| /* Software floating-point emulation. |
| Definitions for IEEE Extended Precision. |
| Copyright (C) 1999 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Jakub Jelinek (jj@ultra.linux.cz). |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Library General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Library General Public License for more details. |
| |
| You should have received a copy of the GNU Library General Public |
| License along with the GNU C Library; see the file COPYING.LIB. If |
| not, write to the Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| |
| |
| #ifndef __MATH_EMU_EXTENDED_H__ |
| #define __MATH_EMU_EXTENDED_H__ |
| |
| #if _FP_W_TYPE_SIZE < 32 |
| #error "Here's a nickel, kid. Go buy yourself a real computer." |
| #endif |
| |
| #if _FP_W_TYPE_SIZE < 64 |
| #define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE) |
| #else |
| #define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE) |
| #endif |
| |
| #define _FP_FRACBITS_E 64 |
| #define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E) |
| #define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E) |
| #define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E) |
| #define _FP_EXPBITS_E 15 |
| #define _FP_EXPBIAS_E 16383 |
| #define _FP_EXPMAX_E 32767 |
| |
| #define _FP_QNANBIT_E \ |
| ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE) |
| #define _FP_IMPLBIT_E \ |
| ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE) |
| #define _FP_OVERFLOW_E \ |
| ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE)) |
| |
| #if _FP_W_TYPE_SIZE < 64 |
| |
| union _FP_UNION_E |
| { |
| long double flt; |
| struct |
| { |
| #if __BYTE_ORDER == __BIG_ENDIAN |
| unsigned long pad1 : _FP_W_TYPE_SIZE; |
| unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E); |
| unsigned long sign : 1; |
| unsigned long exp : _FP_EXPBITS_E; |
| unsigned long frac1 : _FP_W_TYPE_SIZE; |
| unsigned long frac0 : _FP_W_TYPE_SIZE; |
| #else |
| unsigned long frac0 : _FP_W_TYPE_SIZE; |
| unsigned long frac1 : _FP_W_TYPE_SIZE; |
| unsigned exp : _FP_EXPBITS_E; |
| unsigned sign : 1; |
| #endif /* not bigendian */ |
| } bits __attribute__((packed)); |
| }; |
| |
| |
| #define FP_DECL_E(X) _FP_DECL(4,X) |
| |
| #define FP_UNPACK_RAW_E(X, val) \ |
| do { \ |
| union _FP_UNION_E _flo; _flo.flt = (val); \ |
| \ |
| X##_f[2] = 0; X##_f[3] = 0; \ |
| X##_f[0] = _flo.bits.frac0; \ |
| X##_f[1] = _flo.bits.frac1; \ |
| X##_e = _flo.bits.exp; \ |
| X##_s = _flo.bits.sign; \ |
| if (!X##_e && (X##_f[1] || X##_f[0]) \ |
| && !(X##_f[1] & _FP_IMPLBIT_E)) \ |
| { \ |
| X##_e++; \ |
| FP_SET_EXCEPTION(FP_EX_DENORM); \ |
| } \ |
| } while (0) |
| |
| #define FP_UNPACK_RAW_EP(X, val) \ |
| do { \ |
| union _FP_UNION_E *_flo = \ |
| (union _FP_UNION_E *)(val); \ |
| \ |
| X##_f[2] = 0; X##_f[3] = 0; \ |
| X##_f[0] = _flo->bits.frac0; \ |
| X##_f[1] = _flo->bits.frac1; \ |
| X##_e = _flo->bits.exp; \ |
| X##_s = _flo->bits.sign; \ |
| if (!X##_e && (X##_f[1] || X##_f[0]) \ |
| && !(X##_f[1] & _FP_IMPLBIT_E)) \ |
| { \ |
| X##_e++; \ |
| FP_SET_EXCEPTION(FP_EX_DENORM); \ |
| } \ |
| } while (0) |
| |
| #define FP_PACK_RAW_E(val, X) \ |
| do { \ |
| union _FP_UNION_E _flo; \ |
| \ |
| if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \ |
| else X##_f[1] &= ~(_FP_IMPLBIT_E); \ |
| _flo.bits.frac0 = X##_f[0]; \ |
| _flo.bits.frac1 = X##_f[1]; \ |
| _flo.bits.exp = X##_e; \ |
| _flo.bits.sign = X##_s; \ |
| \ |
| (val) = _flo.flt; \ |
| } while (0) |
| |
| #define FP_PACK_RAW_EP(val, X) \ |
| do { \ |
| if (!FP_INHIBIT_RESULTS) \ |
| { \ |
| union _FP_UNION_E *_flo = \ |
| (union _FP_UNION_E *)(val); \ |
| \ |
| if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \ |
| else X##_f[1] &= ~(_FP_IMPLBIT_E); \ |
| _flo->bits.frac0 = X##_f[0]; \ |
| _flo->bits.frac1 = X##_f[1]; \ |
| _flo->bits.exp = X##_e; \ |
| _flo->bits.sign = X##_s; \ |
| } \ |
| } while (0) |
| |
| #define FP_UNPACK_E(X,val) \ |
| do { \ |
| FP_UNPACK_RAW_E(X,val); \ |
| _FP_UNPACK_CANONICAL(E,4,X); \ |
| } while (0) |
| |
| #define FP_UNPACK_EP(X,val) \ |
| do { \ |
| FP_UNPACK_RAW_2_P(X,val); \ |
| _FP_UNPACK_CANONICAL(E,4,X); \ |
| } while (0) |
| |
| #define FP_PACK_E(val,X) \ |
| do { \ |
| _FP_PACK_CANONICAL(E,4,X); \ |
| FP_PACK_RAW_E(val,X); \ |
| } while (0) |
| |
| #define FP_PACK_EP(val,X) \ |
| do { \ |
| _FP_PACK_CANONICAL(E,4,X); \ |
| FP_PACK_RAW_EP(val,X); \ |
| } while (0) |
| |
| #define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,4,X) |
| #define FP_NEG_E(R,X) _FP_NEG(E,4,R,X) |
| #define FP_ADD_E(R,X,Y) _FP_ADD(E,4,R,X,Y) |
| #define FP_SUB_E(R,X,Y) _FP_SUB(E,4,R,X,Y) |
| #define FP_MUL_E(R,X,Y) _FP_MUL(E,4,R,X,Y) |
| #define FP_DIV_E(R,X,Y) _FP_DIV(E,4,R,X,Y) |
| #define FP_SQRT_E(R,X) _FP_SQRT(E,4,R,X) |
| |
| /* |
| * Square root algorithms: |
| * We have just one right now, maybe Newton approximation |
| * should be added for those machines where division is fast. |
| * This has special _E version because standard _4 square |
| * root would not work (it has to start normally with the |
| * second word and not the first), but as we have to do it |
| * anyway, we optimize it by doing most of the calculations |
| * in two UWtype registers instead of four. |
| */ |
| |
| #define _FP_SQRT_MEAT_E(R, S, T, X, q) \ |
| do { \ |
| q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ |
| _FP_FRAC_SRL_4(X, (_FP_WORKBITS)); \ |
| while (q) \ |
| { \ |
| T##_f[1] = S##_f[1] + q; \ |
| if (T##_f[1] <= X##_f[1]) \ |
| { \ |
| S##_f[1] = T##_f[1] + q; \ |
| X##_f[1] -= T##_f[1]; \ |
| R##_f[1] += q; \ |
| } \ |
| _FP_FRAC_SLL_2(X, 1); \ |
| q >>= 1; \ |
| } \ |
| q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ |
| while (q) \ |
| { \ |
| T##_f[0] = S##_f[0] + q; \ |
| T##_f[1] = S##_f[1]; \ |
| if (T##_f[1] < X##_f[1] || \ |
| (T##_f[1] == X##_f[1] && \ |
| T##_f[0] <= X##_f[0])) \ |
| { \ |
| S##_f[0] = T##_f[0] + q; \ |
| S##_f[1] += (T##_f[0] > S##_f[0]); \ |
| _FP_FRAC_DEC_2(X, T); \ |
| R##_f[0] += q; \ |
| } \ |
| _FP_FRAC_SLL_2(X, 1); \ |
| q >>= 1; \ |
| } \ |
| _FP_FRAC_SLL_4(R, (_FP_WORKBITS)); \ |
| if (X##_f[0] | X##_f[1]) \ |
| { \ |
| if (S##_f[1] < X##_f[1] || \ |
| (S##_f[1] == X##_f[1] && \ |
| S##_f[0] < X##_f[0])) \ |
| R##_f[0] |= _FP_WORK_ROUND; \ |
| R##_f[0] |= _FP_WORK_STICKY; \ |
| } \ |
| } while (0) |
| |
| #define FP_CMP_E(r,X,Y,un) _FP_CMP(E,4,r,X,Y,un) |
| #define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,4,r,X,Y) |
| |
| #define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,4,r,X,rsz,rsg) |
| #define FP_TO_INT_ROUND_E(r,X,rsz,rsg) _FP_TO_INT_ROUND(E,4,r,X,rsz,rsg) |
| #define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,4,X,r,rs,rt) |
| |
| #define _FP_FRAC_HIGH_E(X) (X##_f[2]) |
| #define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1]) |
| |
| #else /* not _FP_W_TYPE_SIZE < 64 */ |
| union _FP_UNION_E |
| { |
| long double flt /* __attribute__((mode(TF))) */ ; |
| struct { |
| #if __BYTE_ORDER == __BIG_ENDIAN |
| unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E); |
| unsigned sign : 1; |
| unsigned exp : _FP_EXPBITS_E; |
| unsigned long frac : _FP_W_TYPE_SIZE; |
| #else |
| unsigned long frac : _FP_W_TYPE_SIZE; |
| unsigned exp : _FP_EXPBITS_E; |
| unsigned sign : 1; |
| #endif |
| } bits; |
| }; |
| |
| #define FP_DECL_E(X) _FP_DECL(2,X) |
| |
| #define FP_UNPACK_RAW_E(X, val) \ |
| do { \ |
| union _FP_UNION_E _flo; _flo.flt = (val); \ |
| \ |
| X##_f0 = _flo.bits.frac; \ |
| X##_f1 = 0; \ |
| X##_e = _flo.bits.exp; \ |
| X##_s = _flo.bits.sign; \ |
| if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \ |
| { \ |
| X##_e++; \ |
| FP_SET_EXCEPTION(FP_EX_DENORM); \ |
| } \ |
| } while (0) |
| |
| #define FP_UNPACK_RAW_EP(X, val) \ |
| do { \ |
| union _FP_UNION_E *_flo = \ |
| (union _FP_UNION_E *)(val); \ |
| \ |
| X##_f0 = _flo->bits.frac; \ |
| X##_f1 = 0; \ |
| X##_e = _flo->bits.exp; \ |
| X##_s = _flo->bits.sign; \ |
| if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \ |
| { \ |
| X##_e++; \ |
| FP_SET_EXCEPTION(FP_EX_DENORM); \ |
| } \ |
| } while (0) |
| |
| #define FP_PACK_RAW_E(val, X) \ |
| do { \ |
| union _FP_UNION_E _flo; \ |
| \ |
| if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \ |
| else X##_f0 &= ~(_FP_IMPLBIT_E); \ |
| _flo.bits.frac = X##_f0; \ |
| _flo.bits.exp = X##_e; \ |
| _flo.bits.sign = X##_s; \ |
| \ |
| (val) = _flo.flt; \ |
| } while (0) |
| |
| #define FP_PACK_RAW_EP(fs, val, X) \ |
| do { \ |
| if (!FP_INHIBIT_RESULTS) \ |
| { \ |
| union _FP_UNION_E *_flo = \ |
| (union _FP_UNION_E *)(val); \ |
| \ |
| if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \ |
| else X##_f0 &= ~(_FP_IMPLBIT_E); \ |
| _flo->bits.frac = X##_f0; \ |
| _flo->bits.exp = X##_e; \ |
| _flo->bits.sign = X##_s; \ |
| } \ |
| } while (0) |
| |
| |
| #define FP_UNPACK_E(X,val) \ |
| do { \ |
| FP_UNPACK_RAW_E(X,val); \ |
| _FP_UNPACK_CANONICAL(E,2,X); \ |
| } while (0) |
| |
| #define FP_UNPACK_EP(X,val) \ |
| do { \ |
| FP_UNPACK_RAW_EP(X,val); \ |
| _FP_UNPACK_CANONICAL(E,2,X); \ |
| } while (0) |
| |
| #define FP_PACK_E(val,X) \ |
| do { \ |
| _FP_PACK_CANONICAL(E,2,X); \ |
| FP_PACK_RAW_E(val,X); \ |
| } while (0) |
| |
| #define FP_PACK_EP(val,X) \ |
| do { \ |
| _FP_PACK_CANONICAL(E,2,X); \ |
| FP_PACK_RAW_EP(val,X); \ |
| } while (0) |
| |
| #define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,2,X) |
| #define FP_NEG_E(R,X) _FP_NEG(E,2,R,X) |
| #define FP_ADD_E(R,X,Y) _FP_ADD(E,2,R,X,Y) |
| #define FP_SUB_E(R,X,Y) _FP_SUB(E,2,R,X,Y) |
| #define FP_MUL_E(R,X,Y) _FP_MUL(E,2,R,X,Y) |
| #define FP_DIV_E(R,X,Y) _FP_DIV(E,2,R,X,Y) |
| #define FP_SQRT_E(R,X) _FP_SQRT(E,2,R,X) |
| |
| /* |
| * Square root algorithms: |
| * We have just one right now, maybe Newton approximation |
| * should be added for those machines where division is fast. |
| * We optimize it by doing most of the calculations |
| * in one UWtype registers instead of two, although we don't |
| * have to. |
| */ |
| #define _FP_SQRT_MEAT_E(R, S, T, X, q) \ |
| do { \ |
| q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ |
| _FP_FRAC_SRL_2(X, (_FP_WORKBITS)); \ |
| while (q) \ |
| { \ |
| T##_f0 = S##_f0 + q; \ |
| if (T##_f0 <= X##_f0) \ |
| { \ |
| S##_f0 = T##_f0 + q; \ |
| X##_f0 -= T##_f0; \ |
| R##_f0 += q; \ |
| } \ |
| _FP_FRAC_SLL_1(X, 1); \ |
| q >>= 1; \ |
| } \ |
| _FP_FRAC_SLL_2(R, (_FP_WORKBITS)); \ |
| if (X##_f0) \ |
| { \ |
| if (S##_f0 < X##_f0) \ |
| R##_f0 |= _FP_WORK_ROUND; \ |
| R##_f0 |= _FP_WORK_STICKY; \ |
| } \ |
| } while (0) |
| |
| #define FP_CMP_E(r,X,Y,un) _FP_CMP(E,2,r,X,Y,un) |
| #define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,2,r,X,Y) |
| |
| #define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,2,r,X,rsz,rsg) |
| #define FP_TO_INT_ROUND_E(r,X,rsz,rsg) _FP_TO_INT_ROUND(E,2,r,X,rsz,rsg) |
| #define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,2,X,r,rs,rt) |
| |
| #define _FP_FRAC_HIGH_E(X) (X##_f1) |
| #define _FP_FRAC_HIGH_RAW_E(X) (X##_f0) |
| |
| #endif /* not _FP_W_TYPE_SIZE < 64 */ |
| |
| #endif /* __MATH_EMU_EXTENDED_H__ */ |