc; |
| |
| rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); |
| if (rtc == NULL) { |
| pr_err("%s: unable to open rtc device (%s)\n", |
| __FILE__, CONFIG_RTC_HCTOSYS_DEVICE); |
| rc = -EINVAL; |
| goto close_time; |
| } |
| |
| rc = rtc_read_time(rtc, &tm); |
| if (rc) { |
| pr_err("Error reading rtc device (%s) : %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto close_time; |
| } |
| |
| rc = rtc_valid_tm(&tm); |
| if (rc) { |
| pr_err("Invalid RTC time (%s): %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto close_time; |
| } |
| rtc_tm_to_time(&tm, now_tm_sec); |
| |
| close_time: |
| rtc_class_close(rtc); |
| return rc; |
| } |
| |
| static int calculate_delta_time(struct qpnp_bms_chip *chip, int *delta_time_s) |
| { |
| unsigned long now_tm_sec = 0; |
| |
| /* default to delta time = 0 if anything fails */ |
| *delta_time_s = 0; |
| |
| get_current_time(&now_tm_sec); |
| |
| *delta_time_s = (now_tm_sec - chip->tm_sec); |
| pr_debug("tm_sec = %ld, now_tm_sec = %ld delta_s = %d\n", |
| chip->tm_sec, now_tm_sec, *delta_time_s); |
| |
| /* remember this time */ |
| chip->tm_sec = now_tm_sec; |
| return 0; |
| } |
| |
| static void calculate_soc_params(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| struct soc_params *params, |
| int batt_temp) |
| { |
| int soc_rbatt; |
| |
| calculate_delta_time(chip, ¶ms->delta_time_s); |
| params->fcc_uah = calculate_fcc(chip, batt_temp); |
| pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp); |
| |
| /* calculate remainging charge */ |
| params->ocv_charge_uah = calculate_ocv_charge( |
| chip, raw, |
| params->fcc_uah); |
| pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah); |
| |
| /* calculate cc micro_volt_hour */ |
| params->cc_uah = calculate_cc(chip, raw->cc); |
| pr_debug("cc_uah = %duAh raw->cc = %llx cc = %lld after subtracting %llx\n", |
| params->cc_uah, raw->cc, |
| (int64_t)raw->cc - chip->cc_reading_at_100, |
| chip->cc_reading_at_100); |
| |
| soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100) |
| / params->fcc_uah; |
| if (soc_rbatt < 0) |
| soc_rbatt = 0; |
| params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp); |
| |
| calculate_iavg(chip, params->cc_uah, ¶ms->iavg_ua, |
| params->delta_time_s); |
| |
| params->uuc_uah = calculate_unusable_charge_uah(chip, params, |
| batt_temp); |
| pr_debug("UUC = %uuAh\n", params->uuc_uah); |
| } |
| |
| static bool is_shutdown_soc_within_limits(struct qpnp_bms_chip *chip, int soc) |
| { |
| if (chip->shutdown_soc_invalid) { |
| pr_debug("NOT forcing shutdown soc = %d\n", chip->shutdown_soc); |
| return 0; |
| } |
| |
| if (abs(chip->shutdown_soc - soc) > chip->shutdown_soc_valid_limit) { |
| pr_debug("rejecting shutdown soc = %d, soc = %d limit = %d\n", |
| chip->shutdown_soc, soc, |
| chip->shutdown_soc_valid_limit); |
| chip->shutdown_soc_invalid = 1; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| #define BMS_OVERRIDE_MODE_EN_BIT BIT(7) |
| #define EN_VBAT_BIT BIT(0) |
| #define OVERRIDE_MODE_DELAY_MS 20 |
| static int override_mode_batt_v_and_i( |
| struct qpnp_bms_chip *chip, int *ibat_ua, int *vbat_uv) |
| { |
| int16_t vsense_raw, vbat_raw; |
| int vsense_uv, rc; |
| u8 delay; |
| |
| mutex_lock(&chip->bms_output_lock); |
| |
| delay = 0x00; |
| rc = qpnp_write_wrapper(chip, &delay, |
| chip->base + BMS1_S1_DELAY_CTL, 1); |
| if (rc) |
| pr_err("unable to write into BMS1_S1_DELAY, rc: %d\n", rc); |
| |
| rc = qpnp_masked_write(chip, BMS1_MODE_CTL, |
| BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT, |
| BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT); |
| if (rc) |
| pr_err("unable to write into BMS1_MODE_CTL, rc: %d\n", rc); |
| |
| msleep(OVERRIDE_MODE_DELAY_MS); |
| |
| lock_output_data(chip); |
| qpnp_read_wrapper(chip, (u8 *)&vsense_raw, |
| chip->base + BMS1_VSENSE_AVG_DATA0, 2); |
| qpnp_read_wrapper(chip, (u8 *)&vbat_raw, |
| chip->base + BMS1_VBAT_AVG_DATA0, 2); |
| unlock_output_data(chip); |
| |
| rc = qpnp_masked_write(chip, BMS1_MODE_CTL, |
| BMS_OVERRIDE_MODE_EN_BIT | EN_VBAT_BIT, 0); |
| |
| delay = 0x0B; |
| rc = qpnp_write_wrapper(chip, &delay, |
| chip->base + BMS1_S1_DELAY_CTL, 1); |
| if (rc) |
| pr_err("unable to write into BMS1_S1_DELAY, rc: %d\n", rc); |
| |
| mutex_unlock(&chip->bms_output_lock); |
| |
| *vbat_uv = convert_vbatt_raw_to_uv(chip, vbat_raw); |
| vsense_uv = convert_vsense_to_uv(chip, vsense_raw); |
| *ibat_ua = div_s64(vsense_uv * 1000000LL, (int)chip->r_sense_uohm); |
| |
| pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x ibat_ua = %d vbat_uv = %d\n", |
| (uint16_t)vsense_raw, (uint16_t)vbat_raw, |
| *ibat_ua, *vbat_uv); |
| return 0; |
| } |
| |
| static bool is_battery_charging(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the status property */ |
| chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_STATUS, &ret); |
| return ret.intval == POWER_SUPPLY_STATUS_CHARGING; |
| } |
| |
| /* Default to false if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return false; |
| } |
| |
| static bool is_batfet_open(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the status property */ |
| chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_STATUS, &ret); |
| return ret.intval == POWER_SUPPLY_STATUS_FULL; |
| } |
| |
| /* Default to true if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return true; |
| } |
| |
| static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip, |
| int *ibat_ua, int *vbat_uv) |
| { |
| int rc; |
| |
| if (is_batfet_open(chip)) { |
| pr_debug("batfet is open using separate vbat and ibat meas\n"); |
| rc = get_battery_voltage(vbat_uv); |
| if (rc < 0) { |
| pr_err("adc vbat failed err = %d\n", rc); |
| return rc; |
| } |
| rc = get_battery_current(chip, ibat_ua); |
| if (rc < 0) { |
| pr_err("bms ibat failed err = %d\n", rc); |
| return rc; |
| } |
| } else { |
| return override_mode_batt_v_and_i(chip, ibat_ua, vbat_uv); |
| } |
| |
| return 0; |
| } |
| |
| static int bound_soc(int soc) |
| { |
| soc = max(0, soc); |
| soc = min(100, soc); |
| return soc; |
| } |
| |
| #define IBAT_TOL_MASK 0x0F |
| #define OCV_TOL_MASK 0xF0 |
| #define IBAT_TOL_DEFAULT 0x03 |
| #define IBAT_TOL_NOCHG 0x0F |
| #define OCV_TOL_DEFAULT 0x20 |
| #define OCV_TOL_NO_OCV 0x00 |
| static int stop_ocv_updates(struct qpnp_bms_chip *chip) |
| { |
| pr_debug("stopping ocv updates\n"); |
| return qpnp_masked_write(chip, BMS1_TOL_CTL, |
| OCV_TOL_MASK, OCV_TOL_NO_OCV); |
| } |
| |
| static int reset_bms_for_test(struct qpnp_bms_chip *chip) |
| { |
| int ibat_ua, vbat_uv, rc; |
| int ocv_est_uv; |
| |
| if (!chip) { |
| pr_err("BMS driver has not been initialized yet!\n"); |
| return -EINVAL; |
| } |
| |
| rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv); |
| |
| ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000; |
| pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv); |
| chip->last_ocv_uv = ocv_est_uv; |
| chip->last_soc = -EINVAL; |
| reset_cc(chip); |
| chip->last_cc_uah = INT_MIN; |
| stop_ocv_updates(chip); |
| |
| pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n", |
| chip->last_ocv_uv, vbat_uv, ibat_ua); |
| |
| return rc; |
| } |
| |
| static int bms_reset_set(const char *val, const struct kernel_param *kp) |
| { |
| int rc; |
| |
| rc = param_set_bool(val, kp); |
| if (rc) { |
| pr_err("Unable to set bms_reset: %d\n", rc); |
| return rc; |
| } |
| |
| if (*(bool *)kp->arg) { |
| struct power_supply *bms_psy = power_supply_get_by_name("bms"); |
| struct qpnp_bms_chip *chip = container_of(bms_psy, |
| struct qpnp_bms_chip, bms_psy); |
| |
| rc = reset_bms_for_test(chip); |
| if (rc) { |
| pr_err("Unable to modify bms_reset: %d\n", rc); |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static struct kernel_param_ops bms_reset_ops = { |
| .set = bms_reset_set, |
| .get = param_get_bool, |
| }; |
| |
| module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644); |
| |
| static int charging_adjustments(struct qpnp_bms_chip *chip, |
| struct soc_params *params, int soc, |
| int vbat_uv, int ibat_ua, int batt_temp) |
| { |
| int chg_soc; |
| int batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000; |
| |
| if (chip->soc_at_cv == -EINVAL) { |
| /* In constant current charging return the calc soc */ |
| if (batt_terminal_uv <= chip->max_voltage_uv) |
| pr_debug("CC CHG SOC %d\n", soc); |
| |
| /* Note the CC to CV point */ |
| if (batt_terminal_uv >= chip->max_voltage_uv) { |
| chip->soc_at_cv = soc; |
| chip->prev_chg_soc = soc; |
| chip->ibat_at_cv_ua = ibat_ua; |
| pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n", |
| ibat_ua, soc); |
| } |
| return soc; |
| } |
| |
| /* |
| * battery is in CV phase - begin liner inerpolation of soc based on |
| * battery charge current |
| */ |
| |
| /* |
| * if voltage lessened (possibly because of a system load) |
| * keep reporting the prev chg soc |
| */ |
| if (batt_terminal_uv <= chip->max_voltage_uv - 10000) { |
| pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n", |
| batt_terminal_uv, |
| chip->max_voltage_uv, chip->prev_chg_soc); |
| return chip->prev_chg_soc; |
| } |
| |
| chg_soc = linear_interpolate(chip->soc_at_cv, chip->ibat_at_cv_ua, |
| 100, -1 * chip->chg_term_ua, |
| ibat_ua); |
| chg_soc = bound_soc(chg_soc); |
| |
| /* always report a higher soc */ |
| if (chg_soc > chip->prev_chg_soc) { |
| int new_ocv_uv; |
| |
| chip->prev_chg_soc = chg_soc; |
| |
| find_ocv_for_soc(chip, params, batt_temp, chg_soc, &new_ocv_uv); |
| chip->last_ocv_uv = new_ocv_uv; |
| pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n", |
| new_ocv_uv, |
| chip->prev_chg_soc); |
| } |
| |
| pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc); |
| return chip->prev_chg_soc; |
| } |
| |
| static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params, |
| int soc, int batt_temp) |
| { |
| int ibat_ua = 0, vbat_uv = 0; |
| int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0; |
| int delta_ocv_uv = 0; |
| int n = 0; |
| int rc_new_uah = 0; |
| int pc_new = 0; |
| int soc_new = 0; |
| int slope = 0; |
| int rc = 0; |
| int delta_ocv_uv_limit = 0; |
| |
| rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv); |
| if (rc < 0) { |
| pr_err("simultaneous vbat ibat failed err = %d\n", rc); |
| goto out; |
| } |
| |
| delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000); |
| |
| ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000; |
| |
| chip->ibat_max_ua = (ocv_est_uv - chip->v_cutoff_uv) * 1000 |
| / (params->rbatt_mohm); |
| |
| pc_est = calculate_pc(chip, ocv_est_uv, batt_temp); |
| soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100, |
| (s64)params->fcc_uah - params->uuc_uah); |
| soc_est = bound_soc(soc_est); |
| |
| /* never adjust during bms reset mode */ |
| if (bms_reset) { |
| pr_debug("bms reset mode, SOC adjustment skipped\n"); |
| goto out; |
| } |
| |
| if (ibat_ua < 0 && !is_batfet_open(chip)) { |
| soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua, |
| batt_temp); |
| goto out; |
| } |
| |
| /* |
| * do not adjust |
| * if soc is same as what bms calculated |
| * if soc_est is between 45 and 25, this is the flat portion of the |
| * curve where soc_est is not so accurate. We generally don't want to |
| * adjust when soc_est is inaccurate except for the cases when soc is |
| * way far off (higher than 50 or lesser than 20). |
| * Also don't adjust soc if it is above 90 becuase it might be pulled |
| * low and cause a bad user experience |
| */ |
| if (soc_est == soc |
| || (is_between(45, chip->adjust_soc_low_threshold, soc_est) |
| && is_between(50, chip->adjust_soc_low_threshold - 5, soc)) |
| || soc >= 90) |
| goto out; |
| |
| if (chip->last_soc_est == -EINVAL) |
| chip->last_soc_est = soc; |
| |
| n = min(200, max(1 , soc + soc_est + chip->last_soc_est)); |
| chip->last_soc_est = soc_est; |
| |
| pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp); |
| if (pc > 0) { |
| pc_new = calculate_pc(chip, |
| chip->last_ocv_uv - (++slope * 1000), |
| chip->last_ocv_temp); |
| while (pc_new == pc) { |
| /* start taking 10mV steps */ |
| slope = slope + 10; |
| pc_new = calculate_pc(chip, |
| chip->last_ocv_uv - (slope * 1000), |
| chip->last_ocv_temp); |
| } |
| } else { |
| /* |
| * pc is already at the lowest point, |
| * assume 1 millivolt translates to 1% pc |
| */ |
| pc = 1; |
| pc_new = 0; |
| slope = 1; |
| } |
| |
| delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000, |
| n * (pc - pc_new)); |
| |
| if (abs(delta_ocv_uv) > delta_ocv_uv_limit) { |
| pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv, |
| delta_ocv_uv_limit); |
| |
| if (delta_ocv_uv > 0) |
| delta_ocv_uv = delta_ocv_uv_limit; |
| else |
| delta_ocv_uv = -1 * delta_ocv_uv_limit; |
| pr_debug("new delta ocv = %d\n", delta_ocv_uv); |
| } |
| |
| chip->last_ocv_uv -= delta_ocv_uv; |
| |
| if (chip->last_ocv_uv >= chip->max_voltage_uv) |
| chip->last_ocv_uv = chip->max_voltage_uv; |
| |
| /* calculate the soc based on this new ocv */ |
| pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp); |
| rc_new_uah = (params->fcc_uah * pc_new) / 100; |
| soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100 |
| / (params->fcc_uah - params->uuc_uah); |
| soc_new = bound_soc(soc_new); |
| |
| /* |
| * if soc_new is ZERO force it higher so that phone doesnt report soc=0 |
| * soc = 0 should happen only when soc_est == 0 |
| */ |
| if (soc_new == 0 && soc_est != 0) |
| soc_new = 1; |
| |
| soc = soc_new; |
| |
| out: |
| pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n", |
| ibat_ua, vbat_uv, ocv_est_uv, pc_est, |
| soc_est, n, delta_ocv_uv, chip->last_ocv_uv, |
| pc_new, soc_new, params->rbatt_mohm, slope); |
| |
| return soc; |
| } |
| |
| static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc) |
| { |
| int rc, vbat_uv; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(VBAT_SNS, &result); |
| if (rc) { |
| pr_err("error reading vbat_sns adc channel = %d, rc = %d\n", |
| VBAT_SNS, rc); |
| return rc; |
| } |
| |
| vbat_uv = (int)result.physical; |
| if (soc == 0 && vbat_uv > chip->v_cutoff_uv) { |
| pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n", |
| vbat_uv, chip->v_cutoff_uv); |
| return 1; |
| } else if (soc > 0 && vbat_uv < chip->v_cutoff_uv) { |
| pr_debug("forcing soc to 0, vbat (%d) < cutoff (%d)\n", |
| vbat_uv, chip->v_cutoff_uv); |
| return 0; |
| } else { |
| pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n", |
| soc, vbat_uv, chip->v_cutoff_uv); |
| return soc; |
| } |
| } |
| |
| static int calculate_state_of_charge(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp) |
| { |
| int soc, new_ocv_uv; |
| int shutdown_soc, new_calculated_soc, remaining_usable_charge_uah; |
| struct soc_params params; |
| |
| calculate_soc_params(chip, raw, ¶ms, batt_temp); |
| /* calculate remaining usable charge */ |
| remaining_usable_charge_uah = params.ocv_charge_uah |
| - params.cc_uah |
| - params.uuc_uah; |
| |
| pr_debug("RUC = %duAh\n", remaining_usable_charge_uah); |
| if (params.fcc_uah - params.uuc_uah <= 0) { |
| pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n", |
| params.fcc_uah, |
| params.uuc_uah); |
| new_calculated_soc = 0; |
| goto done_calculating; |
| } |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params.fcc_uah - params.uuc_uah)); |
| |
| if (chip->first_time_calc_soc && soc < 0) { |
| /* |
| * first time calcualtion and the pon ocv is too low resulting |
| * in a bad soc. Adjust ocv to get 0 soc |
| */ |
| pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc); |
| find_ocv_for_soc(chip, ¶ms, batt_temp, 0, &new_ocv_uv); |
| chip->last_ocv_uv = new_ocv_uv; |
| |
| remaining_usable_charge_uah = params.ocv_charge_uah |
| - params.cc_uah |
| - params.uuc_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params.fcc_uah |
| - params.uuc_uah)); |
| pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n", |
| soc, chip->last_ocv_uv); |
| } |
| |
| if (soc > 100) |
| soc = 100; |
| |
| if (soc < 0) { |
| pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n", |
| remaining_usable_charge_uah, |
| params.ocv_charge_uah, |
| params.cc_uah, params.uuc_uah); |
| |
| pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n", |
| chip->last_ocv_uv, batt_temp, |
| params.fcc_uah, soc); |
| soc = 0; |
| } |
| |
| mutex_lock(&chip->soc_invalidation_mutex); |
| shutdown_soc = chip->shutdown_soc; |
| |
| if (chip->first_time_calc_soc && soc != shutdown_soc |
| && is_shutdown_soc_within_limits(chip, soc)) { |
| /* |
| * soc for the first time - use shutdown soc |
| * to adjust pon ocv since it is a small percent away from |
| * the real soc |
| */ |
| pr_debug("soc = %d before forcing shutdown_soc = %d\n", |
| soc, shutdown_soc); |
| find_ocv_for_soc(chip, ¶ms, batt_temp, |
| shutdown_soc, &new_ocv_uv); |
| chip->pon_ocv_uv = chip->last_ocv_uv; |
| chip->last_ocv_uv = new_ocv_uv; |
| |
| remaining_usable_charge_uah = params.ocv_charge_uah |
| - params.cc_uah |
| - params.uuc_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params.fcc_uah |
| - params.uuc_uah)); |
| |
| pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n", |
| shutdown_soc, soc, chip->last_ocv_uv); |
| } |
| mutex_unlock(&chip->soc_invalidation_mutex); |
| |
| pr_debug("SOC before adjustment = %d\n", soc); |
| new_calculated_soc = adjust_soc(chip, ¶ms, soc, batt_temp); |
| |
| /* clamp soc due to BMS HW inaccuracies in pm8941v2.0 */ |
| if (chip->revision1 == 0 && chip->revision2 == 0) |
| new_calculated_soc = clamp_soc_based_on_voltage(chip, |
| new_calculated_soc); |
| |
| done_calculating: |
| if (new_calculated_soc != chip->calculated_soc |
| && chip->bms_psy.name != NULL) { |
| power_supply_changed(&chip->bms_psy); |
| pr_debug("power supply changed\n"); |
| } |
| |
| chip->calculated_soc = new_calculated_soc; |
| pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc); |
| chip->first_time_calc_soc = 0; |
| get_current_time(&chip->last_recalc_time); |
| return chip->calculated_soc; |
| } |
| |
| static int read_vbat(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(VBAT_SNS, &result); |
| if (rc) { |
| pr_err("error reading vadc VBAT_SNS = %d, rc = %d\n", |
| VBAT_SNS, rc); |
| return rc; |
| } |
| pr_debug("read %duv from vadc\n", (int)result.physical); |
| return (int)result.physical; |
| } |
| |
| static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip) |
| { |
| int voltage_range_uv, voltage_remaining_uv, voltage_based_soc; |
| int vbat_uv; |
| |
| vbat_uv = read_vbat(chip); |
| |
| voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv; |
| voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv; |
| voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv; |
| |
| voltage_based_soc = clamp(voltage_based_soc, 0, 100); |
| |
| if (chip->prev_voltage_based_soc != voltage_based_soc |
| && chip->bms_psy.name != NULL) { |
| power_supply_changed(&chip->bms_psy); |
| pr_debug("power supply changed\n"); |
| } |
| chip->prev_voltage_based_soc = voltage_based_soc; |
| |
| pr_debug("vbat used = %duv\n", vbat_uv); |
| pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc); |
| return voltage_based_soc; |
| } |
| |
| static int recalculate_soc(struct qpnp_bms_chip *chip) |
| { |
| int batt_temp, rc, soc; |
| struct qpnp_vadc_result result; |
| struct raw_soc_params raw; |
| |
| wake_lock(&chip->soc_wake_lock); |
| if (chip->use_voltage_soc) { |
| soc = calculate_soc_from_voltage(chip); |
| } else { |
| rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result); |
| if (rc) { |
| pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n", |
| LR_MUX1_BATT_THERM, rc); |
| soc = chip->calculated_soc; |
| } else { |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", |
| result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_ocv_uv_mutex); |
| read_soc_params_raw(chip, &raw, batt_temp); |
| soc = calculate_state_of_charge(chip, &raw, batt_temp); |
| mutex_unlock(&chip->last_ocv_uv_mutex); |
| } |
| } |
| wake_unlock(&chip->soc_wake_lock); |
| return soc; |
| } |
| |
| static void calculate_soc_work(struct work_struct *work) |
| { |
| struct qpnp_bms_chip *chip = container_of(work, |
| struct qpnp_bms_chip, |
| calculate_soc_delayed_work.work); |
| int soc = recalculate_soc(chip); |
| |
| if (soc < chip->low_soc_calc_threshold) |
| schedule_delayed_work(&chip->calculate_soc_delayed_work, |
| round_jiffies_relative(msecs_to_jiffies |
| (chip->low_soc_calculate_soc_ms))); |
| else |
| schedule_delayed_work(&chip->calculate_soc_delayed_work, |
| round_jiffies_relative(msecs_to_jiffies |
| (chip->calculate_soc_ms))); |
| } |
| |
| static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp, |
| int soc) |
| { |
| u8 temp; |
| int rc; |
| int iavg_ma = chip->prev_uuc_iavg_ma; |
| |
| if (iavg_ma > IAVG_START) |
| temp = (iavg_ma - IAVG_START) / IAVG_STEP_SIZE_MA; |
| else |
| temp = 0; |
| |
| rc = qpnp_write_wrapper(chip, &temp, |
| chip->base + IAVG_STORAGE_REG, 1); |
| |
| if (soc == 0) |
| temp = SOC_ZERO; |
| else |
| temp = soc; |
| |
| /* don't store soc if temperature is below 5degC */ |
| if (batt_temp > IGNORE_SOC_TEMP_DECIDEG) |
| rc = qpnp_write_wrapper(chip, &temp, |
| chip->base + SOC_STORAGE_REG, 1); |
| } |
| |
| #define SOC_CATCHUP_SEC_MAX 600 |
| #define SOC_CATCHUP_SEC_PER_PERCENT 60 |
| #define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX/SOC_CATCHUP_SEC_PER_PERCENT) |
| static int scale_soc_while_chg(struct qpnp_bms_chip *chip, |
| int delta_time_us, int new_soc, int prev_soc) |
| { |
| int chg_time_sec; |
| int catch_up_sec; |
| int scaled_soc; |
| int numerator; |
| |
| /* |
| * The device must be charging for reporting a higher soc, if |
| * not ignore this soc and continue reporting the prev_soc. |
| * Also don't report a high value immediately slowly scale the |
| * value from prev_soc to the new soc based on a charge time |
| * weighted average |
| */ |
| |
| /* if not charging, return last soc */ |
| if (!is_battery_charging(chip)) |
| return prev_soc; |
| |
| chg_time_sec = DIV_ROUND_UP(chip->charge_time_us, USEC_PER_SEC); |
| catch_up_sec = DIV_ROUND_UP(chip->catch_up_time_us, USEC_PER_SEC); |
| if (catch_up_sec == 0) |
| return new_soc; |
| pr_debug("cts= %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec); |
| |
| /* |
| * if charging for more than catch_up time, simply return |
| * new soc |
| */ |
| if (chg_time_sec > catch_up_sec) |
| return new_soc; |
| |
| numerator = (catch_up_sec - chg_time_sec) * prev_soc |
| + chg_time_sec * new_soc; |
| scaled_soc = numerator / catch_up_sec; |
| |
| pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n", |
| chg_time_sec, new_soc, prev_soc, scaled_soc); |
| |
| return scaled_soc; |
| } |
| |
| /* |
| * bms_fake_battery is set in setups where a battery emulator is used instead |
| * of a real battery. This makes the bms driver report a different/fake value |
| * regardless of the calculated state of charge. |
| */ |
| static int bms_fake_battery = -EINVAL; |
| module_param(bms_fake_battery, int, 0644); |
| |
| static int report_voltage_based_soc(struct qpnp_bms_chip *chip) |
| { |
| pr_debug("Reported voltage based soc = %d\n", |
| chip->prev_voltage_based_soc); |
| return chip->prev_voltage_based_soc; |
| } |
| |
| static int report_cc_based_soc(struct qpnp_bms_chip *chip) |
| { |
| int soc; |
| int delta_time_us; |
| struct timespec now; |
| struct qpnp_vadc_result result; |
| int batt_temp; |
| int rc; |
| |
| soc = chip->calculated_soc; |
| |
| rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result); |
| |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| LR_MUX1_BATT_THERM, rc); |
| return rc; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| do_posix_clock_monotonic_gettime(&now); |
| if (chip->t_soc_queried.tv_sec != 0) { |
| delta_time_us |
| = (now.tv_sec - chip->t_soc_queried.tv_sec) * USEC_PER_SEC |
| + (now.tv_nsec - chip->t_soc_queried.tv_nsec) / 1000; |
| } else { |
| /* calculation for the first time */ |
| delta_time_us = 0; |
| } |
| |
| /* |
| * account for charge time - limit it to SOC_CATCHUP_SEC to |
| * avoid overflows when charging continues for extended periods |
| */ |
| if (is_battery_charging(chip)) { |
| if (chip->charge_time_us == 0) { |
| /* |
| * calculating soc for the first time |
| * after start of chg. Initialize catchup time |
| */ |
| if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC) |
| chip->catch_up_time_us = |
| (soc - chip->last_soc) |
| * SOC_CATCHUP_SEC_PER_PERCENT |
| * USEC_PER_SEC; |
| else |
| chip->catch_up_time_us = |
| SOC_CATCHUP_SEC_MAX * USEC_PER_SEC; |
| |
| if (chip->catch_up_time_us < 0) |
| chip->catch_up_time_us = 0; |
| } |
| |
| /* add charge time */ |
| if (chip->charge_time_us < SOC_CATCHUP_SEC_MAX * USEC_PER_SEC) |
| chip->charge_time_us += delta_time_us; |
| |
| /* end catchup if calculated soc and last soc are same */ |
| if (chip->last_soc == soc) |
| chip->catch_up_time_us = 0; |
| } |
| |
| /* last_soc < soc ... scale and catch up */ |
| if (chip->last_soc != -EINVAL && chip->last_soc < soc && soc != 100) |
| soc = scale_soc_while_chg(chip, delta_time_us, |
| soc, chip->last_soc); |
| |
| pr_debug("last_soc = %d, calculated_soc = %d, soc = %d\n", |
| chip->last_soc, chip->calculated_soc, soc); |
| chip->last_soc = soc; |
| backup_soc_and_iavg(chip, batt_temp, chip->last_soc); |
| pr_debug("Reported SOC = %d\n", chip->last_soc); |
| chip->t_soc_queried = now; |
| |
| return chip->last_soc; |
| } |
| |
| static int report_state_of_charge(struct qpnp_bms_chip *chip) |
| { |
| if (bms_fake_battery != -EINVAL) { |
| pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery); |
| return bms_fake_battery; |
| } else if (chip->use_voltage_soc) |
| return report_voltage_based_soc(chip); |
| else |
| return report_cc_based_soc(chip); |
| } |
| |
| /* Returns capacity as a SoC percentage between 0 and 100 */ |
| static int get_prop_bms_capacity(struct qpnp_bms_chip *chip) |
| { |
| return report_state_of_charge(chip); |
| } |
| |
| /* Returns estimated max current that the battery can supply in uA */ |
| static int get_prop_bms_current_max(struct qpnp_bms_chip *chip) |
| { |
| return chip->ibat_max_ua; |
| } |
| |
| /* Returns instantaneous current in uA */ |
| static int get_prop_bms_current_now(struct qpnp_bms_chip *chip) |
| { |
| int rc, result_ua; |
| |
| rc = get_battery_current(chip, &result_ua); |
| if (rc) { |
| pr_err("failed to get current: %d\n", rc); |
| return rc; |
| } |
| return result_ua; |
| } |
| |
| /* Returns full charge design in uAh */ |
| static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip) |
| { |
| return chip->fcc; |
| } |
| |
| static bool get_prop_bms_online(struct qpnp_bms_chip *chip) |
| { |
| return chip->online; |
| } |
| |
| static int get_prop_bms_status(struct qpnp_bms_chip *chip) |
| { |
| return chip->charger_status; |
| } |
| |
| static void set_prop_bms_online(struct qpnp_bms_chip *chip, bool online) |
| { |
| chip->online = online; |
| } |
| |
| static void set_prop_bms_status(struct qpnp_bms_chip *chip, int status) |
| { |
| chip->charger_status = status; |
| } |
| |
| static void qpnp_bms_external_power_changed(struct power_supply *psy) |
| { |
| } |
| |
| static int qpnp_bms_power_get_property(struct power_supply *psy, |
| enum power_supply_property psp, |
| union power_supply_propval *val) |
| { |
| struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip, |
| bms_psy); |
| |
| switch (psp) { |
| case POWER_SUPPLY_PROP_CAPACITY: |
| val->intval = get_prop_bms_capacity(chip); |
| break; |
| case POWER_SUPPLY_PROP_CURRENT_NOW: |
| val->intval = get_prop_bms_current_now(chip); |
| break; |
| case POWER_SUPPLY_PROP_CURRENT_MAX: |
| val->intval = get_prop_bms_current_max(chip); |
| break; |
| case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: |
| val->intval = get_prop_bms_charge_full_design(chip); |
| break; |
| case POWER_SUPPLY_PROP_STATUS: |
| val->intval = get_prop_bms_status(chip); |
| break; |
| case POWER_SUPPLY_PROP_ONLINE: |
| val->intval = get_prop_bms_online(chip); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int qpnp_bms_power_set_property(struct power_supply *psy, |
| enum power_supply_property psp, |
| const union power_supply_propval *val) |
| { |
| struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip, |
| bms_psy); |
| |
| switch (psp) { |
| case POWER_SUPPLY_PROP_ONLINE: |
| set_prop_bms_online(chip, val->intval); |
| break; |
| case POWER_SUPPLY_PROP_STATUS: |
| set_prop_bms_status(chip, (bool)val->intval); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| #define OCV_USE_LIMIT_EN BIT(7) |
| static int set_ocv_voltage_thresholds(struct qpnp_bms_chip *chip, |
| int low_voltage_threshold, |
| int high_voltage_threshold) |
| { |
| uint16_t low_voltage_raw, high_voltage_raw; |
| int rc; |
| |
| low_voltage_raw = convert_vbatt_uv_to_raw(chip, |
| low_voltage_threshold); |
| high_voltage_raw = convert_vbatt_uv_to_raw(chip, |
| high_voltage_threshold); |
| rc = qpnp_write_wrapper(chip, (u8 *)&low_voltage_raw, |
| chip->base + BMS1_OCV_USE_LOW_LIMIT_THR0, 2); |
| if (rc) { |
| pr_err("Failed to set ocv low voltage threshold: %d\n", rc); |
| return rc; |
| } |
| rc = qpnp_write_wrapper(chip, (u8 *)&high_voltage_raw, |
| chip->base + BMS1_OCV_USE_HIGH_LIMIT_THR0, 2); |
| if (rc) { |
| pr_err("Failed to set ocv high voltage threshold: %d\n", rc); |
| return rc; |
| } |
| rc = qpnp_masked_write(chip, BMS1_OCV_USE_LIMIT_CTL, |
| OCV_USE_LIMIT_EN, OCV_USE_LIMIT_EN); |
| if (rc) { |
| pr_err("Failed to enabled ocv voltage thresholds: %d\n", rc); |
| return rc; |
| } |
| pr_debug("ocv low threshold set to %d uv or 0x%x raw\n", |
| low_voltage_threshold, low_voltage_raw); |
| pr_debug("ocv high threshold set to %d uv or 0x%x raw\n", |
| high_voltage_threshold, high_voltage_raw); |
| return 0; |
| } |
| |
| static void read_shutdown_soc_and_iavg(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| u8 temp; |
| |
| if (chip->ignore_shutdown_soc) { |
| chip->shutdown_soc_invalid = 1; |
| chip->shutdown_soc = 0; |
| chip->shutdown_iavg_ma = 0; |
| } else { |
| rc = qpnp_read_wrapper(chip, &temp, |
| chip->base + IAVG_STORAGE_REG, 1); |
| if (rc) { |
| pr_err("failed to read addr = %d %d assuming %d\n", |
| chip->base + IAVG_STORAGE_REG, rc, |
| IAVG_START); |
| chip->shutdown_iavg_ma = IAVG_START; |
| } else { |
| if (temp == 0) { |
| chip->shutdown_iavg_ma = IAVG_START; |
| } else { |
| chip->shutdown_iavg_ma = IAVG_START |
| + IAVG_STEP_SIZE_MA * (temp + 1); |
| } |
| } |
| |
| rc = qpnp_read_wrapper(chip, &temp, |
| chip->base + SOC_STORAGE_REG, 1); |
| if (rc) { |
| pr_err("failed to read addr = %d %d\n", |
| chip->base + SOC_STORAGE_REG, rc); |
| } else { |
| chip->shutdown_soc = temp; |
| |
| if (chip->shutdown_soc == 0) { |
| pr_debug("No shutdown soc available\n"); |
| chip->shutdown_soc_invalid = 1; |
| chip->shutdown_iavg_ma = 0; |
| } else if (chip->shutdown_soc == SOC_ZERO) { |
| chip->shutdown_soc = 0; |
| } |
| } |
| } |
| |
| pr_debug("shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d\n", |
| chip->shutdown_soc, |
| chip->shutdown_iavg_ma, |
| chip->shutdown_soc_invalid); |
| } |
| |
| #define PALLADIUM_ID_MIN 0x7F40 |
| #define PALLADIUM_ID_MAX 0x7F5A |
| #define DESAY_5200_ID_MIN 0x7F7F |
| #define DESAY_5200_ID_MAX 0x802F |
| static int32_t read_battery_id(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(LR_MUX2_BAT_ID, &result); |
| if (rc) { |
| pr_err("error reading batt id channel = %d, rc = %d\n", |
| LR_MUX2_BAT_ID, rc); |
| return rc; |
| } |
| pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| pr_debug("raw_code = 0x%x\n", result.adc_code); |
| return result.adc_code; |
| } |
| |
| static int set_battery_data(struct qpnp_bms_chip *chip) |
| { |
| int64_t battery_id; |
| struct bms_battery_data *batt_data; |
| |
| if (chip->batt_type == BATT_DESAY) { |
| batt_data = &desay_5200_data; |
| } else if (chip->batt_type == BATT_PALLADIUM) { |
| batt_data = &palladium_1500_data; |
| } else if (chip->batt_type == BATT_OEM) { |
| batt_data = &oem_batt_data; |
| } else { |
| battery_id = read_battery_id(chip); |
| if (battery_id < 0) { |
| pr_err("cannot read battery id err = %lld\n", |
| battery_id); |
| return battery_id; |
| } |
| |
| if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, |
| battery_id)) { |
| batt_data = &palladium_1500_data; |
| } else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX, |
| battery_id)) { |
| batt_data = &desay_5200_data; |
| } else { |
| pr_warn("invalid battid, palladium 1500 assumed batt_id %llx\n", |
| battery_id); |
| batt_data = &palladium_1500_data; |
| } |
| } |
| |
| chip->fcc = batt_data->fcc; |
| chip->fcc_temp_lut = batt_data->fcc_temp_lut; |
| chip->fcc_sf_lut = batt_data->fcc_sf_lut; |
| chip->pc_temp_ocv_lut = batt_data->pc_temp_ocv_lut; |
| chip->pc_sf_lut = batt_data->pc_sf_lut; |
| chip->rbatt_sf_lut = batt_data->rbatt_sf_lut; |
| chip->default_rbatt_mohm = batt_data->default_rbatt_mohm; |
| |
| if (chip->pc_temp_ocv_lut == NULL) { |
| pr_err("temp ocv lut table is NULL\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| #define SPMI_PROP_READ(chip_prop, qpnp_spmi_property, retval) \ |
| do { \ |
| retval = of_property_read_u32(chip->spmi->dev.of_node, \ |
| "qcom," qpnp_spmi_property, \ |
| &chip->chip_prop); \ |
| if (retval) { \ |
| pr_err("Error reading " #qpnp_spmi_property \ |
| " property %d\n", rc); \ |
| return -EINVAL; \ |
| } \ |
| } while (0) |
| |
| static inline int bms_read_properties(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| SPMI_PROP_READ(r_sense_uohm, "r-sense-uohm", rc); |
| SPMI_PROP_READ(v_cutoff_uv, "v-cutoff-uv", rc); |
| SPMI_PROP_READ(max_voltage_uv, "max-voltage-uv", rc); |
| SPMI_PROP_READ(r_conn_mohm, "r-conn-mohm", rc); |
| SPMI_PROP_READ(chg_term_ua, "chg-term-ua", rc); |
| SPMI_PROP_READ(shutdown_soc_valid_limit, |
| "shutdown-soc-valid-limit", rc); |
| SPMI_PROP_READ(adjust_soc_high_threshold, |
| "adjust-soc-high-threshold", rc); |
| SPMI_PROP_READ(adjust_soc_low_threshold, |
| "adjust-soc-low-threshold", rc); |
| SPMI_PROP_READ(batt_type, "batt-type", rc); |
| SPMI_PROP_READ(low_soc_calc_threshold, |
| "low-soc-calculate-soc-threshold", rc); |
| SPMI_PROP_READ(low_soc_calculate_soc_ms, |
| "low-soc-calculate-soc-ms", rc); |
| SPMI_PROP_READ(calculate_soc_ms, "calculate-soc-ms", rc); |
| chip->use_external_rsense = of_property_read_bool( |
| chip->spmi->dev.of_node, |
| "qcom,use-external-rsense"); |
| chip->ignore_shutdown_soc = of_property_read_bool( |
| chip->spmi->dev.of_node, |
| "qcom,ignore-shutdown-soc"); |
| chip->use_voltage_soc = of_property_read_bool(chip->spmi->dev.of_node, |
| "qcom,use-voltage-soc"); |
| chip->use_ocv_thresholds = of_property_read_bool( |
| chip->spmi->dev.of_node, |
| "qcom,use-ocv-thresholds"); |
| SPMI_PROP_READ(ocv_high_threshold_uv, |
| "ocv-voltage-high-threshold-uv", rc); |
| SPMI_PROP_READ(ocv_low_threshold_uv, |
| "ocv-voltage-low-threshold-uv", rc); |
| |
| if (chip->adjust_soc_low_threshold >= 45) |
| chip->adjust_soc_low_threshold = 45; |
| |
| pr_debug("dts data: r_sense_uohm:%d, v_cutoff_uv:%d, max_v:%d\n", |
| chip->r_sense_uohm, chip->v_cutoff_uv, |
| chip->max_voltage_uv); |
| pr_debug("r_conn:%d, shutdown_soc: %d, adjust_soc_low:%d\n", |
| chip->r_conn_mohm, chip->shutdown_soc_valid_limit, |
| chip->adjust_soc_low_threshold); |
| pr_debug("adjust_soc_high:%d, chg_term_ua:%d, batt_type:%d\n", |
| chip->adjust_soc_high_threshold, chip->chg_term_ua, |
| chip->batt_type); |
| pr_debug("ignore_shutdown_soc:%d, use_voltage_soc:%d\n", |
| chip->ignore_shutdown_soc, chip->use_voltage_soc); |
| pr_debug("use external rsense: %d\n", chip->use_external_rsense); |
| return 0; |
| } |
| |
| static inline void bms_initialize_constants(struct qpnp_bms_chip *chip) |
| { |
| chip->prev_pc_unusable = -EINVAL; |
| chip->soc_at_cv = -EINVAL; |
| chip->calculated_soc = -EINVAL; |
| chip->last_soc = -EINVAL; |
| chip->last_soc_est = -EINVAL; |
| chip->last_cc_uah = INT_MIN; |
| chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED; |
| chip->prev_last_good_ocv_raw = OCV_RAW_UNINITIALIZED; |
| chip->first_time_calc_soc = 1; |
| chip->first_time_calc_uuc = 1; |
| } |
| |
| #define REG_OFFSET_PERP_TYPE 0x04 |
| #define REG_OFFSET_PERP_SUBTYPE 0x05 |
| #define BMS_BMS_TYPE 0xD |
| #define BMS_BMS_SUBTYPE 0x1 |
| #define BMS_IADC_TYPE 0x8 |
| #define BMS_IADC_SUBTYPE 0x3 |
| |
| static int register_spmi(struct qpnp_bms_chip *chip, struct spmi_device *spmi) |
| { |
| struct spmi_resource *spmi_resource; |
| struct resource *resource; |
| int rc; |
| u8 type, subtype; |
| |
| chip->dev = &(spmi->dev); |
| chip->spmi = spmi; |
| |
| spmi_for_each_container_dev(spmi_resource, spmi) { |
| if (!spmi_resource) { |
| pr_err("qpnp_bms: spmi resource absent\n"); |
| return -ENXIO; |
| } |
| |
| resource = spmi_get_resource(spmi, spmi_resource, |
| IORESOURCE_MEM, 0); |
| if (!(resource && resource->start)) { |
| pr_err("node %s IO resource absent!\n", |
| spmi->dev.of_node->full_name); |
| return -ENXIO; |
| } |
| |
| rc = qpnp_read_wrapper(chip, &type, |
| resource->start + REG_OFFSET_PERP_TYPE, 1); |
| if (rc) { |
| pr_err("Peripheral type read failed rc=%d\n", rc); |
| return rc; |
| } |
| rc = qpnp_read_wrapper(chip, &subtype, |
| resource->start + REG_OFFSET_PERP_SUBTYPE, 1); |
| if (rc) { |
| pr_err("Peripheral subtype read failed rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (type == BMS_BMS_TYPE && subtype == BMS_BMS_SUBTYPE) { |
| chip->base = resource->start; |
| } else if (type == BMS_IADC_TYPE |
| && subtype == BMS_IADC_SUBTYPE) { |
| chip->iadc_base = resource->start; |
| } else { |
| pr_err("Invalid peripheral start=0x%x type=0x%x, subtype=0x%x\n", |
| resource->start, type, subtype); |
| } |
| } |
| |
| if (chip->base == 0) { |
| dev_err(&spmi->dev, "BMS peripheral was not registered\n"); |
| return -EINVAL; |
| } |
| if (chip->iadc_base == 0) { |
| dev_err(&spmi->dev, "BMS_IADC peripheral was not registered\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #define ADC_CH_SEL_MASK 0x7 |
| static int read_iadc_channel_select(struct qpnp_bms_chip *chip) |
| { |
| u8 iadc_channel_select; |
| int32_t rds_rsense_nohm; |
| int rc; |
| |
| rc = qpnp_read_wrapper(chip, &iadc_channel_select, |
| chip->iadc_base + IADC1_BMS_ADC_CH_SEL_CTL, 1); |
| if (rc) { |
| pr_err("Error reading bms_iadc channel register %d\n", rc); |
| return rc; |
| } |
| |
| iadc_channel_select &= ADC_CH_SEL_MASK; |
| if (iadc_channel_select != EXTERNAL_RSENSE |
| && iadc_channel_select != INTERNAL_RSENSE) { |
| pr_err("IADC1_BMS_IADC configured incorrectly. Selected channel = %d\n", |
| iadc_channel_select); |
| return -EINVAL; |
| } |
| |
| if (chip->use_external_rsense) { |
| pr_debug("External rsense selected\n"); |
| if (iadc_channel_select == INTERNAL_RSENSE) { |
| pr_debug("Internal rsense detected; Changing rsense to external\n"); |
| rc = qpnp_masked_write_iadc(chip, |
| IADC1_BMS_ADC_CH_SEL_CTL, |
| ADC_CH_SEL_MASK, |
| EXTERNAL_RSENSE); |
| if (rc) { |
| pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n", |
| IADC1_BMS_ADC_CH_SEL_CTL, |
| EXTERNAL_RSENSE, rc); |
| return rc; |
| } |
| reset_cc(chip); |
| } |
| } else { |
| pr_debug("Internal rsense selected\n"); |
| if (iadc_channel_select == EXTERNAL_RSENSE) { |
| pr_debug("External rsense detected; Changing rsense to internal\n"); |
| rc = qpnp_masked_write_iadc(chip, |
| IADC1_BMS_ADC_CH_SEL_CTL, |
| ADC_CH_SEL_MASK, |
| INTERNAL_RSENSE); |
| if (rc) { |
| pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n", |
| IADC1_BMS_ADC_CH_SEL_CTL, |
| INTERNAL_RSENSE, rc); |
| return rc; |
| } |
| reset_cc(chip); |
| } |
| |
| rc = qpnp_iadc_get_rsense(&rds_rsense_nohm); |
| if (rc) { |
| pr_err("Unable to read RDS resistance value from IADC; rc = %d\n", |
| rc); |
| return rc; |
| } |
| chip->r_sense_uohm = rds_rsense_nohm/1000; |
| pr_debug("rds_rsense = %d nOhm, saved as %d uOhm\n", |
| rds_rsense_nohm, chip->r_sense_uohm); |
| } |
| return 0; |
| } |
| |
| static int __devinit qpnp_bms_probe(struct spmi_device *spmi) |
| { |
| struct qpnp_bms_chip *chip; |
| int rc, vbatt; |
| |
| chip = kzalloc(sizeof *chip, GFP_KERNEL); |
| |
| if (chip == NULL) { |
| pr_err("kzalloc() failed.\n"); |
| return -ENOMEM; |
| } |
| |
| rc = qpnp_vadc_is_ready(); |
| if (rc) { |
| pr_info("vadc not ready: %d, deferring probe\n", rc); |
| goto error_read; |
| } |
| |
| rc = qpnp_iadc_is_ready(); |
| if (rc) { |
| pr_info("iadc not ready: %d, deferring probe\n", rc); |
| goto error_read; |
| } |
| |
| rc = register_spmi(chip, spmi); |
| if (rc) { |
| pr_err("error registering spmi resource %d\n", rc); |
| goto error_resource; |
| } |
| |
| rc = qpnp_read_wrapper(chip, &chip->revision1, |
| chip->base + BMS1_REVISION1, 1); |
| if (rc) { |
| pr_err("error reading version register %d\n", rc); |
| goto error_read; |
| } |
| |
| rc = qpnp_read_wrapper(chip, &chip->revision2, |
| chip->base + BMS1_REVISION2, 1); |
| if (rc) { |
| pr_err("Error reading version register %d\n", rc); |
| goto error_read; |
| } |
| pr_debug("BMS version: %hhu.%hhu\n", chip->revision2, chip->revision1); |
| |
| rc = bms_read_properties(chip); |
| if (rc) { |
| pr_err("Unable to read all bms properties, rc = %d\n", rc); |
| goto error_read; |
| } |
| |
| rc = read_iadc_channel_select(chip); |
| if (rc) { |
| pr_err("Unable to get iadc selected channel = %d\n", rc); |
| goto error_read; |
| } |
| |
| if (chip->use_ocv_thresholds) { |
| rc = set_ocv_voltage_thresholds(chip, |
| chip->ocv_low_threshold_uv, |
| chip->ocv_high_threshold_uv); |
| if (rc) { |
| pr_err("Could not set ocv voltage thresholds: %d\n", |
| rc); |
| goto error_read; |
| } |
| } |
| |
| rc = set_battery_data(chip); |
| if (rc) { |
| pr_err("Bad battery data %d\n", rc); |
| goto error_read; |
| } |
| |
| bms_initialize_constants(chip); |
| |
| mutex_init(&chip->bms_output_lock); |
| mutex_init(&chip->last_ocv_uv_mutex); |
| mutex_init(&chip->soc_invalidation_mutex); |
| |
| wake_lock_init(&chip->soc_wake_lock, WAKE_LOCK_SUSPEND, |
| "qpnp_soc_lock"); |
| INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work, |
| calculate_soc_work); |
| |
| read_shutdown_soc_and_iavg(chip); |
| |
| dev_set_drvdata(&spmi->dev, chip); |
| device_init_wakeup(&spmi->dev, 1); |
| |
| calculate_soc_work(&(chip->calculate_soc_delayed_work.work)); |
| |
| /* setup & register the battery power supply */ |
| chip->bms_psy.name = "bms"; |
| chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS; |
| chip->bms_psy.properties = msm_bms_power_props; |
| chip->bms_psy.num_properties = ARRAY_SIZE(msm_bms_power_props); |
| chip->bms_psy.get_property = qpnp_bms_power_get_property; |
| chip->bms_psy.set_property = qpnp_bms_power_set_property; |
| chip->bms_psy.external_power_changed = |
| qpnp_bms_external_power_changed; |
| chip->bms_psy.supplied_to = qpnp_bms_supplicants; |
| chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_bms_supplicants); |
| |
| rc = power_supply_register(chip->dev, &chip->bms_psy); |
| |
| if (rc < 0) { |
| pr_err("power_supply_register bms failed rc = %d\n", rc); |
| goto unregister_dc; |
| } |
| |
| vbatt = 0; |
| get_battery_voltage(&vbatt); |
| |
| pr_info("probe success: soc =%d vbatt = %d ocv = %d r_sense_uohm = %u\n", |
| get_prop_bms_capacity(chip), |
| vbatt, chip->last_ocv_uv, chip->r_sense_uohm); |
| return 0; |
| |
| unregister_dc: |
| wake_lock_destroy(&chip->soc_wake_lock); |
| power_supply_unregister(&chip->bms_psy); |
| dev_set_drvdata(&spmi->dev, NULL); |
| error_resource: |
| error_read: |
| kfree(chip); |
| return rc; |
| } |
| |
| static int __devexit |
| qpnp_bms_remove(struct spmi_device *spmi) |
| { |
| struct qpnp_bms_chip *chip = dev_get_drvdata(&spmi->dev); |
| |
| dev_set_drvdata(&spmi->dev, NULL); |
| kfree(chip); |
| return 0; |
| } |
| |
| static int bms_resume(struct device *dev) |
| { |
| int rc; |
| unsigned long soc_calc_period; |
| unsigned long time_since_last_recalc; |
| unsigned long tm_now_sec; |
| struct qpnp_bms_chip *chip = dev_get_drvdata(dev); |
| |
| rc = get_current_time(&tm_now_sec); |
| if (rc) { |
| pr_err("Could not read current time: %d\n", rc); |
| } else if (tm_now_sec > chip->last_recalc_time) { |
| time_since_last_recalc = tm_now_sec - chip->last_recalc_time; |
| pr_debug("Time since last recalc: %lu\n", |
| time_since_last_recalc); |
| if (chip->calculated_soc < chip->low_soc_calc_threshold) |
| soc_calc_period = chip->low_soc_calculate_soc_ms; |
| else |
| soc_calc_period = chip->calculate_soc_ms; |
| |
| if (time_since_last_recalc >= soc_calc_period) { |
| chip->last_recalc_time = tm_now_sec; |
| recalculate_soc(chip); |
| } |
| } |
| return 0; |
| } |
| |
| static const struct dev_pm_ops qpnp_bms_pm_ops = { |
| .resume = bms_resume, |
| }; |
| |
| static struct spmi_driver qpnp_bms_driver = { |
| .probe = qpnp_bms_probe, |
| .remove = __devexit_p(qpnp_bms_remove), |
| .driver = { |
| .name = QPNP_BMS_DEV_NAME, |
| .owner = THIS_MODULE, |
| .of_match_table = qpnp_bms_match_table, |
| .pm = &qpnp_bms_pm_ops, |
| }, |
| }; |
| |
| static int __init qpnp_bms_init(void) |
| { |
| pr_info("QPNP BMS INIT\n"); |
| return spmi_driver_register(&qpnp_bms_driver); |
| } |
| |
| static void __exit qpnp_bms_exit(void) |
| { |
| pr_info("QPNP BMS EXIT\n"); |
| return spmi_driver_unregister(&qpnp_bms_driver); |
| } |
| |
| module_init(qpnp_bms_init); |
| module_exit(qpnp_bms_exit); |
| |
| MODULE_DESCRIPTION("QPNP BMS Driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:" QPNP_BMS_DEV_NAME); |