| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2007 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/netdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| |
| #include "e1000.h" |
| |
| enum e1000_mng_mode { |
| e1000_mng_mode_none = 0, |
| e1000_mng_mode_asf, |
| e1000_mng_mode_pt, |
| e1000_mng_mode_ipmi, |
| e1000_mng_mode_host_if_only |
| }; |
| |
| #define E1000_FACTPS_MNGCG 0x20000000 |
| |
| #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management |
| * Technology signature */ |
| |
| /** |
| * e1000e_get_bus_info_pcie - Get PCIe bus information |
| * @hw: pointer to the HW structure |
| * |
| * Determines and stores the system bus information for a particular |
| * network interface. The following bus information is determined and stored: |
| * bus speed, bus width, type (PCIe), and PCIe function. |
| **/ |
| s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| struct e1000_adapter *adapter = hw->adapter; |
| u32 status; |
| u16 pcie_link_status, pci_header_type, cap_offset; |
| |
| cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| if (!cap_offset) { |
| bus->width = e1000_bus_width_unknown; |
| } else { |
| pci_read_config_word(adapter->pdev, |
| cap_offset + PCIE_LINK_STATUS, |
| &pcie_link_status); |
| bus->width = (enum e1000_bus_width)((pcie_link_status & |
| PCIE_LINK_WIDTH_MASK) >> |
| PCIE_LINK_WIDTH_SHIFT); |
| } |
| |
| pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, |
| &pci_header_type); |
| if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { |
| status = er32(STATUS); |
| bus->func = (status & E1000_STATUS_FUNC_MASK) |
| >> E1000_STATUS_FUNC_SHIFT; |
| } else { |
| bus->func = 0; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_write_vfta - Write value to VLAN filter table |
| * @hw: pointer to the HW structure |
| * @offset: register offset in VLAN filter table |
| * @value: register value written to VLAN filter table |
| * |
| * Writes value at the given offset in the register array which stores |
| * the VLAN filter table. |
| **/ |
| void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000e_init_rx_addrs - Initialize receive address's |
| * @hw: pointer to the HW structure |
| * @rar_count: receive address registers |
| * |
| * Setups the receive address registers by setting the base receive address |
| * register to the devices MAC address and clearing all the other receive |
| * address registers to 0. |
| **/ |
| void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) |
| { |
| u32 i; |
| |
| /* Setup the receive address */ |
| hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); |
| |
| e1000e_rar_set(hw, hw->mac.addr, 0); |
| |
| /* Zero out the other (rar_entry_count - 1) receive addresses */ |
| hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); |
| for (i = 1; i < rar_count; i++) { |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); |
| e1e_flush(); |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); |
| e1e_flush(); |
| } |
| } |
| |
| /** |
| * e1000e_rar_set - Set receive address register |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index: receive address array register |
| * |
| * Sets the receive address array register at index to the address passed |
| * in by addr. |
| **/ |
| void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | |
| ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| rar_high |= E1000_RAH_AV; |
| |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); |
| } |
| |
| /** |
| * e1000_mta_set - Set multicast filter table address |
| * @hw: pointer to the HW structure |
| * @hash_value: determines the MTA register and bit to set |
| * |
| * The multicast table address is a register array of 32-bit registers. |
| * The hash_value is used to determine what register the bit is in, the |
| * current value is read, the new bit is OR'd in and the new value is |
| * written back into the register. |
| **/ |
| static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) |
| { |
| u32 hash_bit, hash_reg, mta; |
| |
| /* The MTA is a register array of 32-bit registers. It is |
| * treated like an array of (32*mta_reg_count) bits. We want to |
| * set bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The (hw->mac.mta_reg_count - 1) serves as a |
| * mask to bits 31:5 of the hash value which gives us the |
| * register we're modifying. The hash bit within that register |
| * is determined by the lower 5 bits of the hash value. |
| */ |
| hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); |
| hash_bit = hash_value & 0x1F; |
| |
| mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000_hash_mc_addr - Generate a multicast hash value |
| * @hw: pointer to the HW structure |
| * @mc_addr: pointer to a multicast address |
| * |
| * Generates a multicast address hash value which is used to determine |
| * the multicast filter table array address and new table value. See |
| * e1000_mta_set_generic() |
| **/ |
| static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
| { |
| u32 hash_value, hash_mask; |
| u8 bit_shift = 0; |
| |
| /* Register count multiplied by bits per register */ |
| hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| |
| /* For a mc_filter_type of 0, bit_shift is the number of left-shifts |
| * where 0xFF would still fall within the hash mask. */ |
| while (hash_mask >> bit_shift != 0xFF) |
| bit_shift++; |
| |
| /* The portion of the address that is used for the hash table |
| * is determined by the mc_filter_type setting. |
| * The algorithm is such that there is a total of 8 bits of shifting. |
| * The bit_shift for a mc_filter_type of 0 represents the number of |
| * left-shifts where the MSB of mc_addr[5] would still fall within |
| * the hash_mask. Case 0 does this exactly. Since there are a total |
| * of 8 bits of shifting, then mc_addr[4] will shift right the |
| * remaining number of bits. Thus 8 - bit_shift. The rest of the |
| * cases are a variation of this algorithm...essentially raising the |
| * number of bits to shift mc_addr[5] left, while still keeping the |
| * 8-bit shifting total. |
| */ |
| /* For example, given the following Destination MAC Address and an |
| * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), |
| * we can see that the bit_shift for case 0 is 4. These are the hash |
| * values resulting from each mc_filter_type... |
| * [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB |
| * |
| * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 |
| * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 |
| * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 |
| * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 |
| */ |
| switch (hw->mac.mc_filter_type) { |
| default: |
| case 0: |
| break; |
| case 1: |
| bit_shift += 1; |
| break; |
| case 2: |
| bit_shift += 2; |
| break; |
| case 3: |
| bit_shift += 4; |
| break; |
| } |
| |
| hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| (((u16) mc_addr[5]) << bit_shift))); |
| |
| return hash_value; |
| } |
| |
| /** |
| * e1000e_mc_addr_list_update_generic - Update Multicast addresses |
| * @hw: pointer to the HW structure |
| * @mc_addr_list: array of multicast addresses to program |
| * @mc_addr_count: number of multicast addresses to program |
| * @rar_used_count: the first RAR register free to program |
| * @rar_count: total number of supported Receive Address Registers |
| * |
| * Updates the Receive Address Registers and Multicast Table Array. |
| * The caller must have a packed mc_addr_list of multicast addresses. |
| * The parameter rar_count will usually be hw->mac.rar_entry_count |
| * unless there are workarounds that change this. |
| **/ |
| void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, |
| u8 *mc_addr_list, u32 mc_addr_count, |
| u32 rar_used_count, u32 rar_count) |
| { |
| u32 hash_value; |
| u32 i; |
| |
| /* Load the first set of multicast addresses into the exact |
| * filters (RAR). If there are not enough to fill the RAR |
| * array, clear the filters. |
| */ |
| for (i = rar_used_count; i < rar_count; i++) { |
| if (mc_addr_count) { |
| e1000e_rar_set(hw, mc_addr_list, i); |
| mc_addr_count--; |
| mc_addr_list += ETH_ALEN; |
| } else { |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); |
| e1e_flush(); |
| E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); |
| e1e_flush(); |
| } |
| } |
| |
| /* Clear the old settings from the MTA */ |
| hw_dbg(hw, "Clearing MTA\n"); |
| for (i = 0; i < hw->mac.mta_reg_count; i++) { |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| e1e_flush(); |
| } |
| |
| /* Load any remaining multicast addresses into the hash table. */ |
| for (; mc_addr_count > 0; mc_addr_count--) { |
| hash_value = e1000_hash_mc_addr(hw, mc_addr_list); |
| hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); |
| e1000_mta_set(hw, hash_value); |
| mc_addr_list += ETH_ALEN; |
| } |
| } |
| |
| /** |
| * e1000e_clear_hw_cntrs_base - Clear base hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the base hardware counters by reading the counter registers. |
| **/ |
| void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) |
| { |
| u32 temp; |
| |
| temp = er32(CRCERRS); |
| temp = er32(SYMERRS); |
| temp = er32(MPC); |
| temp = er32(SCC); |
| temp = er32(ECOL); |
| temp = er32(MCC); |
| temp = er32(LATECOL); |
| temp = er32(COLC); |
| temp = er32(DC); |
| temp = er32(SEC); |
| temp = er32(RLEC); |
| temp = er32(XONRXC); |
| temp = er32(XONTXC); |
| temp = er32(XOFFRXC); |
| temp = er32(XOFFTXC); |
| temp = er32(FCRUC); |
| temp = er32(GPRC); |
| temp = er32(BPRC); |
| temp = er32(MPRC); |
| temp = er32(GPTC); |
| temp = er32(GORCL); |
| temp = er32(GORCH); |
| temp = er32(GOTCL); |
| temp = er32(GOTCH); |
| temp = er32(RNBC); |
| temp = er32(RUC); |
| temp = er32(RFC); |
| temp = er32(ROC); |
| temp = er32(RJC); |
| temp = er32(TORL); |
| temp = er32(TORH); |
| temp = er32(TOTL); |
| temp = er32(TOTH); |
| temp = er32(TPR); |
| temp = er32(TPT); |
| temp = er32(MPTC); |
| temp = er32(BPTC); |
| } |
| |
| /** |
| * e1000e_check_for_copper_link - Check for link (Copper) |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| **/ |
| s32 e1000e_check_for_copper_link(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| bool link; |
| |
| /* We only want to go out to the PHY registers to see if Auto-Neg |
| * has completed and/or if our link status has changed. The |
| * get_link_status flag is set upon receiving a Link Status |
| * Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) |
| return 0; |
| |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| return ret_val; /* No link detected */ |
| |
| mac->get_link_status = 0; |
| |
| /* Check if there was DownShift, must be checked |
| * immediately after link-up */ |
| e1000e_check_downshift(hw); |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) { |
| ret_val = -E1000_ERR_CONFIG; |
| return ret_val; |
| } |
| |
| /* Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| e1000e_config_collision_dist(hw); |
| |
| /* Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error configuring flow control\n"); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_check_for_fiber_link - Check for link (Fiber) |
| * @hw: pointer to the HW structure |
| * |
| * Checks for link up on the hardware. If link is not up and we have |
| * a signal, then we need to force link up. |
| **/ |
| s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 rxcw; |
| u32 ctrl; |
| u32 status; |
| s32 ret_val; |
| |
| ctrl = er32(CTRL); |
| status = er32(STATUS); |
| rxcw = er32(RXCW); |
| |
| /* If we don't have link (auto-negotiation failed or link partner |
| * cannot auto-negotiate), the cable is plugged in (we have signal), |
| * and our link partner is not trying to auto-negotiate with us (we |
| * are receiving idles or data), we need to force link up. We also |
| * need to give auto-negotiation time to complete, in case the cable |
| * was just plugged in. The autoneg_failed flag does this. |
| */ |
| /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
| if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && |
| (!(rxcw & E1000_RXCW_C))) { |
| if (mac->autoneg_failed == 0) { |
| mac->autoneg_failed = 1; |
| return 0; |
| } |
| hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = er32(CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| ew32(CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error configuring flow control\n"); |
| return ret_val; |
| } |
| } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| /* If we are forcing link and we are receiving /C/ ordered |
| * sets, re-enable auto-negotiation in the TXCW register |
| * and disable forced link in the Device Control register |
| * in an attempt to auto-negotiate with our link partner. |
| */ |
| hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); |
| ew32(TXCW, mac->txcw); |
| ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| mac->serdes_has_link = 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_check_for_serdes_link - Check for link (Serdes) |
| * @hw: pointer to the HW structure |
| * |
| * Checks for link up on the hardware. If link is not up and we have |
| * a signal, then we need to force link up. |
| **/ |
| s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 rxcw; |
| u32 ctrl; |
| u32 status; |
| s32 ret_val; |
| |
| ctrl = er32(CTRL); |
| status = er32(STATUS); |
| rxcw = er32(RXCW); |
| |
| /* If we don't have link (auto-negotiation failed or link partner |
| * cannot auto-negotiate), and our link partner is not trying to |
| * auto-negotiate with us (we are receiving idles or data), |
| * we need to force link up. We also need to give auto-negotiation |
| * time to complete. |
| */ |
| /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
| if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { |
| if (mac->autoneg_failed == 0) { |
| mac->autoneg_failed = 1; |
| return 0; |
| } |
| hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = er32(CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| ew32(CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error configuring flow control\n"); |
| return ret_val; |
| } |
| } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| /* If we are forcing link and we are receiving /C/ ordered |
| * sets, re-enable auto-negotiation in the TXCW register |
| * and disable forced link in the Device Control register |
| * in an attempt to auto-negotiate with our link partner. |
| */ |
| hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); |
| ew32(TXCW, mac->txcw); |
| ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| mac->serdes_has_link = 1; |
| } else if (!(E1000_TXCW_ANE & er32(TXCW))) { |
| /* If we force link for non-auto-negotiation switch, check |
| * link status based on MAC synchronization for internal |
| * serdes media type. |
| */ |
| /* SYNCH bit and IV bit are sticky. */ |
| udelay(10); |
| if (E1000_RXCW_SYNCH & er32(RXCW)) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| mac->serdes_has_link = 1; |
| hw_dbg(hw, "SERDES: Link is up.\n"); |
| } |
| } else { |
| mac->serdes_has_link = 0; |
| hw_dbg(hw, "SERDES: Link is down.\n"); |
| } |
| } |
| |
| if (E1000_TXCW_ANE & er32(TXCW)) { |
| status = er32(STATUS); |
| mac->serdes_has_link = (status & E1000_STATUS_LU); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_default_fc_generic - Set flow control default values |
| * @hw: pointer to the HW structure |
| * |
| * Read the EEPROM for the default values for flow control and store the |
| * values. |
| **/ |
| static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| u16 nvm_data; |
| |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); |
| |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) |
| mac->fc = e1000_fc_none; |
| else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == |
| NVM_WORD0F_ASM_DIR) |
| mac->fc = e1000_fc_tx_pause; |
| else |
| mac->fc = e1000_fc_full; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_setup_link - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| s32 e1000e_setup_link(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| |
| /* In the case of the phy reset being blocked, we already have a link. |
| * We do not need to set it up again. |
| */ |
| if (e1000_check_reset_block(hw)) |
| return 0; |
| |
| /* |
| * If flow control is set to default, set flow control based on |
| * the EEPROM flow control settings. |
| */ |
| if (mac->fc == e1000_fc_default) { |
| ret_val = e1000_set_default_fc_generic(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| mac->original_fc = mac->fc; |
| |
| hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); |
| |
| /* Call the necessary media_type subroutine to configure the link. */ |
| ret_val = mac->ops.setup_physical_interface(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); |
| ew32(FCT, FLOW_CONTROL_TYPE); |
| ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| |
| ew32(FCTTV, mac->fc_pause_time); |
| |
| return e1000e_set_fc_watermarks(hw); |
| } |
| |
| /** |
| * e1000_commit_fc_settings_generic - Configure flow control |
| * @hw: pointer to the HW structure |
| * |
| * Write the flow control settings to the Transmit Config Word Register (TXCW) |
| * base on the flow control settings in e1000_mac_info. |
| **/ |
| static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 txcw; |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the device accordingly. If auto-negotiation is enabled, then |
| * software will have to set the "PAUSE" bits to the correct value in |
| * the Transmit Config Word Register (TXCW) and re-start auto- |
| * negotiation. However, if auto-negotiation is disabled, then |
| * software will have to manually configure the two flow control enable |
| * bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we |
| * do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| */ |
| switch (mac->fc) { |
| case e1000_fc_none: |
| /* Flow control completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case e1000_fc_rx_pause: |
| /* RX Flow control is enabled and TX Flow control is disabled |
| * by a software over-ride. Since there really isn't a way to |
| * advertise that we are capable of RX Pause ONLY, we will |
| * advertise that we support both symmetric and asymmetric RX |
| * PAUSE. Later, we will disable the adapter's ability to send |
| * PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case e1000_fc_tx_pause: |
| /* TX Flow control is enabled, and RX Flow control is disabled, |
| * by a software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case e1000_fc_full: |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| hw_dbg(hw, "Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| ew32(TXCW, txcw); |
| mac->txcw = txcw; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_poll_fiber_serdes_link_generic - Poll for link up |
| * @hw: pointer to the HW structure |
| * |
| * Polls for link up by reading the status register, if link fails to come |
| * up with auto-negotiation, then the link is forced if a signal is detected. |
| **/ |
| static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 i, status; |
| s32 ret_val; |
| |
| /* If we have a signal (the cable is plugged in, or assumed true for |
| * serdes media) then poll for a "Link-Up" indication in the Device |
| * Status Register. Time-out if a link isn't seen in 500 milliseconds |
| * seconds (Auto-negotiation should complete in less than 500 |
| * milliseconds even if the other end is doing it in SW). |
| */ |
| for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { |
| msleep(10); |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) |
| break; |
| } |
| if (i == FIBER_LINK_UP_LIMIT) { |
| hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); |
| mac->autoneg_failed = 1; |
| /* AutoNeg failed to achieve a link, so we'll call |
| * mac->check_for_link. This routine will force the |
| * link up if we detect a signal. This will allow us to |
| * communicate with non-autonegotiating link partners. |
| */ |
| ret_val = mac->ops.check_for_link(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error while checking for link\n"); |
| return ret_val; |
| } |
| mac->autoneg_failed = 0; |
| } else { |
| mac->autoneg_failed = 0; |
| hw_dbg(hw, "Valid Link Found\n"); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes |
| * @hw: pointer to the HW structure |
| * |
| * Configures collision distance and flow control for fiber and serdes |
| * links. Upon successful setup, poll for link. |
| **/ |
| s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| ctrl = er32(CTRL); |
| |
| /* Take the link out of reset */ |
| ctrl &= ~E1000_CTRL_LRST; |
| |
| e1000e_config_collision_dist(hw); |
| |
| ret_val = e1000_commit_fc_settings_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the |
| * link will be in reset, because we previously reset the chip). This |
| * will restart auto-negotiation. If auto-negotiation is successful |
| * then the link-up status bit will be set and the flow control enable |
| * bits (RFCE and TFCE) will be set according to their negotiated value. |
| */ |
| hw_dbg(hw, "Auto-negotiation enabled\n"); |
| |
| ew32(CTRL, ctrl); |
| e1e_flush(); |
| msleep(1); |
| |
| /* For these adapters, the SW defineable pin 1 is set when the optics |
| * detect a signal. If we have a signal, then poll for a "Link-Up" |
| * indication. |
| */ |
| if (hw->media_type == e1000_media_type_internal_serdes || |
| (er32(CTRL) & E1000_CTRL_SWDPIN1)) { |
| ret_val = e1000_poll_fiber_serdes_link_generic(hw); |
| } else { |
| hw_dbg(hw, "No signal detected\n"); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_config_collision_dist - Configure collision distance |
| * @hw: pointer to the HW structure |
| * |
| * Configures the collision distance to the default value and is used |
| * during link setup. Currently no func pointer exists and all |
| * implementations are handled in the generic version of this function. |
| **/ |
| void e1000e_config_collision_dist(struct e1000_hw *hw) |
| { |
| u32 tctl; |
| |
| tctl = er32(TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| |
| ew32(TCTL, tctl); |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000e_set_fc_watermarks - Set flow control high/low watermarks |
| * @hw: pointer to the HW structure |
| * |
| * Sets the flow control high/low threshold (watermark) registers. If |
| * flow control XON frame transmission is enabled, then set XON frame |
| * tansmission as well. |
| **/ |
| s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 fcrtl = 0, fcrth = 0; |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames is not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (mac->fc & e1000_fc_tx_pause) { |
| /* We need to set up the Receive Threshold high and low water |
| * marks as well as (optionally) enabling the transmission of |
| * XON frames. |
| */ |
| fcrtl = mac->fc_low_water; |
| fcrtl |= E1000_FCRTL_XONE; |
| fcrth = mac->fc_high_water; |
| } |
| ew32(FCRTL, fcrtl); |
| ew32(FCRTH, fcrth); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_force_mac_fc - Force the MAC's flow control settings |
| * @hw: pointer to the HW structure |
| * |
| * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the |
| * device control register to reflect the adapter settings. TFCE and RFCE |
| * need to be explicitly set by software when a copper PHY is used because |
| * autonegotiation is managed by the PHY rather than the MAC. Software must |
| * also configure these bits when link is forced on a fiber connection. |
| **/ |
| s32 e1000e_force_mac_fc(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 ctrl; |
| |
| ctrl = er32(CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "mac->fc" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| hw_dbg(hw, "mac->fc = %u\n", mac->fc); |
| |
| switch (mac->fc) { |
| case e1000_fc_none: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case e1000_fc_rx_pause: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case e1000_fc_tx_pause: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case e1000_fc_full: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| hw_dbg(hw, "Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ew32(CTRL, ctrl); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_config_fc_after_link_up - Configures flow control after link |
| * @hw: pointer to the HW structure |
| * |
| * Checks the status of auto-negotiation after link up to ensure that the |
| * speed and duplex were not forced. If the link needed to be forced, then |
| * flow control needs to be forced also. If auto-negotiation is enabled |
| * and did not fail, then we configure flow control based on our link |
| * partner. |
| **/ |
| s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val = 0; |
| u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; |
| u16 speed, duplex; |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (mac->autoneg_failed) { |
| if (hw->media_type == e1000_media_type_fiber || |
| hw->media_type == e1000_media_type_internal_serdes) |
| ret_val = e1000e_force_mac_fc(hw); |
| } else { |
| if (hw->media_type == e1000_media_type_copper) |
| ret_val = e1000e_force_mac_fc(hw); |
| } |
| |
| if (ret_val) { |
| hw_dbg(hw, "Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { |
| hw_dbg(hw, "Copper PHY and Auto Neg " |
| "has not completed.\n"); |
| return ret_val; |
| } |
| |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement |
| * Register (Address 4) and the Auto_Negotiation Base |
| * Page Ability Register (Address 5) to determine how |
| * flow control was negotiated. |
| */ |
| ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| /* Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | E1000_fc_full |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (mac->original_fc == e1000_fc_full) { |
| mac->fc = e1000_fc_full; |
| hw_dbg(hw, "Flow Control = FULL.\r\n"); |
| } else { |
| mac->fc = e1000_fc_rx_pause; |
| hw_dbg(hw, "Flow Control = " |
| "RX PAUSE frames only.\r\n"); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| mac->fc = e1000_fc_tx_pause; |
| hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| mac->fc = e1000_fc_rx_pause; |
| hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); |
| } else { |
| /* |
| * Per the IEEE spec, at this point flow control |
| * should be disabled. |
| */ |
| mac->fc = e1000_fc_none; |
| hw_dbg(hw, "Flow Control = NONE.\r\n"); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); |
| if (ret_val) { |
| hw_dbg(hw, "Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| |
| if (duplex == HALF_DUPLEX) |
| mac->fc = e1000_fc_none; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000e_force_mac_fc(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Read the status register for the current speed/duplex and store the current |
| * speed and duplex for copper connections. |
| **/ |
| s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
| { |
| u32 status; |
| |
| status = er32(STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| hw_dbg(hw, "1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| hw_dbg(hw, "100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| hw_dbg(hw, "10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| hw_dbg(hw, "Full Duplex\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| hw_dbg(hw, "Half Duplex\n"); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Sets the speed and duplex to gigabit full duplex (the only possible option) |
| * for fiber/serdes links. |
| **/ |
| s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
| { |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_get_hw_semaphore - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| **/ |
| s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| /* Get the SW semaphore */ |
| while (i < timeout) { |
| swsm = er32(SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| udelay(50); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (er32(SWSM) & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| e1000e_put_hw_semaphore(hw); |
| hw_dbg(hw, "Driver can't access the NVM\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_put_hw_semaphore - Release hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Release hardware semaphore used to access the PHY or NVM |
| **/ |
| void e1000e_put_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| |
| swsm = er32(SWSM); |
| swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| ew32(SWSM, swsm); |
| } |
| |
| /** |
| * e1000e_get_auto_rd_done - Check for auto read completion |
| * @hw: pointer to the HW structure |
| * |
| * Check EEPROM for Auto Read done bit. |
| **/ |
| s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) |
| { |
| s32 i = 0; |
| |
| while (i < AUTO_READ_DONE_TIMEOUT) { |
| if (er32(EECD) & E1000_EECD_AUTO_RD) |
| break; |
| msleep(1); |
| i++; |
| } |
| |
| if (i == AUTO_READ_DONE_TIMEOUT) { |
| hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_valid_led_default - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_id_led_init - |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| s32 e1000e_id_led_init(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| const u32 ledctl_mask = 0x000000FF; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| u16 data, i, temp; |
| const u16 led_mask = 0x0F; |
| |
| ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
| if (ret_val) |
| return ret_val; |
| |
| mac->ledctl_default = er32(LEDCTL); |
| mac->ledctl_mode1 = mac->ledctl_default; |
| mac->ledctl_mode2 = mac->ledctl_default; |
| |
| for (i = 0; i < 4; i++) { |
| temp = (data >> (i << 2)) & led_mask; |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_cleanup_led_generic - Set LED config to default operation |
| * @hw: pointer to the HW structure |
| * |
| * Remove the current LED configuration and set the LED configuration |
| * to the default value, saved from the EEPROM. |
| **/ |
| s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) |
| { |
| ew32(LEDCTL, hw->mac.ledctl_default); |
| return 0; |
| } |
| |
| /** |
| * e1000e_blink_led - Blink LED |
| * @hw: pointer to the HW structure |
| * |
| * Blink the LEDs which are set to be on. |
| **/ |
| s32 e1000e_blink_led(struct e1000_hw *hw) |
| { |
| u32 ledctl_blink = 0; |
| u32 i; |
| |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* always blink LED0 for PCI-E fiber */ |
| ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
| (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
| } else { |
| /* set the blink bit for each LED that's "on" (0x0E) |
| * in ledctl_mode2 */ |
| ledctl_blink = hw->mac.ledctl_mode2; |
| for (i = 0; i < 4; i++) |
| if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
| E1000_LEDCTL_MODE_LED_ON) |
| ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << |
| (i * 8)); |
| } |
| |
| ew32(LEDCTL, ledctl_blink); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_led_on_generic - Turn LED on |
| * @hw: pointer to the HW structure |
| * |
| * Turn LED on. |
| **/ |
| s32 e1000e_led_on_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| switch (hw->media_type) { |
| case e1000_media_type_fiber: |
| ctrl = er32(CTRL); |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| ew32(CTRL, ctrl); |
| break; |
| case e1000_media_type_copper: |
| ew32(LEDCTL, hw->mac.ledctl_mode2); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_led_off_generic - Turn LED off |
| * @hw: pointer to the HW structure |
| * |
| * Turn LED off. |
| **/ |
| s32 e1000e_led_off_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| switch (hw->media_type) { |
| case e1000_media_type_fiber: |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| ew32(CTRL, ctrl); |
| break; |
| case e1000_media_type_copper: |
| ew32(LEDCTL, hw->mac.ledctl_mode1); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_set_pcie_no_snoop - Set PCI-express capabilities |
| * @hw: pointer to the HW structure |
| * @no_snoop: bitmap of snoop events |
| * |
| * Set the PCI-express register to snoop for events enabled in 'no_snoop'. |
| **/ |
| void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) |
| { |
| u32 gcr; |
| |
| if (no_snoop) { |
| gcr = er32(GCR); |
| gcr &= ~(PCIE_NO_SNOOP_ALL); |
| gcr |= no_snoop; |
| ew32(GCR, gcr); |
| } |
| } |
| |
| /** |
| * e1000e_disable_pcie_master - Disables PCI-express master access |
| * @hw: pointer to the HW structure |
| * |
| * Returns 0 if successful, else returns -10 |
| * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused |
| * the master requests to be disabled. |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. |
| **/ |
| s32 e1000e_disable_pcie_master(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 timeout = MASTER_DISABLE_TIMEOUT; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
| ew32(CTRL, ctrl); |
| |
| while (timeout) { |
| if (!(er32(STATUS) & |
| E1000_STATUS_GIO_MASTER_ENABLE)) |
| break; |
| udelay(100); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "Master requests are pending.\n"); |
| return -E1000_ERR_MASTER_REQUESTS_PENDING; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Reset the Adaptive Interframe Spacing throttle to default values. |
| **/ |
| void e1000e_reset_adaptive(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| mac->current_ifs_val = 0; |
| mac->ifs_min_val = IFS_MIN; |
| mac->ifs_max_val = IFS_MAX; |
| mac->ifs_step_size = IFS_STEP; |
| mac->ifs_ratio = IFS_RATIO; |
| |
| mac->in_ifs_mode = 0; |
| ew32(AIT, 0); |
| } |
| |
| /** |
| * e1000e_update_adaptive - Update Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Update the Adaptive Interframe Spacing Throttle value based on the |
| * time between transmitted packets and time between collisions. |
| **/ |
| void e1000e_update_adaptive(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { |
| if (mac->tx_packet_delta > MIN_NUM_XMITS) { |
| mac->in_ifs_mode = 1; |
| if (mac->current_ifs_val < mac->ifs_max_val) { |
| if (!mac->current_ifs_val) |
| mac->current_ifs_val = mac->ifs_min_val; |
| else |
| mac->current_ifs_val += |
| mac->ifs_step_size; |
| ew32(AIT, |
| mac->current_ifs_val); |
| } |
| } |
| } else { |
| if (mac->in_ifs_mode && |
| (mac->tx_packet_delta <= MIN_NUM_XMITS)) { |
| mac->current_ifs_val = 0; |
| mac->in_ifs_mode = 0; |
| ew32(AIT, 0); |
| } |
| } |
| } |
| |
| /** |
| * e1000_raise_eec_clk - Raise EEPROM clock |
| * @hw: pointer to the HW structure |
| * @eecd: pointer to the EEPROM |
| * |
| * Enable/Raise the EEPROM clock bit. |
| **/ |
| static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| *eecd = *eecd | E1000_EECD_SK; |
| ew32(EECD, *eecd); |
| e1e_flush(); |
| udelay(hw->nvm.delay_usec); |
| } |
| |
| /** |
| * e1000_lower_eec_clk - Lower EEPROM clock |
| * @hw: pointer to the HW structure |
| * @eecd: pointer to the EEPROM |
| * |
| * Clear/Lower the EEPROM clock bit. |
| **/ |
| static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| *eecd = *eecd & ~E1000_EECD_SK; |
| ew32(EECD, *eecd); |
| e1e_flush(); |
| udelay(hw->nvm.delay_usec); |
| } |
| |
| /** |
| * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
| * @hw: pointer to the HW structure |
| * @data: data to send to the EEPROM |
| * @count: number of bits to shift out |
| * |
| * We need to shift 'count' bits out to the EEPROM. So, the value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| **/ |
| static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = er32(EECD); |
| u32 mask; |
| |
| mask = 0x01 << (count - 1); |
| if (nvm->type == e1000_nvm_eeprom_spi) |
| eecd |= E1000_EECD_DO; |
| |
| do { |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| ew32(EECD, eecd); |
| e1e_flush(); |
| |
| udelay(nvm->delay_usec); |
| |
| e1000_raise_eec_clk(hw, &eecd); |
| e1000_lower_eec_clk(hw, &eecd); |
| |
| mask >>= 1; |
| } while (mask); |
| |
| eecd &= ~E1000_EECD_DI; |
| ew32(EECD, eecd); |
| } |
| |
| /** |
| * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
| * @hw: pointer to the HW structure |
| * @count: number of bits to shift in |
| * |
| * In order to read a register from the EEPROM, we need to shift 'count' bits |
| * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| * the EEPROM (setting the SK bit), and then reading the value of the data out |
| * "DO" bit. During this "shifting in" process the data in "DI" bit should |
| * always be clear. |
| **/ |
| static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
| { |
| u32 eecd; |
| u32 i; |
| u16 data; |
| |
| eecd = er32(EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < count; i++) { |
| data <<= 1; |
| e1000_raise_eec_clk(hw, &eecd); |
| |
| eecd = er32(EECD); |
| |
| eecd &= ~E1000_EECD_DI; |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| e1000_lower_eec_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /** |
| * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
| * @hw: pointer to the HW structure |
| * @ee_reg: EEPROM flag for polling |
| * |
| * Polls the EEPROM status bit for either read or write completion based |
| * upon the value of 'ee_reg'. |
| **/ |
| s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
| { |
| u32 attempts = 100000; |
| u32 i, reg = 0; |
| |
| for (i = 0; i < attempts; i++) { |
| if (ee_reg == E1000_NVM_POLL_READ) |
| reg = er32(EERD); |
| else |
| reg = er32(EEWR); |
| |
| if (reg & E1000_NVM_RW_REG_DONE) |
| return 0; |
| |
| udelay(5); |
| } |
| |
| return -E1000_ERR_NVM; |
| } |
| |
| /** |
| * e1000e_acquire_nvm - Generic request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -E1000_ERR_NVM (-1). |
| **/ |
| s32 e1000e_acquire_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd = er32(EECD); |
| s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
| |
| ew32(EECD, eecd | E1000_EECD_REQ); |
| eecd = er32(EECD); |
| |
| while (timeout) { |
| if (eecd & E1000_EECD_GNT) |
| break; |
| udelay(5); |
| eecd = er32(EECD); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| eecd &= ~E1000_EECD_REQ; |
| ew32(EECD, eecd); |
| hw_dbg(hw, "Could not acquire NVM grant\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_standby_nvm - Return EEPROM to standby state |
| * @hw: pointer to the HW structure |
| * |
| * Return the EEPROM to a standby state. |
| **/ |
| static void e1000_standby_nvm(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = er32(EECD); |
| |
| if (nvm->type == e1000_nvm_eeprom_spi) { |
| /* Toggle CS to flush commands */ |
| eecd |= E1000_EECD_CS; |
| ew32(EECD, eecd); |
| e1e_flush(); |
| udelay(nvm->delay_usec); |
| eecd &= ~E1000_EECD_CS; |
| ew32(EECD, eecd); |
| e1e_flush(); |
| udelay(nvm->delay_usec); |
| } |
| } |
| |
| /** |
| * e1000_stop_nvm - Terminate EEPROM command |
| * @hw: pointer to the HW structure |
| * |
| * Terminates the current command by inverting the EEPROM's chip select pin. |
| **/ |
| static void e1000_stop_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| |
| eecd = er32(EECD); |
| if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| /* Pull CS high */ |
| eecd |= E1000_EECD_CS; |
| e1000_lower_eec_clk(hw, &eecd); |
| } |
| } |
| |
| /** |
| * e1000e_release_nvm - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| **/ |
| void e1000e_release_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| |
| e1000_stop_nvm(hw); |
| |
| eecd = er32(EECD); |
| eecd &= ~E1000_EECD_REQ; |
| ew32(EECD, eecd); |
| } |
| |
| /** |
| * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
| * @hw: pointer to the HW structure |
| * |
| * Setups the EEPROM for reading and writing. |
| **/ |
| static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = er32(EECD); |
| u16 timeout = 0; |
| u8 spi_stat_reg; |
| |
| if (nvm->type == e1000_nvm_eeprom_spi) { |
| /* Clear SK and CS */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| ew32(EECD, eecd); |
| udelay(1); |
| timeout = NVM_MAX_RETRY_SPI; |
| |
| /* Read "Status Register" repeatedly until the LSB is cleared. |
| * The EEPROM will signal that the command has been completed |
| * by clearing bit 0 of the internal status register. If it's |
| * not cleared within 'timeout', then error out. */ |
| while (timeout) { |
| e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
| hw->nvm.opcode_bits); |
| spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); |
| if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| e1000_standby_nvm(hw); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "SPI NVM Status error\n"); |
| return -E1000_ERR_NVM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_read_nvm_spi - Reads EEPROM using SPI |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of words to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM. |
| **/ |
| s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i = 0; |
| s32 ret_val; |
| u16 word_in; |
| u8 read_opcode = NVM_READ_OPCODE_SPI; |
| |
| /* A check for invalid values: offset too large, too many words, |
| * and not enough words. */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| ret_val = nvm->ops.acquire_nvm(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_ready_nvm_eeprom(hw); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| return ret_val; |
| } |
| |
| e1000_standby_nvm(hw); |
| |
| if ((nvm->address_bits == 8) && (offset >= 128)) |
| read_opcode |= NVM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); |
| e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); |
| |
| /* Read the data. SPI NVMs increment the address with each byte |
| * read and will roll over if reading beyond the end. This allows |
| * us to read the whole NVM from any offset */ |
| for (i = 0; i < words; i++) { |
| word_in = e1000_shift_in_eec_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| |
| nvm->ops.release_nvm(hw); |
| return 0; |
| } |
| |
| /** |
| * e1000e_read_nvm_eerd - Reads EEPROM using EERD register |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of words to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| **/ |
| s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i, eerd = 0; |
| s32 ret_val = 0; |
| |
| /* A check for invalid values: offset too large, too many words, |
| * and not enough words. */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + |
| E1000_NVM_RW_REG_START; |
| |
| ew32(EERD, eerd); |
| ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
| if (ret_val) |
| break; |
| |
| data[i] = (er32(EERD) >> |
| E1000_NVM_RW_REG_DATA); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_write_nvm_spi - Write to EEPROM using SPI |
| * @hw: pointer to the HW structure |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the EEPROM |
| * |
| * Writes data to EEPROM at offset using SPI interface. |
| * |
| * If e1000e_update_nvm_checksum is not called after this function , the |
| * EEPROM will most likely contain an invalid checksum. |
| **/ |
| s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| s32 ret_val; |
| u16 widx = 0; |
| |
| /* A check for invalid values: offset too large, too many words, |
| * and not enough words. */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| ret_val = nvm->ops.acquire_nvm(hw); |
| if (ret_val) |
| return ret_val; |
| |
| msleep(10); |
| |
| while (widx < words) { |
| u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
| |
| ret_val = e1000_ready_nvm_eeprom(hw); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| return ret_val; |
| } |
| |
| e1000_standby_nvm(hw); |
| |
| /* Send the WRITE ENABLE command (8 bit opcode) */ |
| e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
| nvm->opcode_bits); |
| |
| e1000_standby_nvm(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in the |
| * opcode */ |
| if ((nvm->address_bits == 8) && (offset >= 128)) |
| write_opcode |= NVM_A8_OPCODE_SPI; |
| |
| /* Send the Write command (8-bit opcode + addr) */ |
| e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
| e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
| nvm->address_bits); |
| |
| /* Loop to allow for up to whole page write of eeprom */ |
| while (widx < words) { |
| u16 word_out = data[widx]; |
| word_out = (word_out >> 8) | (word_out << 8); |
| e1000_shift_out_eec_bits(hw, word_out, 16); |
| widx++; |
| |
| if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
| e1000_standby_nvm(hw); |
| break; |
| } |
| } |
| } |
| |
| msleep(10); |
| return 0; |
| } |
| |
| /** |
| * e1000e_read_mac_addr - Read device MAC address |
| * @hw: pointer to the HW structure |
| * |
| * Reads the device MAC address from the EEPROM and stores the value. |
| * Since devices with two ports use the same EEPROM, we increment the |
| * last bit in the MAC address for the second port. |
| **/ |
| s32 e1000e_read_mac_addr(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 offset, nvm_data, i; |
| u16 mac_addr_offset = 0; |
| |
| if (hw->mac.type == e1000_82571) { |
| /* Check for an alternate MAC address. An alternate MAC |
| * address can be setup by pre-boot software and must be |
| * treated like a permanent address and must override the |
| * actual permanent MAC address. */ |
| ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, |
| &mac_addr_offset); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| if (mac_addr_offset == 0xFFFF) |
| mac_addr_offset = 0; |
| |
| if (mac_addr_offset) { |
| if (hw->bus.func == E1000_FUNC_1) |
| mac_addr_offset += ETH_ALEN/sizeof(u16); |
| |
| /* make sure we have a valid mac address here |
| * before using it */ |
| ret_val = e1000_read_nvm(hw, mac_addr_offset, 1, |
| &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| if (nvm_data & 0x0001) |
| mac_addr_offset = 0; |
| } |
| |
| if (mac_addr_offset) |
| hw->dev_spec.e82571.alt_mac_addr_is_present = 1; |
| } |
| |
| for (i = 0; i < ETH_ALEN; i += 2) { |
| offset = mac_addr_offset + (i >> 1); |
| ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); |
| hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); |
| } |
| |
| /* Flip last bit of mac address if we're on second port */ |
| if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1) |
| hw->mac.perm_addr[5] ^= 1; |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| checksum += nvm_data; |
| } |
| |
| if (checksum != (u16) NVM_SUM) { |
| hw_dbg(hw, "NVM Checksum Invalid\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_update_nvm_checksum_generic - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. |
| **/ |
| s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error while updating checksum.\n"); |
| return ret_val; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16) NVM_SUM - checksum; |
| ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
| if (ret_val) |
| hw_dbg(hw, "NVM Write Error while updating checksum.\n"); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_reload_nvm - Reloads EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the |
| * extended control register. |
| **/ |
| void e1000e_reload_nvm(struct e1000_hw *hw) |
| { |
| u32 ctrl_ext; |
| |
| udelay(10); |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000_calculate_checksum - Calculate checksum for buffer |
| * @buffer: pointer to EEPROM |
| * @length: size of EEPROM to calculate a checksum for |
| * |
| * Calculates the checksum for some buffer on a specified length. The |
| * checksum calculated is returned. |
| **/ |
| static u8 e1000_calculate_checksum(u8 *buffer, u32 length) |
| { |
| u32 i; |
| u8 sum = 0; |
| |
| if (!buffer) |
| return 0; |
| |
| for (i = 0; i < length; i++) |
| sum += buffer[i]; |
| |
| return (u8) (0 - sum); |
| } |
| |
| /** |
| * e1000_mng_enable_host_if - Checks host interface is enabled |
| * @hw: pointer to the HW structure |
| * |
| * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND |
| * |
| * This function checks whether the HOST IF is enabled for command operation |
| * and also checks whether the previous command is completed. It busy waits |
| * in case of previous command is not completed. |
| **/ |
| static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) |
| { |
| u32 hicr; |
| u8 i; |
| |
| /* Check that the host interface is enabled. */ |
| hicr = er32(HICR); |
| if ((hicr & E1000_HICR_EN) == 0) { |
| hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); |
| return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| } |
| /* check the previous command is completed */ |
| for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { |
| hicr = er32(HICR); |
| if (!(hicr & E1000_HICR_C)) |
| break; |
| mdelay(1); |
| } |
| |
| if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { |
| hw_dbg(hw, "Previous command timeout failed .\n"); |
| return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_check_mng_mode - check management mode |
| * @hw: pointer to the HW structure |
| * |
| * Reads the firmware semaphore register and returns true (>0) if |
| * manageability is enabled, else false (0). |
| **/ |
| bool e1000e_check_mng_mode(struct e1000_hw *hw) |
| { |
| u32 fwsm = er32(FWSM); |
| |
| return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab; |
| } |
| |
| /** |
| * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX |
| * @hw: pointer to the HW structure |
| * |
| * Enables packet filtering on transmit packets if manageability is enabled |
| * and host interface is enabled. |
| **/ |
| bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) |
| { |
| struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; |
| u32 *buffer = (u32 *)&hw->mng_cookie; |
| u32 offset; |
| s32 ret_val, hdr_csum, csum; |
| u8 i, len; |
| |
| /* No manageability, no filtering */ |
| if (!e1000e_check_mng_mode(hw)) { |
| hw->mac.tx_pkt_filtering = 0; |
| return 0; |
| } |
| |
| /* If we can't read from the host interface for whatever |
| * reason, disable filtering. |
| */ |
| ret_val = e1000_mng_enable_host_if(hw); |
| if (ret_val != 0) { |
| hw->mac.tx_pkt_filtering = 0; |
| return ret_val; |
| } |
| |
| /* Read in the header. Length and offset are in dwords. */ |
| len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; |
| offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; |
| for (i = 0; i < len; i++) |
| *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); |
| hdr_csum = hdr->checksum; |
| hdr->checksum = 0; |
| csum = e1000_calculate_checksum((u8 *)hdr, |
| E1000_MNG_DHCP_COOKIE_LENGTH); |
| /* If either the checksums or signature don't match, then |
| * the cookie area isn't considered valid, in which case we |
| * take the safe route of assuming Tx filtering is enabled. |
| */ |
| if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { |
| hw->mac.tx_pkt_filtering = 1; |
| return 1; |
| } |
| |
| /* Cookie area is valid, make the final check for filtering. */ |
| if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { |
| hw->mac.tx_pkt_filtering = 0; |
| return 0; |
| } |
| |
| hw->mac.tx_pkt_filtering = 1; |
| return 1; |
| } |
| |
| /** |
| * e1000_mng_write_cmd_header - Writes manageability command header |
| * @hw: pointer to the HW structure |
| * @hdr: pointer to the host interface command header |
| * |
| * Writes the command header after does the checksum calculation. |
| **/ |
| static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, |
| struct e1000_host_mng_command_header *hdr) |
| { |
| u16 i, length = sizeof(struct e1000_host_mng_command_header); |
| |
| /* Write the whole command header structure with new checksum. */ |
| |
| hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); |
| |
| length >>= 2; |
| /* Write the relevant command block into the ram area. */ |
| for (i = 0; i < length; i++) { |
| E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, |
| *((u32 *) hdr + i)); |
| e1e_flush(); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_mng_host_if_write - Writes to the manageability host interface |
| * @hw: pointer to the HW structure |
| * @buffer: pointer to the host interface buffer |
| * @length: size of the buffer |
| * @offset: location in the buffer to write to |
| * @sum: sum of the data (not checksum) |
| * |
| * This function writes the buffer content at the offset given on the host if. |
| * It also does alignment considerations to do the writes in most efficient |
| * way. Also fills up the sum of the buffer in *buffer parameter. |
| **/ |
| static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, |
| u16 length, u16 offset, u8 *sum) |
| { |
| u8 *tmp; |
| u8 *bufptr = buffer; |
| u32 data = 0; |
| u16 remaining, i, j, prev_bytes; |
| |
| /* sum = only sum of the data and it is not checksum */ |
| |
| if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) |
| return -E1000_ERR_PARAM; |
| |
| tmp = (u8 *)&data; |
| prev_bytes = offset & 0x3; |
| offset >>= 2; |
| |
| if (prev_bytes) { |
| data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); |
| for (j = prev_bytes; j < sizeof(u32); j++) { |
| *(tmp + j) = *bufptr++; |
| *sum += *(tmp + j); |
| } |
| E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); |
| length -= j - prev_bytes; |
| offset++; |
| } |
| |
| remaining = length & 0x3; |
| length -= remaining; |
| |
| /* Calculate length in DWORDs */ |
| length >>= 2; |
| |
| /* The device driver writes the relevant command block into the |
| * ram area. */ |
| for (i = 0; i < length; i++) { |
| for (j = 0; j < sizeof(u32); j++) { |
| *(tmp + j) = *bufptr++; |
| *sum += *(tmp + j); |
| } |
| |
| E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); |
| } |
| if (remaining) { |
| for (j = 0; j < sizeof(u32); j++) { |
| if (j < remaining) |
| *(tmp + j) = *bufptr++; |
| else |
| *(tmp + j) = 0; |
| |
| *sum += *(tmp + j); |
| } |
| E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface |
| * @hw: pointer to the HW structure |
| * @buffer: pointer to the host interface |
| * @length: size of the buffer |
| * |
| * Writes the DHCP information to the host interface. |
| **/ |
| s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) |
| { |
| struct e1000_host_mng_command_header hdr; |
| s32 ret_val; |
| u32 hicr; |
| |
| hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; |
| hdr.command_length = length; |
| hdr.reserved1 = 0; |
| hdr.reserved2 = 0; |
| hdr.checksum = 0; |
| |
| /* Enable the host interface */ |
| ret_val = e1000_mng_enable_host_if(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Populate the host interface with the contents of "buffer". */ |
| ret_val = e1000_mng_host_if_write(hw, buffer, length, |
| sizeof(hdr), &(hdr.checksum)); |
| if (ret_val) |
| return ret_val; |
| |
| /* Write the manageability command header */ |
| ret_val = e1000_mng_write_cmd_header(hw, &hdr); |
| if (ret_val) |
| return ret_val; |
| |
| /* Tell the ARC a new command is pending. */ |
| hicr = er32(HICR); |
| ew32(HICR, hicr | E1000_HICR_C); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_enable_mng_pass_thru - Enable processing of ARP's |
| * @hw: pointer to the HW structure |
| * |
| * Verifies the hardware needs to allow ARPs to be processed by the host. |
| **/ |
| bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) |
| { |
| u32 manc; |
| u32 fwsm, factps; |
| bool ret_val = 0; |
| |
| manc = er32(MANC); |
| |
| if (!(manc & E1000_MANC_RCV_TCO_EN) || |
| !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
| return ret_val; |
| |
| if (hw->mac.arc_subsystem_valid) { |
| fwsm = er32(FWSM); |
| factps = er32(FACTPS); |
| |
| if (!(factps & E1000_FACTPS_MNGCG) && |
| ((fwsm & E1000_FWSM_MODE_MASK) == |
| (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { |
| ret_val = 1; |
| return ret_val; |
| } |
| } else { |
| if ((manc & E1000_MANC_SMBUS_EN) && |
| !(manc & E1000_MANC_ASF_EN)) { |
| ret_val = 1; |
| return ret_val; |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num) |
| { |
| s32 ret_val; |
| u16 nvm_data; |
| |
| ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| *part_num = (u32)(nvm_data << 16); |
| |
| ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| *part_num |= nvm_data; |
| |
| return 0; |
| } |