| Ceph Distributed File System |
| ============================ |
| |
| Ceph is a distributed network file system designed to provide good |
| performance, reliability, and scalability. |
| |
| Basic features include: |
| |
| * POSIX semantics |
| * Seamless scaling from 1 to many thousands of nodes |
| * High availability and reliability. No single point of failure. |
| * N-way replication of data across storage nodes |
| * Fast recovery from node failures |
| * Automatic rebalancing of data on node addition/removal |
| * Easy deployment: most FS components are userspace daemons |
| |
| Also, |
| * Flexible snapshots (on any directory) |
| * Recursive accounting (nested files, directories, bytes) |
| |
| In contrast to cluster filesystems like GFS, OCFS2, and GPFS that rely |
| on symmetric access by all clients to shared block devices, Ceph |
| separates data and metadata management into independent server |
| clusters, similar to Lustre. Unlike Lustre, however, metadata and |
| storage nodes run entirely as user space daemons. Storage nodes |
| utilize btrfs to store data objects, leveraging its advanced features |
| (checksumming, metadata replication, etc.). File data is striped |
| across storage nodes in large chunks to distribute workload and |
| facilitate high throughputs. When storage nodes fail, data is |
| re-replicated in a distributed fashion by the storage nodes themselves |
| (with some minimal coordination from a cluster monitor), making the |
| system extremely efficient and scalable. |
| |
| Metadata servers effectively form a large, consistent, distributed |
| in-memory cache above the file namespace that is extremely scalable, |
| dynamically redistributes metadata in response to workload changes, |
| and can tolerate arbitrary (well, non-Byzantine) node failures. The |
| metadata server takes a somewhat unconventional approach to metadata |
| storage to significantly improve performance for common workloads. In |
| particular, inodes with only a single link are embedded in |
| directories, allowing entire directories of dentries and inodes to be |
| loaded into its cache with a single I/O operation. The contents of |
| extremely large directories can be fragmented and managed by |
| independent metadata servers, allowing scalable concurrent access. |
| |
| The system offers automatic data rebalancing/migration when scaling |
| from a small cluster of just a few nodes to many hundreds, without |
| requiring an administrator carve the data set into static volumes or |
| go through the tedious process of migrating data between servers. |
| When the file system approaches full, new nodes can be easily added |
| and things will "just work." |
| |
| Ceph includes flexible snapshot mechanism that allows a user to create |
| a snapshot on any subdirectory (and its nested contents) in the |
| system. Snapshot creation and deletion are as simple as 'mkdir |
| .snap/foo' and 'rmdir .snap/foo'. |
| |
| Ceph also provides some recursive accounting on directories for nested |
| files and bytes. That is, a 'getfattr -d foo' on any directory in the |
| system will reveal the total number of nested regular files and |
| subdirectories, and a summation of all nested file sizes. This makes |
| the identification of large disk space consumers relatively quick, as |
| no 'du' or similar recursive scan of the file system is required. |
| |
| |
| Mount Syntax |
| ============ |
| |
| The basic mount syntax is: |
| |
| # mount -t ceph monip[:port][,monip2[:port]...]:/[subdir] mnt |
| |
| You only need to specify a single monitor, as the client will get the |
| full list when it connects. (However, if the monitor you specify |
| happens to be down, the mount won't succeed.) The port can be left |
| off if the monitor is using the default. So if the monitor is at |
| 1.2.3.4, |
| |
| # mount -t ceph 1.2.3.4:/ /mnt/ceph |
| |
| is sufficient. If /sbin/mount.ceph is installed, a hostname can be |
| used instead of an IP address. |
| |
| |
| |
| Mount Options |
| ============= |
| |
| ip=A.B.C.D[:N] |
| Specify the IP and/or port the client should bind to locally. |
| There is normally not much reason to do this. If the IP is not |
| specified, the client's IP address is determined by looking at the |
| address it's connection to the monitor originates from. |
| |
| wsize=X |
| Specify the maximum write size in bytes. By default there is no |
| maximum. Ceph will normally size writes based on the file stripe |
| size. |
| |
| rsize=X |
| Specify the maximum readahead. |
| |
| mount_timeout=X |
| Specify the timeout value for mount (in seconds), in the case |
| of a non-responsive Ceph file system. The default is 30 |
| seconds. |
| |
| rbytes |
| When stat() is called on a directory, set st_size to 'rbytes', |
| the summation of file sizes over all files nested beneath that |
| directory. This is the default. |
| |
| norbytes |
| When stat() is called on a directory, set st_size to the |
| number of entries in that directory. |
| |
| nocrc |
| Disable CRC32C calculation for data writes. If set, the storage node |
| must rely on TCP's error correction to detect data corruption |
| in the data payload. |
| |
| noasyncreaddir |
| Disable client's use its local cache to satisfy readdir |
| requests. (This does not change correctness; the client uses |
| cached metadata only when a lease or capability ensures it is |
| valid.) |
| |
| |
| More Information |
| ================ |
| |
| For more information on Ceph, see the home page at |
| http://ceph.newdream.net/ |
| |
| The Linux kernel client source tree is available at |
| git://ceph.newdream.net/git/ceph-client.git |
| git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git |
| |
| and the source for the full system is at |
| git://ceph.newdream.net/git/ceph.git |