| /* Copyright (c) 2012, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/uaccess.h> |
| #include <linux/diagchar.h> |
| #include <linux/sched.h> |
| #include <linux/err.h> |
| #include <linux/ratelimit.h> |
| #include <linux/workqueue.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/platform_device.h> |
| #include <linux/smux.h> |
| #include <asm/current.h> |
| #ifdef CONFIG_DIAG_OVER_USB |
| #include <mach/usbdiag.h> |
| #endif |
| #include "diagchar_hdlc.h" |
| #include "diagmem.h" |
| #include "diagchar.h" |
| #include "diagfwd.h" |
| #include "diagfwd_hsic.h" |
| #include "diagfwd_smux.h" |
| #include "diagfwd_bridge.h" |
| |
| #define READ_HSIC_BUF_SIZE 2048 |
| |
| static void diag_read_hsic_work_fn(struct work_struct *work) |
| { |
| unsigned char *buf_in_hsic = NULL; |
| int num_reads_submitted = 0; |
| int err = 0; |
| int write_ptrs_available; |
| |
| if (!driver->hsic_ch) { |
| pr_err("DIAG in %s: driver->hsic_ch == 0\n", __func__); |
| return; |
| } |
| |
| /* |
| * Determine the current number of available buffers for writing after |
| * reading from the HSIC has completed. |
| */ |
| if (driver->logging_mode == MEMORY_DEVICE_MODE) |
| write_ptrs_available = driver->poolsize_hsic_write - |
| driver->num_hsic_buf_tbl_entries; |
| else |
| write_ptrs_available = driver->poolsize_hsic_write - |
| driver->count_hsic_write_pool; |
| |
| /* |
| * Queue up a read on the HSIC for all available buffers in the |
| * pool, exhausting the pool. |
| */ |
| do { |
| /* |
| * If no more write buffers are available, |
| * stop queuing reads |
| */ |
| if (write_ptrs_available <= 0) |
| break; |
| |
| write_ptrs_available--; |
| |
| /* |
| * No sense queuing a read if the HSIC bridge was |
| * closed in another thread |
| */ |
| if (!driver->hsic_ch) |
| break; |
| |
| buf_in_hsic = diagmem_alloc(driver, READ_HSIC_BUF_SIZE, |
| POOL_TYPE_HSIC); |
| if (buf_in_hsic) { |
| /* |
| * Initiate the read from the HSIC. The HSIC read is |
| * asynchronous. Once the read is complete the read |
| * callback function will be called. |
| */ |
| pr_debug("diag: read from HSIC\n"); |
| num_reads_submitted++; |
| err = diag_bridge_read((char *)buf_in_hsic, |
| READ_HSIC_BUF_SIZE); |
| if (err) { |
| num_reads_submitted--; |
| |
| /* Return the buffer to the pool */ |
| diagmem_free(driver, buf_in_hsic, |
| POOL_TYPE_HSIC); |
| |
| pr_err_ratelimited("diag: Error initiating HSIC read, err: %d\n", |
| err); |
| /* |
| * An error occurred, discontinue queuing |
| * reads |
| */ |
| break; |
| } |
| } |
| } while (buf_in_hsic); |
| |
| /* |
| * If there are read buffers available and for some reason the |
| * read was not queued, and if no unrecoverable error occurred |
| * (-ENODEV is an unrecoverable error), then set up the next read |
| */ |
| if ((driver->count_hsic_pool < driver->poolsize_hsic) && |
| (num_reads_submitted == 0) && (err != -ENODEV) && |
| (driver->hsic_ch != 0)) |
| queue_work(diag_bridge[HSIC].wq, |
| &driver->diag_read_hsic_work); |
| } |
| |
| static void diag_hsic_read_complete_callback(void *ctxt, char *buf, |
| int buf_size, int actual_size) |
| { |
| int err = -2; |
| |
| if (!driver->hsic_ch) { |
| /* |
| * The HSIC channel is closed. Return the buffer to |
| * the pool. Do not send it on. |
| */ |
| diagmem_free(driver, buf, POOL_TYPE_HSIC); |
| pr_debug("diag: In %s: driver->hsic_ch == 0, actual_size: %d\n", |
| __func__, actual_size); |
| return; |
| } |
| |
| /* |
| * Note that zero length is valid and still needs to be sent to |
| * the USB only when we are logging data to the USB |
| */ |
| if ((actual_size > 0) || |
| ((actual_size == 0) && (driver->logging_mode == USB_MODE))) { |
| if (!buf) { |
| pr_err("diag: Out of diagmem for HSIC\n"); |
| } else { |
| /* |
| * Send data in buf to be written on the |
| * appropriate device, e.g. USB MDM channel |
| */ |
| diag_bridge[HSIC].write_len = actual_size; |
| err = diag_device_write((void *)buf, HSIC_DATA, NULL); |
| /* If an error, return buffer to the pool */ |
| if (err) { |
| diagmem_free(driver, buf, POOL_TYPE_HSIC); |
| pr_err_ratelimited("diag: In %s, error calling diag_device_write, err: %d\n", |
| __func__, err); |
| } |
| } |
| } else { |
| /* |
| * The buffer has an error status associated with it. Do not |
| * pass it on. Note that -ENOENT is sent when the diag bridge |
| * is closed. |
| */ |
| diagmem_free(driver, buf, POOL_TYPE_HSIC); |
| pr_debug("diag: In %s: error status: %d\n", __func__, |
| actual_size); |
| } |
| |
| /* |
| * If for some reason there was no HSIC data to write to the |
| * mdm channel, set up another read |
| */ |
| if (err && |
| ((driver->logging_mode == MEMORY_DEVICE_MODE) || |
| (diag_bridge[HSIC].usb_connected && !driver->hsic_suspend))) { |
| queue_work(diag_bridge[HSIC].wq, |
| &driver->diag_read_hsic_work); |
| } |
| } |
| |
| static void diag_hsic_write_complete_callback(void *ctxt, char *buf, |
| int buf_size, int actual_size) |
| { |
| /* The write of the data to the HSIC bridge is complete */ |
| driver->in_busy_hsic_write = 0; |
| |
| if (!driver->hsic_ch) { |
| pr_err("DIAG in %s: driver->hsic_ch == 0\n", __func__); |
| return; |
| } |
| |
| if (actual_size < 0) |
| pr_err("DIAG in %s: actual_size: %d\n", __func__, actual_size); |
| |
| if (diag_bridge[HSIC].usb_connected && |
| (driver->logging_mode == USB_MODE)) |
| queue_work(diag_bridge[HSIC].wq, |
| &diag_bridge[HSIC].diag_read_work); |
| } |
| |
| static int diag_hsic_suspend(void *ctxt) |
| { |
| pr_debug("diag: hsic_suspend\n"); |
| |
| /* Don't allow suspend if a write in the HSIC is in progress */ |
| if (driver->in_busy_hsic_write) |
| return -EBUSY; |
| |
| /* Don't allow suspend if in MEMORY_DEVICE_MODE */ |
| if (driver->logging_mode == MEMORY_DEVICE_MODE) |
| return -EBUSY; |
| |
| driver->hsic_suspend = 1; |
| |
| return 0; |
| } |
| |
| static void diag_hsic_resume(void *ctxt) |
| { |
| pr_debug("diag: hsic_resume\n"); |
| driver->hsic_suspend = 0; |
| |
| if ((driver->count_hsic_pool < driver->poolsize_hsic) && |
| ((driver->logging_mode == MEMORY_DEVICE_MODE) || |
| (diag_bridge[HSIC].usb_connected))) |
| queue_work(diag_bridge[HSIC].wq, |
| &driver->diag_read_hsic_work); |
| } |
| |
| struct diag_bridge_ops hsic_diag_bridge_ops = { |
| .ctxt = NULL, |
| .read_complete_cb = diag_hsic_read_complete_callback, |
| .write_complete_cb = diag_hsic_write_complete_callback, |
| .suspend = diag_hsic_suspend, |
| .resume = diag_hsic_resume, |
| }; |
| |
| void diag_hsic_close(void) |
| { |
| if (driver->hsic_device_enabled) { |
| driver->hsic_ch = 0; |
| if (driver->hsic_device_opened) { |
| driver->hsic_device_opened = 0; |
| diag_bridge_close(); |
| pr_debug("diag: %s: closed successfully\n", __func__); |
| } else { |
| pr_debug("diag: %s: already closed\n", __func__); |
| } |
| } else { |
| pr_debug("diag: %s: HSIC device already removed\n", __func__); |
| } |
| } |
| |
| /* diagfwd_cancel_hsic is called to cancel outstanding read/writes */ |
| int diagfwd_cancel_hsic(void) |
| { |
| int err; |
| |
| mutex_lock(&diag_bridge[HSIC].bridge_mutex); |
| if (driver->hsic_device_enabled) { |
| if (driver->hsic_device_opened) { |
| driver->hsic_ch = 0; |
| driver->hsic_device_opened = 0; |
| diag_bridge_close(); |
| err = diag_bridge_open(&hsic_diag_bridge_ops); |
| if (err) { |
| pr_err("diag: HSIC channel open error: %d\n", |
| err); |
| } else { |
| pr_debug("diag: opened HSIC channel\n"); |
| driver->hsic_device_opened = 1; |
| driver->hsic_ch = 1; |
| } |
| } |
| } |
| mutex_unlock(&diag_bridge[HSIC].bridge_mutex); |
| return 0; |
| } |
| |
| /* |
| * diagfwd_write_complete_hsic is called after the asynchronous |
| * usb_diag_write() on mdm channel is complete |
| */ |
| int diagfwd_write_complete_hsic(struct diag_request *diag_write_ptr) |
| { |
| unsigned char *buf = (diag_write_ptr) ? diag_write_ptr->buf : NULL; |
| |
| if (buf) { |
| /* Return buffers to their pools */ |
| diagmem_free(driver, (unsigned char *)buf, POOL_TYPE_HSIC); |
| diagmem_free(driver, (unsigned char *)diag_write_ptr, |
| POOL_TYPE_HSIC_WRITE); |
| } |
| |
| if (!driver->hsic_ch) { |
| pr_err("diag: In %s: driver->hsic_ch == 0\n", __func__); |
| return 0; |
| } |
| |
| /* Read data from the HSIC */ |
| queue_work(diag_bridge[HSIC].wq, &driver->diag_read_hsic_work); |
| |
| return 0; |
| } |
| |
| void diag_usb_read_complete_hsic_fn(struct work_struct *w) |
| { |
| diagfwd_read_complete_bridge(diag_bridge[HSIC].usb_read_ptr); |
| } |
| |
| |
| void diag_read_usb_hsic_work_fn(struct work_struct *work) |
| { |
| if (!driver->hsic_ch) { |
| pr_err("diag: in %s: driver->hsic_ch == 0\n", __func__); |
| return; |
| } |
| /* |
| * If there is no data being read from the usb mdm channel |
| * and there is no mdm channel data currently being written |
| * to the HSIC |
| */ |
| if (!driver->in_busy_hsic_read_on_device && |
| !driver->in_busy_hsic_write) { |
| APPEND_DEBUG('x'); |
| /* Setup the next read from usb mdm channel */ |
| driver->in_busy_hsic_read_on_device = 1; |
| diag_bridge[HSIC].usb_read_ptr->buf = |
| diag_bridge[HSIC].usb_buf_out; |
| diag_bridge[HSIC].usb_read_ptr->length = USB_MAX_OUT_BUF; |
| diag_bridge[HSIC].usb_read_ptr->context = (void *)HSIC; |
| usb_diag_read(diag_bridge[HSIC].ch, |
| diag_bridge[HSIC].usb_read_ptr); |
| APPEND_DEBUG('y'); |
| } |
| /* If for some reason there was no mdm channel read initiated, |
| * queue up the reading of data from the mdm channel |
| */ |
| |
| if (!driver->in_busy_hsic_read_on_device && |
| (driver->logging_mode == USB_MODE)) |
| queue_work(diag_bridge[HSIC].wq, |
| &(diag_bridge[HSIC].diag_read_work)); |
| } |
| |
| static int diag_hsic_probe(struct platform_device *pdev) |
| { |
| int err = 0; |
| |
| pr_debug("diag: in %s\n", __func__); |
| mutex_lock(&diag_bridge[HSIC].bridge_mutex); |
| if (!driver->hsic_inited) { |
| spin_lock_init(&driver->hsic_spinlock); |
| driver->num_hsic_buf_tbl_entries = 0; |
| if (driver->hsic_buf_tbl == NULL) |
| driver->hsic_buf_tbl = kzalloc(NUM_HSIC_BUF_TBL_ENTRIES |
| * sizeof(struct diag_write_device), GFP_KERNEL); |
| if (driver->hsic_buf_tbl == NULL) { |
| mutex_unlock(&diag_bridge[HSIC].bridge_mutex); |
| return -ENOMEM; |
| } |
| driver->count_hsic_pool = 0; |
| driver->count_hsic_write_pool = 0; |
| driver->itemsize_hsic = READ_HSIC_BUF_SIZE; |
| driver->poolsize_hsic = N_MDM_WRITE; |
| driver->itemsize_hsic_write = sizeof(struct diag_request); |
| driver->poolsize_hsic_write = N_MDM_WRITE; |
| diagmem_hsic_init(driver); |
| INIT_WORK(&(driver->diag_read_hsic_work), |
| diag_read_hsic_work_fn); |
| driver->hsic_inited = 1; |
| } |
| /* |
| * The probe function was called after the usb was connected |
| * on the legacy channel OR ODL is turned on. Communication over usb |
| * mdm and HSIC needs to be turned on. |
| */ |
| if (diag_bridge[HSIC].usb_connected || (driver->logging_mode == |
| MEMORY_DEVICE_MODE)) { |
| if (driver->hsic_device_opened) { |
| /* should not happen. close it before re-opening */ |
| pr_warn("diag: HSIC channel already opened in probe\n"); |
| diag_bridge_close(); |
| } |
| err = diag_bridge_open(&hsic_diag_bridge_ops); |
| if (err) { |
| pr_err("diag: could not open HSIC, err: %d\n", err); |
| driver->hsic_device_opened = 0; |
| mutex_unlock(&diag_bridge[HSIC].bridge_mutex); |
| return err; |
| } |
| |
| pr_info("diag: opened HSIC channel\n"); |
| driver->hsic_device_opened = 1; |
| driver->hsic_ch = 1; |
| driver->in_busy_hsic_read_on_device = 0; |
| driver->in_busy_hsic_write = 0; |
| |
| if (diag_bridge[HSIC].usb_connected) { |
| /* Poll USB mdm channel to check for data */ |
| queue_work(diag_bridge[HSIC].wq, |
| &diag_bridge[HSIC].diag_read_work); |
| } |
| /* Poll HSIC channel to check for data */ |
| queue_work(diag_bridge[HSIC].wq, |
| &driver->diag_read_hsic_work); |
| } |
| /* The HSIC (diag_bridge) platform device driver is enabled */ |
| driver->hsic_device_enabled = 1; |
| mutex_unlock(&diag_bridge[HSIC].bridge_mutex); |
| return err; |
| } |
| |
| static int diag_hsic_remove(struct platform_device *pdev) |
| { |
| pr_debug("diag: %s called\n", __func__); |
| mutex_lock(&diag_bridge[HSIC].bridge_mutex); |
| diag_hsic_close(); |
| driver->hsic_device_enabled = 0; |
| mutex_unlock(&diag_bridge[HSIC].bridge_mutex); |
| |
| return 0; |
| } |
| |
| static int diagfwd_hsic_runtime_suspend(struct device *dev) |
| { |
| dev_dbg(dev, "pm_runtime: suspending...\n"); |
| return 0; |
| } |
| |
| static int diagfwd_hsic_runtime_resume(struct device *dev) |
| { |
| dev_dbg(dev, "pm_runtime: resuming...\n"); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops diagfwd_hsic_dev_pm_ops = { |
| .runtime_suspend = diagfwd_hsic_runtime_suspend, |
| .runtime_resume = diagfwd_hsic_runtime_resume, |
| }; |
| |
| struct platform_driver msm_hsic_ch_driver = { |
| .probe = diag_hsic_probe, |
| .remove = diag_hsic_remove, |
| .driver = { |
| .name = "diag_bridge", |
| .owner = THIS_MODULE, |
| .pm = &diagfwd_hsic_dev_pm_ops, |
| }, |
| }; |