| /* |
| * |
| * Copyright (c) 1993 Ning and David Mosberger. |
| |
| This is based on code originally written by Bas Laarhoven (bas@vimec.nl) |
| and David L. Brown, Jr., and incorporates improvements suggested by |
| Kai Harrekilde-Petersen. |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2, or (at |
| your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING. If not, write to |
| the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, |
| USA. |
| |
| * |
| * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-ecc.c,v $ |
| * $Revision: 1.3 $ |
| * $Date: 1997/10/05 19:18:10 $ |
| * |
| * This file contains the Reed-Solomon error correction code |
| * for the QIC-40/80 floppy-tape driver for Linux. |
| */ |
| |
| #include <linux/ftape.h> |
| |
| #include "../lowlevel/ftape-tracing.h" |
| #include "../lowlevel/ftape-ecc.h" |
| |
| /* Machines that are big-endian should define macro BIG_ENDIAN. |
| * Unfortunately, there doesn't appear to be a standard include file |
| * that works for all OSs. |
| */ |
| |
| #if defined(__sparc__) || defined(__hppa) |
| #define BIG_ENDIAN |
| #endif /* __sparc__ || __hppa */ |
| |
| #if defined(__mips__) |
| #error Find a smart way to determine the Endianness of the MIPS CPU |
| #endif |
| |
| /* Notice: to minimize the potential for confusion, we use r to |
| * denote the independent variable of the polynomials in the |
| * Galois Field GF(2^8). We reserve x for polynomials that |
| * that have coefficients in GF(2^8). |
| * |
| * The Galois Field in which coefficient arithmetic is performed are |
| * the polynomials over Z_2 (i.e., 0 and 1) modulo the irreducible |
| * polynomial f(r), where f(r)=r^8 + r^7 + r^2 + r + 1. A polynomial |
| * is represented as a byte with the MSB as the coefficient of r^7 and |
| * the LSB as the coefficient of r^0. For example, the binary |
| * representation of f(x) is 0x187 (of course, this doesn't fit into 8 |
| * bits). In this field, the polynomial r is a primitive element. |
| * That is, r^i with i in 0,...,255 enumerates all elements in the |
| * field. |
| * |
| * The generator polynomial for the QIC-80 ECC is |
| * |
| * g(x) = x^3 + r^105*x^2 + r^105*x + 1 |
| * |
| * which can be factored into: |
| * |
| * g(x) = (x-r^-1)(x-r^0)(x-r^1) |
| * |
| * the byte representation of the coefficients are: |
| * |
| * r^105 = 0xc0 |
| * r^-1 = 0xc3 |
| * r^0 = 0x01 |
| * r^1 = 0x02 |
| * |
| * Notice that r^-1 = r^254 as exponent arithmetic is performed |
| * modulo 2^8-1 = 255. |
| * |
| * For more information on Galois Fields and Reed-Solomon codes, refer |
| * to any good book. I found _An Introduction to Error Correcting |
| * Codes with Applications_ by S. A. Vanstone and P. C. van Oorschot |
| * to be a good introduction into the former. _CODING THEORY: The |
| * Essentials_ I found very useful for its concise description of |
| * Reed-Solomon encoding/decoding. |
| * |
| */ |
| |
| typedef __u8 Matrix[3][3]; |
| |
| /* |
| * gfpow[] is defined such that gfpow[i] returns r^i if |
| * i is in the range [0..255]. |
| */ |
| static const __u8 gfpow[] = |
| { |
| 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4, |
| 0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, |
| 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd, |
| 0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, |
| 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67, |
| 0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, |
| 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b, |
| 0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, |
| 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26, |
| 0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, |
| 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba, |
| 0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, |
| 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, |
| 0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, |
| 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a, |
| 0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, |
| 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44, |
| 0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, |
| 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85, |
| 0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, |
| 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf, |
| 0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, |
| 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58, |
| 0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, |
| 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24, |
| 0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, |
| 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64, |
| 0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, |
| 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda, |
| 0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, |
| 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01 |
| }; |
| |
| /* |
| * This is a log table. That is, gflog[r^i] returns i (modulo f(r)). |
| * gflog[0] is undefined and the first element is therefore not valid. |
| */ |
| static const __u8 gflog[256] = |
| { |
| 0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, |
| 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a, |
| 0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, |
| 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3, |
| 0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, |
| 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4, |
| 0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, |
| 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38, |
| 0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, |
| 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48, |
| 0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, |
| 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15, |
| 0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, |
| 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10, |
| 0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, |
| 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b, |
| 0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, |
| 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a, |
| 0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, |
| 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb, |
| 0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, |
| 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf, |
| 0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, |
| 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86, |
| 0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, |
| 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc, |
| 0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, |
| 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44, |
| 0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, |
| 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97, |
| 0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, |
| 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7 |
| }; |
| |
| /* This is a multiplication table for the factor 0xc0 (i.e., r^105 (mod f(r)). |
| * gfmul_c0[f] returns r^105 * f(r) (modulo f(r)). |
| */ |
| static const __u8 gfmul_c0[256] = |
| { |
| 0x00, 0xc0, 0x07, 0xc7, 0x0e, 0xce, 0x09, 0xc9, |
| 0x1c, 0xdc, 0x1b, 0xdb, 0x12, 0xd2, 0x15, 0xd5, |
| 0x38, 0xf8, 0x3f, 0xff, 0x36, 0xf6, 0x31, 0xf1, |
| 0x24, 0xe4, 0x23, 0xe3, 0x2a, 0xea, 0x2d, 0xed, |
| 0x70, 0xb0, 0x77, 0xb7, 0x7e, 0xbe, 0x79, 0xb9, |
| 0x6c, 0xac, 0x6b, 0xab, 0x62, 0xa2, 0x65, 0xa5, |
| 0x48, 0x88, 0x4f, 0x8f, 0x46, 0x86, 0x41, 0x81, |
| 0x54, 0x94, 0x53, 0x93, 0x5a, 0x9a, 0x5d, 0x9d, |
| 0xe0, 0x20, 0xe7, 0x27, 0xee, 0x2e, 0xe9, 0x29, |
| 0xfc, 0x3c, 0xfb, 0x3b, 0xf2, 0x32, 0xf5, 0x35, |
| 0xd8, 0x18, 0xdf, 0x1f, 0xd6, 0x16, 0xd1, 0x11, |
| 0xc4, 0x04, 0xc3, 0x03, 0xca, 0x0a, 0xcd, 0x0d, |
| 0x90, 0x50, 0x97, 0x57, 0x9e, 0x5e, 0x99, 0x59, |
| 0x8c, 0x4c, 0x8b, 0x4b, 0x82, 0x42, 0x85, 0x45, |
| 0xa8, 0x68, 0xaf, 0x6f, 0xa6, 0x66, 0xa1, 0x61, |
| 0xb4, 0x74, 0xb3, 0x73, 0xba, 0x7a, 0xbd, 0x7d, |
| 0x47, 0x87, 0x40, 0x80, 0x49, 0x89, 0x4e, 0x8e, |
| 0x5b, 0x9b, 0x5c, 0x9c, 0x55, 0x95, 0x52, 0x92, |
| 0x7f, 0xbf, 0x78, 0xb8, 0x71, 0xb1, 0x76, 0xb6, |
| 0x63, 0xa3, 0x64, 0xa4, 0x6d, 0xad, 0x6a, 0xaa, |
| 0x37, 0xf7, 0x30, 0xf0, 0x39, 0xf9, 0x3e, 0xfe, |
| 0x2b, 0xeb, 0x2c, 0xec, 0x25, 0xe5, 0x22, 0xe2, |
| 0x0f, 0xcf, 0x08, 0xc8, 0x01, 0xc1, 0x06, 0xc6, |
| 0x13, 0xd3, 0x14, 0xd4, 0x1d, 0xdd, 0x1a, 0xda, |
| 0xa7, 0x67, 0xa0, 0x60, 0xa9, 0x69, 0xae, 0x6e, |
| 0xbb, 0x7b, 0xbc, 0x7c, 0xb5, 0x75, 0xb2, 0x72, |
| 0x9f, 0x5f, 0x98, 0x58, 0x91, 0x51, 0x96, 0x56, |
| 0x83, 0x43, 0x84, 0x44, 0x8d, 0x4d, 0x8a, 0x4a, |
| 0xd7, 0x17, 0xd0, 0x10, 0xd9, 0x19, 0xde, 0x1e, |
| 0xcb, 0x0b, 0xcc, 0x0c, 0xc5, 0x05, 0xc2, 0x02, |
| 0xef, 0x2f, 0xe8, 0x28, 0xe1, 0x21, 0xe6, 0x26, |
| 0xf3, 0x33, 0xf4, 0x34, 0xfd, 0x3d, 0xfa, 0x3a |
| }; |
| |
| |
| /* Returns V modulo 255 provided V is in the range -255,-254,...,509. |
| */ |
| static inline __u8 mod255(int v) |
| { |
| if (v > 0) { |
| if (v < 255) { |
| return v; |
| } else { |
| return v - 255; |
| } |
| } else { |
| return v + 255; |
| } |
| } |
| |
| |
| /* Add two numbers in the field. Addition in this field is equivalent |
| * to a bit-wise exclusive OR operation---subtraction is therefore |
| * identical to addition. |
| */ |
| static inline __u8 gfadd(__u8 a, __u8 b) |
| { |
| return a ^ b; |
| } |
| |
| |
| /* Add two vectors of numbers in the field. Each byte in A and B gets |
| * added individually. |
| */ |
| static inline unsigned long gfadd_long(unsigned long a, unsigned long b) |
| { |
| return a ^ b; |
| } |
| |
| |
| /* Multiply two numbers in the field: |
| */ |
| static inline __u8 gfmul(__u8 a, __u8 b) |
| { |
| if (a && b) { |
| return gfpow[mod255(gflog[a] + gflog[b])]; |
| } else { |
| return 0; |
| } |
| } |
| |
| |
| /* Just like gfmul, except we have already looked up the log of the |
| * second number. |
| */ |
| static inline __u8 gfmul_exp(__u8 a, int b) |
| { |
| if (a) { |
| return gfpow[mod255(gflog[a] + b)]; |
| } else { |
| return 0; |
| } |
| } |
| |
| |
| /* Just like gfmul_exp, except that A is a vector of numbers. That |
| * is, each byte in A gets multiplied by gfpow[mod255(B)]. |
| */ |
| static inline unsigned long gfmul_exp_long(unsigned long a, int b) |
| { |
| __u8 t; |
| |
| if (sizeof(long) == 4) { |
| return ( |
| ((t = (__u32)a >> 24 & 0xff) ? |
| (((__u32) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | |
| ((t = (__u32)a >> 16 & 0xff) ? |
| (((__u32) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | |
| ((t = (__u32)a >> 8 & 0xff) ? |
| (((__u32) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | |
| ((t = (__u32)a >> 0 & 0xff) ? |
| (((__u32) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); |
| } else if (sizeof(long) == 8) { |
| return ( |
| ((t = (__u64)a >> 56 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 56) : 0) | |
| ((t = (__u64)a >> 48 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 48) : 0) | |
| ((t = (__u64)a >> 40 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 40) : 0) | |
| ((t = (__u64)a >> 32 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 32) : 0) | |
| ((t = (__u64)a >> 24 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | |
| ((t = (__u64)a >> 16 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | |
| ((t = (__u64)a >> 8 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | |
| ((t = (__u64)a >> 0 & 0xff) ? |
| (((__u64) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); |
| } else { |
| TRACE_FUN(ft_t_any); |
| TRACE_ABORT(-1, ft_t_err, "Error: size of long is %d bytes", |
| (int)sizeof(long)); |
| } |
| } |
| |
| |
| /* Divide two numbers in the field. Returns a/b (modulo f(x)). |
| */ |
| static inline __u8 gfdiv(__u8 a, __u8 b) |
| { |
| if (!b) { |
| TRACE_FUN(ft_t_any); |
| TRACE_ABORT(0xff, ft_t_bug, "Error: division by zero"); |
| } else if (a == 0) { |
| return 0; |
| } else { |
| return gfpow[mod255(gflog[a] - gflog[b])]; |
| } |
| } |
| |
| |
| /* The following functions return the inverse of the matrix of the |
| * linear system that needs to be solved to determine the error |
| * magnitudes. The first deals with matrices of rank 3, while the |
| * second deals with matrices of rank 2. The error indices are passed |
| * in arguments L0,..,L2 (0=first sector, 31=last sector). The error |
| * indices must be sorted in ascending order, i.e., L0<L1<L2. |
| * |
| * The linear system that needs to be solved for the error magnitudes |
| * is A * b = s, where s is the known vector of syndromes, b is the |
| * vector of error magnitudes and A in the ORDER=3 case: |
| * |
| * A_3 = {{1/r^L[0], 1/r^L[1], 1/r^L[2]}, |
| * { 1, 1, 1}, |
| * { r^L[0], r^L[1], r^L[2]}} |
| */ |
| static inline int gfinv3(__u8 l0, |
| __u8 l1, |
| __u8 l2, |
| Matrix Ainv) |
| { |
| __u8 det; |
| __u8 t20, t10, t21, t12, t01, t02; |
| int log_det; |
| |
| /* compute some intermediate results: */ |
| t20 = gfpow[l2 - l0]; /* t20 = r^l2/r^l0 */ |
| t10 = gfpow[l1 - l0]; /* t10 = r^l1/r^l0 */ |
| t21 = gfpow[l2 - l1]; /* t21 = r^l2/r^l1 */ |
| t12 = gfpow[l1 - l2 + 255]; /* t12 = r^l1/r^l2 */ |
| t01 = gfpow[l0 - l1 + 255]; /* t01 = r^l0/r^l1 */ |
| t02 = gfpow[l0 - l2 + 255]; /* t02 = r^l0/r^l2 */ |
| /* Calculate the determinant of matrix A_3^-1 (sometimes |
| * called the Vandermonde determinant): |
| */ |
| det = gfadd(t20, gfadd(t10, gfadd(t21, gfadd(t12, gfadd(t01, t02))))); |
| if (!det) { |
| TRACE_FUN(ft_t_any); |
| TRACE_ABORT(0, ft_t_err, |
| "Inversion failed (3 CRC errors, >0 CRC failures)"); |
| } |
| log_det = 255 - gflog[det]; |
| |
| /* Now, calculate all of the coefficients: |
| */ |
| Ainv[0][0]= gfmul_exp(gfadd(gfpow[l1], gfpow[l2]), log_det); |
| Ainv[0][1]= gfmul_exp(gfadd(t21, t12), log_det); |
| Ainv[0][2]= gfmul_exp(gfadd(gfpow[255 - l1], gfpow[255 - l2]),log_det); |
| |
| Ainv[1][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l2]), log_det); |
| Ainv[1][1]= gfmul_exp(gfadd(t20, t02), log_det); |
| Ainv[1][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l2]),log_det); |
| |
| Ainv[2][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l1]), log_det); |
| Ainv[2][1]= gfmul_exp(gfadd(t10, t01), log_det); |
| Ainv[2][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l1]),log_det); |
| |
| return 1; |
| } |
| |
| |
| static inline int gfinv2(__u8 l0, __u8 l1, Matrix Ainv) |
| { |
| __u8 det; |
| __u8 t1, t2; |
| int log_det; |
| |
| t1 = gfpow[255 - l0]; |
| t2 = gfpow[255 - l1]; |
| det = gfadd(t1, t2); |
| if (!det) { |
| TRACE_FUN(ft_t_any); |
| TRACE_ABORT(0, ft_t_err, |
| "Inversion failed (2 CRC errors, >0 CRC failures)"); |
| } |
| log_det = 255 - gflog[det]; |
| |
| /* Now, calculate all of the coefficients: |
| */ |
| Ainv[0][0] = Ainv[1][0] = gfpow[log_det]; |
| |
| Ainv[0][1] = gfmul_exp(t2, log_det); |
| Ainv[1][1] = gfmul_exp(t1, log_det); |
| |
| return 1; |
| } |
| |
| |
| /* Multiply matrix A by vector S and return result in vector B. M is |
| * assumed to be of order NxN, S and B of order Nx1. |
| */ |
| static inline void gfmat_mul(int n, Matrix A, |
| __u8 *s, __u8 *b) |
| { |
| int i, j; |
| __u8 dot_prod; |
| |
| for (i = 0; i < n; ++i) { |
| dot_prod = 0; |
| for (j = 0; j < n; ++j) { |
| dot_prod = gfadd(dot_prod, gfmul(A[i][j], s[j])); |
| } |
| b[i] = dot_prod; |
| } |
| } |
| |
| |
| |
| /* The Reed Solomon ECC codes are computed over the N-th byte of each |
| * block, where N=SECTOR_SIZE. There are up to 29 blocks of data, and |
| * 3 blocks of ECC. The blocks are stored contiguously in memory. A |
| * segment, consequently, is assumed to have at least 4 blocks: one or |
| * more data blocks plus three ECC blocks. |
| * |
| * Notice: In QIC-80 speak, a CRC error is a sector with an incorrect |
| * CRC. A CRC failure is a sector with incorrect data, but |
| * a valid CRC. In the error control literature, the former |
| * is usually called "erasure", the latter "error." |
| */ |
| /* Compute the parity bytes for C columns of data, where C is the |
| * number of bytes that fit into a long integer. We use a linear |
| * feed-back register to do this. The parity bytes P[0], P[STRIDE], |
| * P[2*STRIDE] are computed such that: |
| * |
| * x^k * p(x) + m(x) = 0 (modulo g(x)) |
| * |
| * where k = NBLOCKS, |
| * p(x) = P[0] + P[STRIDE]*x + P[2*STRIDE]*x^2, and |
| * m(x) = sum_{i=0}^k m_i*x^i. |
| * m_i = DATA[i*SECTOR_SIZE] |
| */ |
| static inline void set_parity(unsigned long *data, |
| int nblocks, |
| unsigned long *p, |
| int stride) |
| { |
| unsigned long p0, p1, p2, t1, t2, *end; |
| |
| end = data + nblocks * (FT_SECTOR_SIZE / sizeof(long)); |
| p0 = p1 = p2 = 0; |
| while (data < end) { |
| /* The new parity bytes p0_i, p1_i, p2_i are computed |
| * from the old values p0_{i-1}, p1_{i-1}, p2_{i-1} |
| * recursively as: |
| * |
| * p0_i = p1_{i-1} + r^105 * (m_{i-1} - p0_{i-1}) |
| * p1_i = p2_{i-1} + r^105 * (m_{i-1} - p0_{i-1}) |
| * p2_i = (m_{i-1} - p0_{i-1}) |
| * |
| * With the initial condition: p0_0 = p1_0 = p2_0 = 0. |
| */ |
| t1 = gfadd_long(*data, p0); |
| /* |
| * Multiply each byte in t1 by 0xc0: |
| */ |
| if (sizeof(long) == 4) { |
| t2= (((__u32) gfmul_c0[(__u32)t1 >> 24 & 0xff]) << 24 | |
| ((__u32) gfmul_c0[(__u32)t1 >> 16 & 0xff]) << 16 | |
| ((__u32) gfmul_c0[(__u32)t1 >> 8 & 0xff]) << 8 | |
| ((__u32) gfmul_c0[(__u32)t1 >> 0 & 0xff]) << 0); |
| } else if (sizeof(long) == 8) { |
| t2= (((__u64) gfmul_c0[(__u64)t1 >> 56 & 0xff]) << 56 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 48 & 0xff]) << 48 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 40 & 0xff]) << 40 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 32 & 0xff]) << 32 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 24 & 0xff]) << 24 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 16 & 0xff]) << 16 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 8 & 0xff]) << 8 | |
| ((__u64) gfmul_c0[(__u64)t1 >> 0 & 0xff]) << 0); |
| } else { |
| TRACE_FUN(ft_t_any); |
| TRACE(ft_t_err, "Error: long is of size %d", |
| (int) sizeof(long)); |
| TRACE_EXIT; |
| } |
| p0 = gfadd_long(t2, p1); |
| p1 = gfadd_long(t2, p2); |
| p2 = t1; |
| data += FT_SECTOR_SIZE / sizeof(long); |
| } |
| *p = p0; |
| p += stride; |
| *p = p1; |
| p += stride; |
| *p = p2; |
| return; |
| } |
| |
| |
| /* Compute the 3 syndrome values. DATA should point to the first byte |
| * of the column for which the syndromes are desired. The syndromes |
| * are computed over the first NBLOCKS of rows. The three bytes will |
| * be placed in S[0], S[1], and S[2]. |
| * |
| * S[i] is the value of the "message" polynomial m(x) evaluated at the |
| * i-th root of the generator polynomial g(x). |
| * |
| * As g(x)=(x-r^-1)(x-1)(x-r^1) we evaluate the message polynomial at |
| * x=r^-1 to get S[0], at x=r^0=1 to get S[1], and at x=r to get S[2]. |
| * This could be done directly and efficiently via the Horner scheme. |
| * However, it would require multiplication tables for the factors |
| * r^-1 (0xc3) and r (0x02). The following scheme does not require |
| * any multiplication tables beyond what's needed for set_parity() |
| * anyway and is slightly faster if there are no errors and slightly |
| * slower if there are errors. The latter is hopefully the infrequent |
| * case. |
| * |
| * To understand the alternative algorithm, notice that set_parity(m, |
| * k, p) computes parity bytes such that: |
| * |
| * x^k * p(x) = m(x) (modulo g(x)). |
| * |
| * That is, to evaluate m(r^m), where r^m is a root of g(x), we can |
| * simply evaluate (r^m)^k*p(r^m). Also, notice that p is 0 if and |
| * only if s is zero. That is, if all parity bytes are 0, we know |
| * there is no error in the data and consequently there is no need to |
| * compute s(x) at all! In all other cases, we compute s(x) from p(x) |
| * by evaluating (r^m)^k*p(r^m) for m=-1, m=0, and m=1. The p(x) |
| * polynomial is evaluated via the Horner scheme. |
| */ |
| static int compute_syndromes(unsigned long *data, int nblocks, unsigned long *s) |
| { |
| unsigned long p[3]; |
| |
| set_parity(data, nblocks, p, 1); |
| if (p[0] | p[1] | p[2]) { |
| /* Some of the checked columns do not have a zero |
| * syndrome. For simplicity, we compute the syndromes |
| * for all columns that we have computed the |
| * remainders for. |
| */ |
| s[0] = gfmul_exp_long( |
| gfadd_long(p[0], |
| gfmul_exp_long( |
| gfadd_long(p[1], |
| gfmul_exp_long(p[2], -1)), |
| -1)), |
| -nblocks); |
| s[1] = gfadd_long(gfadd_long(p[2], p[1]), p[0]); |
| s[2] = gfmul_exp_long( |
| gfadd_long(p[0], |
| gfmul_exp_long( |
| gfadd_long(p[1], |
| gfmul_exp_long(p[2], 1)), |
| 1)), |
| nblocks); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| |
| /* Correct the block in the column pointed to by DATA. There are NBAD |
| * CRC errors and their indices are in BAD_LOC[0], up to |
| * BAD_LOC[NBAD-1]. If NBAD>1, Ainv holds the inverse of the matrix |
| * of the linear system that needs to be solved to determine the error |
| * magnitudes. S[0], S[1], and S[2] are the syndrome values. If row |
| * j gets corrected, then bit j will be set in CORRECTION_MAP. |
| */ |
| static inline int correct_block(__u8 *data, int nblocks, |
| int nbad, int *bad_loc, Matrix Ainv, |
| __u8 *s, |
| SectorMap * correction_map) |
| { |
| int ncorrected = 0; |
| int i; |
| __u8 t1, t2; |
| __u8 c0, c1, c2; /* check bytes */ |
| __u8 error_mag[3], log_error_mag; |
| __u8 *dp, l, e; |
| TRACE_FUN(ft_t_any); |
| |
| switch (nbad) { |
| case 0: |
| /* might have a CRC failure: */ |
| if (s[0] == 0) { |
| /* more than one error */ |
| TRACE_ABORT(-1, ft_t_err, |
| "ECC failed (0 CRC errors, >1 CRC failures)"); |
| } |
| t1 = gfdiv(s[1], s[0]); |
| if ((bad_loc[nbad++] = gflog[t1]) >= nblocks) { |
| TRACE(ft_t_err, |
| "ECC failed (0 CRC errors, >1 CRC failures)"); |
| TRACE_ABORT(-1, ft_t_err, |
| "attempt to correct data at %d", bad_loc[0]); |
| } |
| error_mag[0] = s[1]; |
| break; |
| case 1: |
| t1 = gfadd(gfmul_exp(s[1], bad_loc[0]), s[2]); |
| t2 = gfadd(gfmul_exp(s[0], bad_loc[0]), s[1]); |
| if (t1 == 0 && t2 == 0) { |
| /* one erasure, no error: */ |
| Ainv[0][0] = gfpow[bad_loc[0]]; |
| } else if (t1 == 0 || t2 == 0) { |
| /* one erasure and more than one error: */ |
| TRACE_ABORT(-1, ft_t_err, |
| "ECC failed (1 erasure, >1 error)"); |
| } else { |
| /* one erasure, one error: */ |
| if ((bad_loc[nbad++] = gflog[gfdiv(t1, t2)]) |
| >= nblocks) { |
| TRACE(ft_t_err, "ECC failed " |
| "(1 CRC errors, >1 CRC failures)"); |
| TRACE_ABORT(-1, ft_t_err, |
| "attempt to correct data at %d", |
| bad_loc[1]); |
| } |
| if (!gfinv2(bad_loc[0], bad_loc[1], Ainv)) { |
| /* inversion failed---must have more |
| * than one error |
| */ |
| TRACE_EXIT -1; |
| } |
| } |
| /* FALL THROUGH TO ERROR MAGNITUDE COMPUTATION: |
| */ |
| case 2: |
| case 3: |
| /* compute error magnitudes: */ |
| gfmat_mul(nbad, Ainv, s, error_mag); |
| break; |
| |
| default: |
| TRACE_ABORT(-1, ft_t_err, |
| "Internal Error: number of CRC errors > 3"); |
| } |
| |
| /* Perform correction by adding ERROR_MAG[i] to the byte at |
| * offset BAD_LOC[i]. Also add the value of the computed |
| * error polynomial to the syndrome values. If the correction |
| * was successful, the resulting check bytes should be zero |
| * (i.e., the corrected data is a valid code word). |
| */ |
| c0 = s[0]; |
| c1 = s[1]; |
| c2 = s[2]; |
| for (i = 0; i < nbad; ++i) { |
| e = error_mag[i]; |
| if (e) { |
| /* correct the byte at offset L by magnitude E: */ |
| l = bad_loc[i]; |
| dp = &data[l * FT_SECTOR_SIZE]; |
| *dp = gfadd(*dp, e); |
| *correction_map |= 1 << l; |
| ++ncorrected; |
| |
| log_error_mag = gflog[e]; |
| c0 = gfadd(c0, gfpow[mod255(log_error_mag - l)]); |
| c1 = gfadd(c1, e); |
| c2 = gfadd(c2, gfpow[mod255(log_error_mag + l)]); |
| } |
| } |
| if (c0 || c1 || c2) { |
| TRACE_ABORT(-1, ft_t_err, |
| "ECC self-check failed, too many errors"); |
| } |
| TRACE_EXIT ncorrected; |
| } |
| |
| |
| #if defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID) |
| |
| /* Perform a sanity check on the computed parity bytes: |
| */ |
| static int sanity_check(unsigned long *data, int nblocks) |
| { |
| TRACE_FUN(ft_t_any); |
| unsigned long s[3]; |
| |
| if (!compute_syndromes(data, nblocks, s)) { |
| TRACE_ABORT(0, ft_bug, |
| "Internal Error: syndrome self-check failed"); |
| } |
| TRACE_EXIT 1; |
| } |
| |
| #endif /* defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID) */ |
| |
| /* Compute the parity for an entire segment of data. |
| */ |
| int ftape_ecc_set_segment_parity(struct memory_segment *mseg) |
| { |
| int i; |
| __u8 *parity_bytes; |
| |
| parity_bytes = &mseg->data[(mseg->blocks - 3) * FT_SECTOR_SIZE]; |
| for (i = 0; i < FT_SECTOR_SIZE; i += sizeof(long)) { |
| set_parity((unsigned long *) &mseg->data[i], mseg->blocks - 3, |
| (unsigned long *) &parity_bytes[i], |
| FT_SECTOR_SIZE / sizeof(long)); |
| #ifdef ECC_PARANOID |
| if (!sanity_check((unsigned long *) &mseg->data[i], |
| mseg->blocks)) { |
| return -1; |
| } |
| #endif /* ECC_PARANOID */ |
| } |
| return 0; |
| } |
| |
| |
| /* Checks and corrects (if possible) the segment MSEG. Returns one of |
| * ECC_OK, ECC_CORRECTED, and ECC_FAILED. |
| */ |
| int ftape_ecc_correct_data(struct memory_segment *mseg) |
| { |
| int col, i, result; |
| int ncorrected = 0; |
| int nerasures = 0; /* # of erasures (CRC errors) */ |
| int erasure_loc[3]; /* erasure locations */ |
| unsigned long ss[3]; |
| __u8 s[3]; |
| Matrix Ainv; |
| TRACE_FUN(ft_t_flow); |
| |
| mseg->corrected = 0; |
| |
| /* find first column that has non-zero syndromes: */ |
| for (col = 0; col < FT_SECTOR_SIZE; col += sizeof(long)) { |
| if (!compute_syndromes((unsigned long *) &mseg->data[col], |
| mseg->blocks, ss)) { |
| /* something is wrong---have to fix things */ |
| break; |
| } |
| } |
| if (col >= FT_SECTOR_SIZE) { |
| /* all syndromes are ok, therefore nothing to correct */ |
| TRACE_EXIT ECC_OK; |
| } |
| /* count the number of CRC errors if there were any: */ |
| if (mseg->read_bad) { |
| for (i = 0; i < mseg->blocks; i++) { |
| if (BAD_CHECK(mseg->read_bad, i)) { |
| if (nerasures >= 3) { |
| /* this is too much for ECC */ |
| TRACE_ABORT(ECC_FAILED, ft_t_err, |
| "ECC failed (>3 CRC errors)"); |
| } /* if */ |
| erasure_loc[nerasures++] = i; |
| } |
| } |
| } |
| /* |
| * If there are at least 2 CRC errors, determine inverse of matrix |
| * of linear system to be solved: |
| */ |
| switch (nerasures) { |
| case 2: |
| if (!gfinv2(erasure_loc[0], erasure_loc[1], Ainv)) { |
| TRACE_EXIT ECC_FAILED; |
| } |
| break; |
| case 3: |
| if (!gfinv3(erasure_loc[0], erasure_loc[1], |
| erasure_loc[2], Ainv)) { |
| TRACE_EXIT ECC_FAILED; |
| } |
| break; |
| default: |
| /* this is not an error condition... */ |
| break; |
| } |
| |
| do { |
| for (i = 0; i < sizeof(long); ++i) { |
| s[0] = ss[0]; |
| s[1] = ss[1]; |
| s[2] = ss[2]; |
| if (s[0] | s[1] | s[2]) { |
| #ifdef BIG_ENDIAN |
| result = correct_block( |
| &mseg->data[col + sizeof(long) - 1 - i], |
| mseg->blocks, |
| nerasures, |
| erasure_loc, |
| Ainv, |
| s, |
| &mseg->corrected); |
| #else |
| result = correct_block(&mseg->data[col + i], |
| mseg->blocks, |
| nerasures, |
| erasure_loc, |
| Ainv, |
| s, |
| &mseg->corrected); |
| #endif |
| if (result < 0) { |
| TRACE_EXIT ECC_FAILED; |
| } |
| ncorrected += result; |
| } |
| ss[0] >>= 8; |
| ss[1] >>= 8; |
| ss[2] >>= 8; |
| } |
| |
| #ifdef ECC_SANITY_CHECK |
| if (!sanity_check((unsigned long *) &mseg->data[col], |
| mseg->blocks)) { |
| TRACE_EXIT ECC_FAILED; |
| } |
| #endif /* ECC_SANITY_CHECK */ |
| |
| /* find next column with non-zero syndromes: */ |
| while ((col += sizeof(long)) < FT_SECTOR_SIZE) { |
| if (!compute_syndromes((unsigned long *) |
| &mseg->data[col], mseg->blocks, ss)) { |
| /* something is wrong---have to fix things */ |
| break; |
| } |
| } |
| } while (col < FT_SECTOR_SIZE); |
| if (ncorrected && nerasures == 0) { |
| TRACE(ft_t_warn, "block contained error not caught by CRC"); |
| } |
| TRACE((ncorrected > 0) ? ft_t_noise : ft_t_any, "number of corrections: %d", ncorrected); |
| TRACE_EXIT ncorrected ? ECC_CORRECTED : ECC_OK; |
| } |