| #ifndef _LINUX_PTRACE_H |
| #define _LINUX_PTRACE_H |
| /* ptrace.h */ |
| /* structs and defines to help the user use the ptrace system call. */ |
| |
| /* has the defines to get at the registers. */ |
| |
| #define PTRACE_TRACEME 0 |
| #define PTRACE_PEEKTEXT 1 |
| #define PTRACE_PEEKDATA 2 |
| #define PTRACE_PEEKUSR 3 |
| #define PTRACE_POKETEXT 4 |
| #define PTRACE_POKEDATA 5 |
| #define PTRACE_POKEUSR 6 |
| #define PTRACE_CONT 7 |
| #define PTRACE_KILL 8 |
| #define PTRACE_SINGLESTEP 9 |
| |
| #define PTRACE_ATTACH 16 |
| #define PTRACE_DETACH 17 |
| |
| #define PTRACE_SYSCALL 24 |
| |
| /* 0x4200-0x4300 are reserved for architecture-independent additions. */ |
| #define PTRACE_SETOPTIONS 0x4200 |
| #define PTRACE_GETEVENTMSG 0x4201 |
| #define PTRACE_GETSIGINFO 0x4202 |
| #define PTRACE_SETSIGINFO 0x4203 |
| |
| /* options set using PTRACE_SETOPTIONS */ |
| #define PTRACE_O_TRACESYSGOOD 0x00000001 |
| #define PTRACE_O_TRACEFORK 0x00000002 |
| #define PTRACE_O_TRACEVFORK 0x00000004 |
| #define PTRACE_O_TRACECLONE 0x00000008 |
| #define PTRACE_O_TRACEEXEC 0x00000010 |
| #define PTRACE_O_TRACEVFORKDONE 0x00000020 |
| #define PTRACE_O_TRACEEXIT 0x00000040 |
| |
| #define PTRACE_O_MASK 0x0000007f |
| |
| /* Wait extended result codes for the above trace options. */ |
| #define PTRACE_EVENT_FORK 1 |
| #define PTRACE_EVENT_VFORK 2 |
| #define PTRACE_EVENT_CLONE 3 |
| #define PTRACE_EVENT_EXEC 4 |
| #define PTRACE_EVENT_VFORK_DONE 5 |
| #define PTRACE_EVENT_EXIT 6 |
| |
| #include <asm/ptrace.h> |
| |
| #ifdef __KERNEL__ |
| /* |
| * Ptrace flags |
| * |
| * The owner ship rules for task->ptrace which holds the ptrace |
| * flags is simple. When a task is running it owns it's task->ptrace |
| * flags. When the a task is stopped the ptracer owns task->ptrace. |
| */ |
| |
| #define PT_PTRACED 0x00000001 |
| #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ |
| #define PT_TRACESYSGOOD 0x00000004 |
| #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */ |
| #define PT_TRACE_FORK 0x00000010 |
| #define PT_TRACE_VFORK 0x00000020 |
| #define PT_TRACE_CLONE 0x00000040 |
| #define PT_TRACE_EXEC 0x00000080 |
| #define PT_TRACE_VFORK_DONE 0x00000100 |
| #define PT_TRACE_EXIT 0x00000200 |
| #define PT_ATTACHED 0x00000400 /* parent != real_parent */ |
| |
| #define PT_TRACE_MASK 0x000003f4 |
| |
| /* single stepping state bits (used on ARM and PA-RISC) */ |
| #define PT_SINGLESTEP_BIT 31 |
| #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) |
| #define PT_BLOCKSTEP_BIT 30 |
| #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) |
| |
| #include <linux/compiler.h> /* For unlikely. */ |
| #include <linux/sched.h> /* For struct task_struct. */ |
| |
| |
| extern long arch_ptrace(struct task_struct *child, long request, long addr, long data); |
| extern struct task_struct *ptrace_get_task_struct(pid_t pid); |
| extern int ptrace_traceme(void); |
| extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); |
| extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); |
| extern int ptrace_attach(struct task_struct *tsk); |
| extern int ptrace_detach(struct task_struct *, unsigned int); |
| extern void ptrace_disable(struct task_struct *); |
| extern int ptrace_check_attach(struct task_struct *task, int kill); |
| extern int ptrace_request(struct task_struct *child, long request, long addr, long data); |
| extern void ptrace_notify(int exit_code); |
| extern void __ptrace_link(struct task_struct *child, |
| struct task_struct *new_parent); |
| extern void __ptrace_unlink(struct task_struct *child); |
| extern void ptrace_untrace(struct task_struct *child); |
| extern int ptrace_may_attach(struct task_struct *task); |
| extern int __ptrace_may_attach(struct task_struct *task); |
| |
| static inline void ptrace_link(struct task_struct *child, |
| struct task_struct *new_parent) |
| { |
| if (unlikely(child->ptrace)) |
| __ptrace_link(child, new_parent); |
| } |
| static inline void ptrace_unlink(struct task_struct *child) |
| { |
| if (unlikely(child->ptrace)) |
| __ptrace_unlink(child); |
| } |
| |
| int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data); |
| int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data); |
| |
| #ifndef force_successful_syscall_return |
| /* |
| * System call handlers that, upon successful completion, need to return a |
| * negative value should call force_successful_syscall_return() right before |
| * returning. On architectures where the syscall convention provides for a |
| * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly |
| * others), this macro can be used to ensure that the error flag will not get |
| * set. On architectures which do not support a separate error flag, the macro |
| * is a no-op and the spurious error condition needs to be filtered out by some |
| * other means (e.g., in user-level, by passing an extra argument to the |
| * syscall handler, or something along those lines). |
| */ |
| #define force_successful_syscall_return() do { } while (0) |
| #endif |
| |
| /* |
| * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. |
| * |
| * These do-nothing inlines are used when the arch does not |
| * implement single-step. The kerneldoc comments are here |
| * to document the interface for all arch definitions. |
| */ |
| |
| #ifndef arch_has_single_step |
| /** |
| * arch_has_single_step - does this CPU support user-mode single-step? |
| * |
| * If this is defined, then there must be function declarations or |
| * inlines for user_enable_single_step() and user_disable_single_step(). |
| * arch_has_single_step() should evaluate to nonzero iff the machine |
| * supports instruction single-step for user mode. |
| * It can be a constant or it can test a CPU feature bit. |
| */ |
| #define arch_has_single_step() (0) |
| |
| /** |
| * user_enable_single_step - single-step in user-mode task |
| * @task: either current or a task stopped in %TASK_TRACED |
| * |
| * This can only be called when arch_has_single_step() has returned nonzero. |
| * Set @task so that when it returns to user mode, it will trap after the |
| * next single instruction executes. If arch_has_block_step() is defined, |
| * this must clear the effects of user_enable_block_step() too. |
| */ |
| static inline void user_enable_single_step(struct task_struct *task) |
| { |
| BUG(); /* This can never be called. */ |
| } |
| |
| /** |
| * user_disable_single_step - cancel user-mode single-step |
| * @task: either current or a task stopped in %TASK_TRACED |
| * |
| * Clear @task of the effects of user_enable_single_step() and |
| * user_enable_block_step(). This can be called whether or not either |
| * of those was ever called on @task, and even if arch_has_single_step() |
| * returned zero. |
| */ |
| static inline void user_disable_single_step(struct task_struct *task) |
| { |
| } |
| #endif /* arch_has_single_step */ |
| |
| #ifndef arch_has_block_step |
| /** |
| * arch_has_block_step - does this CPU support user-mode block-step? |
| * |
| * If this is defined, then there must be a function declaration or inline |
| * for user_enable_block_step(), and arch_has_single_step() must be defined |
| * too. arch_has_block_step() should evaluate to nonzero iff the machine |
| * supports step-until-branch for user mode. It can be a constant or it |
| * can test a CPU feature bit. |
| */ |
| #define arch_has_block_step() (0) |
| |
| /** |
| * user_enable_block_step - step until branch in user-mode task |
| * @task: either current or a task stopped in %TASK_TRACED |
| * |
| * This can only be called when arch_has_block_step() has returned nonzero, |
| * and will never be called when single-instruction stepping is being used. |
| * Set @task so that when it returns to user mode, it will trap after the |
| * next branch or trap taken. |
| */ |
| static inline void user_enable_block_step(struct task_struct *task) |
| { |
| BUG(); /* This can never be called. */ |
| } |
| #endif /* arch_has_block_step */ |
| |
| #ifndef arch_ptrace_stop_needed |
| /** |
| * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called |
| * @code: current->exit_code value ptrace will stop with |
| * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with |
| * |
| * This is called with the siglock held, to decide whether or not it's |
| * necessary to release the siglock and call arch_ptrace_stop() with the |
| * same @code and @info arguments. It can be defined to a constant if |
| * arch_ptrace_stop() is never required, or always is. On machines where |
| * this makes sense, it should be defined to a quick test to optimize out |
| * calling arch_ptrace_stop() when it would be superfluous. For example, |
| * if the thread has not been back to user mode since the last stop, the |
| * thread state might indicate that nothing needs to be done. |
| */ |
| #define arch_ptrace_stop_needed(code, info) (0) |
| #endif |
| |
| #ifndef arch_ptrace_stop |
| /** |
| * arch_ptrace_stop - Do machine-specific work before stopping for ptrace |
| * @code: current->exit_code value ptrace will stop with |
| * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with |
| * |
| * This is called with no locks held when arch_ptrace_stop_needed() has |
| * just returned nonzero. It is allowed to block, e.g. for user memory |
| * access. The arch can have machine-specific work to be done before |
| * ptrace stops. On ia64, register backing store gets written back to user |
| * memory here. Since this can be costly (requires dropping the siglock), |
| * we only do it when the arch requires it for this particular stop, as |
| * indicated by arch_ptrace_stop_needed(). |
| */ |
| #define arch_ptrace_stop(code, info) do { } while (0) |
| #endif |
| |
| #endif |
| |
| #endif |