| /* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/kthread.h> |
| #include <linux/mutex.h> |
| #include <linux/msm_tsens.h> |
| #include <linux/workqueue.h> |
| #include <linux/completion.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/msm_tsens.h> |
| #include <linux/msm_thermal.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/android_alarm.h> |
| #include <linux/thermal.h> |
| #include <mach/rpm-regulator.h> |
| #include <mach/rpm-regulator-smd.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/msm_thermal_ioctl.h> |
| |
| #define MAX_CURRENT_UA 1000000 |
| #define MAX_RAILS 5 |
| #define MAX_THRESHOLD 2 |
| |
| static struct msm_thermal_data msm_thermal_info; |
| static struct delayed_work check_temp_work; |
| static bool core_control_enabled; |
| static uint32_t cpus_offlined; |
| static DEFINE_MUTEX(core_control_mutex); |
| static uint32_t wakeup_ms; |
| static struct alarm thermal_rtc; |
| static struct kobject *tt_kobj; |
| static struct kobject *cc_kobj; |
| static struct work_struct timer_work; |
| static struct task_struct *hotplug_task; |
| static struct task_struct *freq_mitigation_task; |
| static struct completion hotplug_notify_complete; |
| static struct completion freq_mitigation_complete; |
| |
| static int enabled; |
| static int rails_cnt; |
| static int psm_rails_cnt; |
| static int ocr_rail_cnt; |
| static int limit_idx; |
| static int limit_idx_low; |
| static int limit_idx_high; |
| static int max_tsens_num; |
| static struct cpufreq_frequency_table *table; |
| static uint32_t usefreq; |
| static int freq_table_get; |
| static bool vdd_rstr_enabled; |
| static bool vdd_rstr_nodes_called; |
| static bool vdd_rstr_probed; |
| static bool psm_enabled; |
| static bool psm_nodes_called; |
| static bool psm_probed; |
| static bool hotplug_enabled; |
| static bool freq_mitigation_enabled; |
| static bool ocr_enabled; |
| static bool ocr_nodes_called; |
| static bool ocr_probed; |
| static int *tsens_id_map; |
| static DEFINE_MUTEX(vdd_rstr_mutex); |
| static DEFINE_MUTEX(psm_mutex); |
| static DEFINE_MUTEX(ocr_mutex); |
| static uint32_t min_freq_limit; |
| |
| enum thermal_threshold { |
| HOTPLUG_THRESHOLD_HIGH, |
| HOTPLUG_THRESHOLD_LOW, |
| FREQ_THRESHOLD_HIGH, |
| FREQ_THRESHOLD_LOW, |
| THRESHOLD_MAX_NR, |
| }; |
| |
| struct cpu_info { |
| uint32_t cpu; |
| const char *sensor_type; |
| uint32_t sensor_id; |
| bool offline; |
| bool user_offline; |
| bool hotplug_thresh_clear; |
| struct sensor_threshold threshold[THRESHOLD_MAX_NR]; |
| bool max_freq; |
| uint32_t user_max_freq; |
| uint32_t user_min_freq; |
| uint32_t limited_max_freq; |
| uint32_t limited_min_freq; |
| bool freq_thresh_clear; |
| }; |
| |
| struct rail { |
| const char *name; |
| uint32_t freq_req; |
| uint32_t min_level; |
| uint32_t num_levels; |
| int32_t curr_level; |
| uint32_t levels[3]; |
| struct kobj_attribute value_attr; |
| struct kobj_attribute level_attr; |
| struct regulator *reg; |
| struct attribute_group attr_gp; |
| }; |
| |
| struct psm_rail { |
| const char *name; |
| uint8_t init; |
| uint8_t mode; |
| struct kobj_attribute mode_attr; |
| struct rpm_regulator *reg; |
| struct regulator *phase_reg; |
| struct attribute_group attr_gp; |
| }; |
| |
| static struct psm_rail *psm_rails; |
| static struct psm_rail *ocr_rails; |
| static struct rail *rails; |
| static struct cpu_info cpus[NR_CPUS]; |
| |
| struct vdd_rstr_enable { |
| struct kobj_attribute ko_attr; |
| uint32_t enabled; |
| }; |
| |
| /* For SMPS only*/ |
| enum PMIC_SW_MODE { |
| PMIC_AUTO_MODE = RPM_REGULATOR_MODE_AUTO, |
| PMIC_IPEAK_MODE = RPM_REGULATOR_MODE_IPEAK, |
| PMIC_PWM_MODE = RPM_REGULATOR_MODE_HPM, |
| }; |
| |
| enum ocr_request { |
| OPTIMUM_CURRENT_MIN, |
| OPTIMUM_CURRENT_MAX, |
| OPTIMUM_CURRENT_NR, |
| }; |
| |
| #define VDD_RES_RO_ATTRIB(_rail, ko_attr, j, _name) \ |
| ko_attr.attr.name = __stringify(_name); \ |
| ko_attr.attr.mode = 0444; \ |
| ko_attr.show = vdd_rstr_reg_##_name##_show; \ |
| ko_attr.store = NULL; \ |
| sysfs_attr_init(&ko_attr.attr); \ |
| _rail.attr_gp.attrs[j] = &ko_attr.attr; |
| |
| #define VDD_RES_RW_ATTRIB(_rail, ko_attr, j, _name) \ |
| ko_attr.attr.name = __stringify(_name); \ |
| ko_attr.attr.mode = 0644; \ |
| ko_attr.show = vdd_rstr_reg_##_name##_show; \ |
| ko_attr.store = vdd_rstr_reg_##_name##_store; \ |
| sysfs_attr_init(&ko_attr.attr); \ |
| _rail.attr_gp.attrs[j] = &ko_attr.attr; |
| |
| #define VDD_RSTR_ENABLE_FROM_ATTRIBS(attr) \ |
| (container_of(attr, struct vdd_rstr_enable, ko_attr)); |
| |
| #define VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr) \ |
| (container_of(attr, struct rail, value_attr)); |
| |
| #define VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr) \ |
| (container_of(attr, struct rail, level_attr)); |
| |
| #define OCR_RW_ATTRIB(_rail, ko_attr, j, _name) \ |
| ko_attr.attr.name = __stringify(_name); \ |
| ko_attr.attr.mode = 0644; \ |
| ko_attr.show = ocr_reg_##_name##_show; \ |
| ko_attr.store = ocr_reg_##_name##_store; \ |
| sysfs_attr_init(&ko_attr.attr); \ |
| _rail.attr_gp.attrs[j] = &ko_attr.attr; |
| |
| #define PSM_RW_ATTRIB(_rail, ko_attr, j, _name) \ |
| ko_attr.attr.name = __stringify(_name); \ |
| ko_attr.attr.mode = 0644; \ |
| ko_attr.show = psm_reg_##_name##_show; \ |
| ko_attr.store = psm_reg_##_name##_store; \ |
| sysfs_attr_init(&ko_attr.attr); \ |
| _rail.attr_gp.attrs[j] = &ko_attr.attr; |
| |
| #define PSM_REG_MODE_FROM_ATTRIBS(attr) \ |
| (container_of(attr, struct psm_rail, mode_attr)); |
| |
| static int msm_thermal_cpufreq_callback(struct notifier_block *nfb, |
| unsigned long event, void *data) |
| { |
| struct cpufreq_policy *policy = data; |
| uint32_t max_freq_req = cpus[policy->cpu].limited_max_freq; |
| uint32_t min_freq_req = cpus[policy->cpu].limited_min_freq; |
| |
| switch (event) { |
| case CPUFREQ_INCOMPATIBLE: |
| pr_debug("%s: mitigating cpu %d to freq max: %u min: %u\n", |
| KBUILD_MODNAME, policy->cpu, max_freq_req, min_freq_req); |
| |
| cpufreq_verify_within_limits(policy, min_freq_req, |
| max_freq_req); |
| |
| if (max_freq_req < min_freq_req) |
| pr_err("Invalid frequency request Max:%u Min:%u\n", |
| max_freq_req, min_freq_req); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block msm_thermal_cpufreq_notifier = { |
| .notifier_call = msm_thermal_cpufreq_callback, |
| }; |
| |
| /* If freq table exists, then we can send freq request */ |
| static int check_freq_table(void) |
| { |
| int ret = 0; |
| struct cpufreq_frequency_table *table = NULL; |
| |
| table = cpufreq_frequency_get_table(0); |
| if (!table) { |
| pr_debug("%s: error reading cpufreq table\n", __func__); |
| return -EINVAL; |
| } |
| freq_table_get = 1; |
| |
| return ret; |
| } |
| |
| static void update_cpu_freq(int cpu) |
| { |
| if (cpu_online(cpu)) { |
| if (cpufreq_update_policy(cpu)) |
| pr_err("Unable to update policy for cpu:%d\n", cpu); |
| } |
| } |
| |
| static int update_cpu_min_freq_all(uint32_t min) |
| { |
| uint32_t cpu = 0; |
| int ret = 0; |
| |
| if (!freq_table_get) { |
| ret = check_freq_table(); |
| if (ret) { |
| pr_err("%s:Fail to get freq table\n", KBUILD_MODNAME); |
| return ret; |
| } |
| } |
| /* If min is larger than allowed max */ |
| min = min(min, table[limit_idx_high].frequency); |
| |
| if (freq_mitigation_task) { |
| min_freq_limit = min; |
| complete(&freq_mitigation_complete); |
| } else { |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| cpus[cpu].limited_min_freq = min; |
| update_cpu_freq(cpu); |
| } |
| put_online_cpus(); |
| } |
| |
| return ret; |
| } |
| |
| static int vdd_restriction_apply_freq(struct rail *r, int level) |
| { |
| int ret = 0; |
| |
| if (level == r->curr_level) |
| return ret; |
| |
| /* level = -1: disable, level = 0,1,2..n: enable */ |
| if (level == -1) { |
| ret = update_cpu_min_freq_all(r->min_level); |
| if (ret) |
| return ret; |
| else |
| r->curr_level = -1; |
| } else if (level >= 0 && level < (r->num_levels)) { |
| ret = update_cpu_min_freq_all(r->levels[level]); |
| if (ret) |
| return ret; |
| else |
| r->curr_level = level; |
| } else { |
| pr_err("level input:%d is not within range\n", level); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int vdd_restriction_apply_voltage(struct rail *r, int level) |
| { |
| int ret = 0; |
| |
| if (r->reg == NULL) { |
| pr_info("Do not have regulator handle:%s, can't apply vdd\n", |
| r->name); |
| return -EFAULT; |
| } |
| if (level == r->curr_level) |
| return ret; |
| |
| /* level = -1: disable, level = 0,1,2..n: enable */ |
| if (level == -1) { |
| ret = regulator_set_voltage(r->reg, r->min_level, |
| r->levels[r->num_levels - 1]); |
| if (!ret) |
| r->curr_level = -1; |
| } else if (level >= 0 && level < (r->num_levels)) { |
| ret = regulator_set_voltage(r->reg, r->levels[level], |
| r->levels[r->num_levels - 1]); |
| if (!ret) |
| r->curr_level = level; |
| } else { |
| pr_err("level input:%d is not within range\n", level); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /* Setting all rails the same mode */ |
| static int psm_set_mode_all(int mode) |
| { |
| int i = 0; |
| int fail_cnt = 0; |
| int ret = 0; |
| |
| for (i = 0; i < psm_rails_cnt; i++) { |
| if (psm_rails[i].mode != mode) { |
| ret = rpm_regulator_set_mode(psm_rails[i].reg, mode); |
| if (ret) { |
| pr_err("Cannot set mode:%d for %s", |
| mode, psm_rails[i].name); |
| fail_cnt++; |
| } else |
| psm_rails[i].mode = mode; |
| } |
| } |
| |
| return fail_cnt ? (-EFAULT) : ret; |
| } |
| |
| static int vdd_rstr_en_show( |
| struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
| { |
| struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr); |
| |
| return snprintf(buf, PAGE_SIZE, "%d\n", en->enabled); |
| } |
| |
| static ssize_t vdd_rstr_en_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| int i = 0; |
| uint8_t en_cnt = 0; |
| uint8_t dis_cnt = 0; |
| uint32_t val = 0; |
| struct kernel_param kp; |
| struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr); |
| |
| mutex_lock(&vdd_rstr_mutex); |
| kp.arg = &val; |
| ret = param_set_bool(buf, &kp); |
| if (ret) { |
| pr_err("Invalid input %s for enabled\n", buf); |
| goto done_vdd_rstr_en; |
| } |
| |
| if ((val == 0) && (en->enabled == 0)) |
| goto done_vdd_rstr_en; |
| |
| for (i = 0; i < rails_cnt; i++) { |
| if (rails[i].freq_req == 1 && freq_table_get) |
| ret = vdd_restriction_apply_freq(&rails[i], |
| (val) ? 0 : -1); |
| else |
| ret = vdd_restriction_apply_voltage(&rails[i], |
| (val) ? 0 : -1); |
| |
| /* |
| * Even if fail to set one rail, still try to set the |
| * others. Continue the loop |
| */ |
| if (ret) |
| pr_err("Set vdd restriction for %s failed\n", |
| rails[i].name); |
| else { |
| if (val) |
| en_cnt++; |
| else |
| dis_cnt++; |
| } |
| } |
| /* As long as one rail is enabled, vdd rstr is enabled */ |
| if (val && en_cnt) |
| en->enabled = 1; |
| else if (!val && (dis_cnt == rails_cnt)) |
| en->enabled = 0; |
| |
| done_vdd_rstr_en: |
| mutex_unlock(&vdd_rstr_mutex); |
| return count; |
| } |
| |
| static struct vdd_rstr_enable vdd_rstr_en = { |
| .ko_attr.attr.name = __stringify(enabled), |
| .ko_attr.attr.mode = 0644, |
| .ko_attr.show = vdd_rstr_en_show, |
| .ko_attr.store = vdd_rstr_en_store, |
| .enabled = 1, |
| }; |
| |
| static struct attribute *vdd_rstr_en_attribs[] = { |
| &vdd_rstr_en.ko_attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group vdd_rstr_en_attribs_gp = { |
| .attrs = vdd_rstr_en_attribs, |
| }; |
| |
| static int vdd_rstr_reg_value_show( |
| struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
| { |
| int val = 0; |
| struct rail *reg = VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr); |
| /* -1:disabled, -2:fail to get regualtor handle */ |
| if (reg->curr_level < 0) |
| val = reg->curr_level; |
| else |
| val = reg->levels[reg->curr_level]; |
| |
| return snprintf(buf, PAGE_SIZE, "%d\n", val); |
| } |
| |
| static int vdd_rstr_reg_level_show( |
| struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
| { |
| struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr); |
| return snprintf(buf, PAGE_SIZE, "%d\n", reg->curr_level); |
| } |
| |
| static ssize_t vdd_rstr_reg_level_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| int val = 0; |
| |
| struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr); |
| |
| mutex_lock(&vdd_rstr_mutex); |
| if (vdd_rstr_en.enabled == 0) |
| goto done_store_level; |
| |
| ret = kstrtouint(buf, 10, &val); |
| if (ret) { |
| pr_err("Invalid input %s for level\n", buf); |
| goto done_store_level; |
| } |
| |
| if (val < 0 || val > reg->num_levels - 1) { |
| pr_err(" Invalid number %d for level\n", val); |
| goto done_store_level; |
| } |
| |
| if (val != reg->curr_level) { |
| if (reg->freq_req == 1 && freq_table_get) |
| update_cpu_min_freq_all(reg->levels[val]); |
| else { |
| ret = vdd_restriction_apply_voltage(reg, val); |
| if (ret) { |
| pr_err( \ |
| "Set vdd restriction for regulator %s failed\n", |
| reg->name); |
| goto done_store_level; |
| } |
| } |
| reg->curr_level = val; |
| } |
| |
| done_store_level: |
| mutex_unlock(&vdd_rstr_mutex); |
| return count; |
| } |
| |
| static int request_optimum_current(struct psm_rail *rail, enum ocr_request req) |
| { |
| int ret = 0; |
| |
| if ((!rail) || (req >= OPTIMUM_CURRENT_NR) || |
| (req < 0)) { |
| pr_err("%s:%s Invalid input\n", KBUILD_MODNAME, __func__); |
| ret = -EINVAL; |
| goto request_ocr_exit; |
| } |
| |
| ret = regulator_set_optimum_mode(rail->phase_reg, |
| (req == OPTIMUM_CURRENT_MAX) ? MAX_CURRENT_UA : 0); |
| if (ret < 0) { |
| pr_err("%s: Optimum current request failed\n", KBUILD_MODNAME); |
| goto request_ocr_exit; |
| } |
| ret = 0; /*regulator_set_optimum_mode returns the mode on success*/ |
| pr_debug("%s: Requested optimum current mode: %d\n", |
| KBUILD_MODNAME, req); |
| |
| request_ocr_exit: |
| return ret; |
| } |
| |
| static int ocr_set_mode_all(enum ocr_request req) |
| { |
| int ret = 0, i; |
| |
| for (i = 0; i < ocr_rail_cnt; i++) { |
| if (ocr_rails[i].mode == req) |
| continue; |
| ret = request_optimum_current(&ocr_rails[i], req); |
| if (ret) |
| goto ocr_set_mode_exit; |
| ocr_rails[i].mode = req; |
| } |
| |
| ocr_set_mode_exit: |
| return ret; |
| } |
| |
| static int ocr_reg_mode_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); |
| return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode); |
| } |
| |
| static ssize_t ocr_reg_mode_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| int val = 0; |
| struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); |
| |
| if (!ocr_enabled) |
| return count; |
| |
| mutex_lock(&ocr_mutex); |
| ret = kstrtoint(buf, 10, &val); |
| if (ret) { |
| pr_err("%s: Invalid input %s for mode\n", |
| KBUILD_MODNAME, buf); |
| goto done_ocr_store; |
| } |
| |
| if ((val != OPTIMUM_CURRENT_MAX) && |
| (val != OPTIMUM_CURRENT_MIN)) { |
| pr_err("%s: Invalid value %d for mode\n", |
| KBUILD_MODNAME, val); |
| goto done_ocr_store; |
| } |
| |
| if (val != reg->mode) { |
| ret = request_optimum_current(reg, val); |
| if (ret) |
| goto done_ocr_store; |
| reg->mode = val; |
| } |
| |
| done_ocr_store: |
| mutex_unlock(&ocr_mutex); |
| return count; |
| } |
| |
| static int psm_reg_mode_show( |
| struct kobject *kobj, struct kobj_attribute *attr, char *buf) |
| { |
| struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); |
| return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode); |
| } |
| |
| static ssize_t psm_reg_mode_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| int val = 0; |
| struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr); |
| |
| mutex_lock(&psm_mutex); |
| ret = kstrtoint(buf, 10, &val); |
| if (ret) { |
| pr_err("Invalid input %s for mode\n", buf); |
| goto done_psm_store; |
| } |
| |
| if ((val != PMIC_PWM_MODE) && (val != PMIC_AUTO_MODE)) { |
| pr_err(" Invalid number %d for mode\n", val); |
| goto done_psm_store; |
| } |
| |
| if (val != reg->mode) { |
| ret = rpm_regulator_set_mode(reg->reg, val); |
| if (ret) { |
| pr_err( \ |
| "Fail to set PMIC SW Mode:%d for %s\n", |
| val, reg->name); |
| goto done_psm_store; |
| } |
| reg->mode = val; |
| } |
| |
| done_psm_store: |
| mutex_unlock(&psm_mutex); |
| return count; |
| } |
| |
| static int check_sensor_id(int sensor_id) |
| { |
| int i = 0; |
| bool hw_id_found; |
| int ret = 0; |
| |
| for (i = 0; i < max_tsens_num; i++) { |
| if (sensor_id == tsens_id_map[i]) { |
| hw_id_found = true; |
| break; |
| } |
| } |
| if (!hw_id_found) { |
| pr_err("%s: Invalid sensor hw id :%d\n", __func__, sensor_id); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int create_sensor_id_map(void) |
| { |
| int i = 0; |
| int ret = 0; |
| |
| tsens_id_map = kzalloc(sizeof(int) * max_tsens_num, |
| GFP_KERNEL); |
| if (!tsens_id_map) { |
| pr_err("%s: Cannot allocate memory for tsens_id_map\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < max_tsens_num; i++) { |
| ret = tsens_get_hw_id_mapping(i, &tsens_id_map[i]); |
| /* If return -ENXIO, hw_id is default in sequence */ |
| if (ret) { |
| if (ret == -ENXIO) { |
| tsens_id_map[i] = i; |
| ret = 0; |
| } else { |
| pr_err( \ |
| "%s: Failed to get hw id for sw id %d\n", |
| __func__, i); |
| goto fail; |
| } |
| } |
| } |
| |
| return ret; |
| fail: |
| kfree(tsens_id_map); |
| return ret; |
| } |
| |
| /* 1:enable, 0:disable */ |
| static int vdd_restriction_apply_all(int en) |
| { |
| int i = 0; |
| int en_cnt = 0; |
| int dis_cnt = 0; |
| int fail_cnt = 0; |
| int ret = 0; |
| |
| for (i = 0; i < rails_cnt; i++) { |
| if (rails[i].freq_req == 1 && freq_table_get) |
| ret = vdd_restriction_apply_freq(&rails[i], |
| en ? 0 : -1); |
| else |
| ret = vdd_restriction_apply_voltage(&rails[i], |
| en ? 0 : -1); |
| if (ret) { |
| pr_err("Cannot set voltage for %s", rails[i].name); |
| fail_cnt++; |
| } else { |
| if (en) |
| en_cnt++; |
| else |
| dis_cnt++; |
| } |
| } |
| |
| /* As long as one rail is enabled, vdd rstr is enabled */ |
| if (en && en_cnt) |
| vdd_rstr_en.enabled = 1; |
| else if (!en && (dis_cnt == rails_cnt)) |
| vdd_rstr_en.enabled = 0; |
| |
| /* |
| * Check fail_cnt again to make sure all of the rails are applied |
| * restriction successfully or not |
| */ |
| if (fail_cnt) |
| return -EFAULT; |
| return ret; |
| } |
| |
| static int msm_thermal_get_freq_table(void) |
| { |
| int ret = 0; |
| int i = 0; |
| |
| table = cpufreq_frequency_get_table(0); |
| if (table == NULL) { |
| pr_debug("%s: error reading cpufreq table\n", KBUILD_MODNAME); |
| ret = -EINVAL; |
| goto fail; |
| } |
| |
| while (table[i].frequency != CPUFREQ_TABLE_END) |
| i++; |
| |
| limit_idx_low = 0; |
| limit_idx_high = limit_idx = i - 1; |
| BUG_ON(limit_idx_high <= 0 || limit_idx_high <= limit_idx_low); |
| fail: |
| return ret; |
| } |
| |
| static int set_and_activate_threshold(uint32_t sensor_id, |
| struct sensor_threshold *threshold) |
| { |
| int ret = 0; |
| |
| ret = sensor_set_trip(sensor_id, threshold); |
| if (ret != 0) { |
| pr_err("%s: Error in setting trip %d\n", |
| KBUILD_MODNAME, threshold->trip); |
| goto set_done; |
| } |
| |
| ret = sensor_activate_trip(sensor_id, threshold, true); |
| if (ret != 0) { |
| pr_err("%s: Error in enabling trip %d\n", |
| KBUILD_MODNAME, threshold->trip); |
| goto set_done; |
| } |
| |
| set_done: |
| return ret; |
| } |
| |
| static int set_threshold(uint32_t sensor_id, |
| struct sensor_threshold *threshold) |
| { |
| struct tsens_device tsens_dev; |
| int i = 0, ret = 0; |
| long temp; |
| |
| if ((!threshold) || check_sensor_id(sensor_id)) { |
| pr_err("%s: Invalid input\n", KBUILD_MODNAME); |
| ret = -EINVAL; |
| goto set_threshold_exit; |
| } |
| |
| tsens_dev.sensor_num = sensor_id; |
| ret = tsens_get_temp(&tsens_dev, &temp); |
| if (ret) { |
| pr_err("%s: Unable to read TSENS sensor %d\n", |
| KBUILD_MODNAME, tsens_dev.sensor_num); |
| goto set_threshold_exit; |
| } |
| while (i < MAX_THRESHOLD) { |
| switch (threshold[i].trip) { |
| case THERMAL_TRIP_CONFIGURABLE_HI: |
| if (threshold[i].temp >= temp) { |
| ret = set_and_activate_threshold(sensor_id, |
| &threshold[i]); |
| if (ret) |
| goto set_threshold_exit; |
| } |
| break; |
| case THERMAL_TRIP_CONFIGURABLE_LOW: |
| if (threshold[i].temp <= temp) { |
| ret = set_and_activate_threshold(sensor_id, |
| &threshold[i]); |
| if (ret) |
| goto set_threshold_exit; |
| } |
| break; |
| default: |
| break; |
| } |
| i++; |
| } |
| set_threshold_exit: |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| static void __ref do_core_control(long temp) |
| { |
| int i = 0; |
| int ret = 0; |
| |
| if (!core_control_enabled) |
| return; |
| |
| mutex_lock(&core_control_mutex); |
| if (msm_thermal_info.core_control_mask && |
| temp >= msm_thermal_info.core_limit_temp_degC) { |
| for (i = num_possible_cpus(); i > 0; i--) { |
| if (!(msm_thermal_info.core_control_mask & BIT(i))) |
| continue; |
| if (cpus_offlined & BIT(i) && !cpu_online(i)) |
| continue; |
| pr_info("%s: Set Offline: CPU%d Temp: %ld\n", |
| KBUILD_MODNAME, i, temp); |
| ret = cpu_down(i); |
| if (ret) |
| pr_err("%s: Error %d offline core %d\n", |
| KBUILD_MODNAME, ret, i); |
| cpus_offlined |= BIT(i); |
| break; |
| } |
| } else if (msm_thermal_info.core_control_mask && cpus_offlined && |
| temp <= (msm_thermal_info.core_limit_temp_degC - |
| msm_thermal_info.core_temp_hysteresis_degC)) { |
| for (i = 0; i < num_possible_cpus(); i++) { |
| if (!(cpus_offlined & BIT(i))) |
| continue; |
| cpus_offlined &= ~BIT(i); |
| pr_info("%s: Allow Online CPU%d Temp: %ld\n", |
| KBUILD_MODNAME, i, temp); |
| /* |
| * If this core is already online, then bring up the |
| * next offlined core. |
| */ |
| if (cpu_online(i)) |
| continue; |
| ret = cpu_up(i); |
| if (ret) |
| pr_err("%s: Error %d online core %d\n", |
| KBUILD_MODNAME, ret, i); |
| break; |
| } |
| } |
| mutex_unlock(&core_control_mutex); |
| } |
| /* Call with core_control_mutex locked */ |
| static int __ref update_offline_cores(int val) |
| { |
| uint32_t cpu = 0; |
| int ret = 0; |
| |
| if (!core_control_enabled) |
| return 0; |
| |
| cpus_offlined = msm_thermal_info.core_control_mask & val; |
| |
| for_each_possible_cpu(cpu) { |
| if (!(cpus_offlined & BIT(cpu))) |
| continue; |
| if (!cpu_online(cpu)) |
| continue; |
| ret = cpu_down(cpu); |
| if (ret) |
| pr_err("%s: Unable to offline cpu%d\n", |
| KBUILD_MODNAME, cpu); |
| } |
| return ret; |
| } |
| |
| static __ref int do_hotplug(void *data) |
| { |
| int ret = 0; |
| uint32_t cpu = 0, mask = 0; |
| |
| if (!core_control_enabled) |
| return -EINVAL; |
| |
| while (!kthread_should_stop()) { |
| wait_for_completion(&hotplug_notify_complete); |
| INIT_COMPLETION(hotplug_notify_complete); |
| mask = 0; |
| |
| mutex_lock(&core_control_mutex); |
| for_each_possible_cpu(cpu) { |
| if (hotplug_enabled && |
| cpus[cpu].hotplug_thresh_clear) { |
| set_threshold(cpus[cpu].sensor_id, |
| &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]); |
| |
| cpus[cpu].hotplug_thresh_clear = false; |
| } |
| if (cpus[cpu].offline || cpus[cpu].user_offline) |
| mask |= BIT(cpu); |
| } |
| if (mask != cpus_offlined) |
| update_offline_cores(mask); |
| mutex_unlock(&core_control_mutex); |
| sysfs_notify(cc_kobj, NULL, "cpus_offlined"); |
| } |
| |
| return ret; |
| } |
| #else |
| static void do_core_control(long temp) |
| { |
| return; |
| } |
| |
| static __ref int do_hotplug(void *data) |
| { |
| return 0; |
| } |
| #endif |
| |
| static int do_ocr(void) |
| { |
| struct tsens_device tsens_dev; |
| long temp = 0; |
| int ret = 0; |
| int i = 0, j = 0; |
| int auto_cnt = 0; |
| |
| if (!ocr_enabled) |
| return ret; |
| |
| mutex_lock(&ocr_mutex); |
| for (i = 0; i < max_tsens_num; i++) { |
| tsens_dev.sensor_num = tsens_id_map[i]; |
| ret = tsens_get_temp(&tsens_dev, &temp); |
| if (ret) { |
| pr_debug("%s: Unable to read TSENS sensor %d\n", |
| __func__, tsens_dev.sensor_num); |
| auto_cnt++; |
| continue; |
| } |
| |
| if (temp > msm_thermal_info.ocr_temp_degC) { |
| if (ocr_rails[0].init != OPTIMUM_CURRENT_NR) |
| for (j = 0; j < ocr_rail_cnt; j++) |
| ocr_rails[j].init = OPTIMUM_CURRENT_NR; |
| ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX); |
| if (ret) |
| pr_err("Error setting max optimum current\n"); |
| goto do_ocr_exit; |
| } else if (temp <= (msm_thermal_info.ocr_temp_degC - |
| msm_thermal_info.ocr_temp_hyst_degC)) |
| auto_cnt++; |
| } |
| |
| if (auto_cnt == max_tsens_num || |
| ocr_rails[0].init != OPTIMUM_CURRENT_NR) { |
| /* 'init' not equal to OPTIMUM_CURRENT_NR means this is the |
| ** first polling iteration after device probe. During first |
| ** iteration, if temperature is less than the set point, clear |
| ** the max current request made and reset the 'init'. |
| */ |
| if (ocr_rails[0].init != OPTIMUM_CURRENT_NR) |
| for (j = 0; j < ocr_rail_cnt; j++) |
| ocr_rails[j].init = OPTIMUM_CURRENT_NR; |
| ret = ocr_set_mode_all(OPTIMUM_CURRENT_MIN); |
| if (ret) { |
| pr_err("Error setting min optimum current\n"); |
| goto do_ocr_exit; |
| } |
| } |
| |
| do_ocr_exit: |
| mutex_unlock(&ocr_mutex); |
| return ret; |
| } |
| |
| static int do_vdd_restriction(void) |
| { |
| struct tsens_device tsens_dev; |
| long temp = 0; |
| int ret = 0; |
| int i = 0; |
| int dis_cnt = 0; |
| |
| if (!vdd_rstr_enabled) |
| return ret; |
| |
| if (usefreq && !freq_table_get) { |
| if (check_freq_table()) |
| return ret; |
| } |
| |
| mutex_lock(&vdd_rstr_mutex); |
| for (i = 0; i < max_tsens_num; i++) { |
| tsens_dev.sensor_num = tsens_id_map[i]; |
| ret = tsens_get_temp(&tsens_dev, &temp); |
| if (ret) { |
| pr_debug("%s: Unable to read TSENS sensor %d\n", |
| __func__, tsens_dev.sensor_num); |
| dis_cnt++; |
| continue; |
| } |
| if (temp <= msm_thermal_info.vdd_rstr_temp_degC) { |
| ret = vdd_restriction_apply_all(1); |
| if (ret) { |
| pr_err( \ |
| "Enable vdd rstr votlage for all failed\n"); |
| goto exit; |
| } |
| goto exit; |
| } else if (temp > msm_thermal_info.vdd_rstr_temp_hyst_degC) |
| dis_cnt++; |
| } |
| if (dis_cnt == max_tsens_num) { |
| ret = vdd_restriction_apply_all(0); |
| if (ret) { |
| pr_err("Disable vdd rstr votlage for all failed\n"); |
| goto exit; |
| } |
| } |
| exit: |
| mutex_unlock(&vdd_rstr_mutex); |
| return ret; |
| } |
| |
| static int do_psm(void) |
| { |
| struct tsens_device tsens_dev; |
| long temp = 0; |
| int ret = 0; |
| int i = 0; |
| int auto_cnt = 0; |
| |
| mutex_lock(&psm_mutex); |
| for (i = 0; i < max_tsens_num; i++) { |
| tsens_dev.sensor_num = tsens_id_map[i]; |
| ret = tsens_get_temp(&tsens_dev, &temp); |
| if (ret) { |
| pr_debug("%s: Unable to read TSENS sensor %d\n", |
| __func__, tsens_dev.sensor_num); |
| auto_cnt++; |
| continue; |
| } |
| |
| /* |
| * As long as one sensor is above the threshold, set PWM mode |
| * on all rails, and loop stops. Set auto mode when all rails |
| * are below thershold |
| */ |
| if (temp > msm_thermal_info.psm_temp_degC) { |
| ret = psm_set_mode_all(PMIC_PWM_MODE); |
| if (ret) { |
| pr_err("Set pwm mode for all failed\n"); |
| goto exit; |
| } |
| break; |
| } else if (temp <= msm_thermal_info.psm_temp_hyst_degC) |
| auto_cnt++; |
| } |
| |
| if (auto_cnt == max_tsens_num) { |
| ret = psm_set_mode_all(PMIC_AUTO_MODE); |
| if (ret) { |
| pr_err("Set auto mode for all failed\n"); |
| goto exit; |
| } |
| } |
| |
| exit: |
| mutex_unlock(&psm_mutex); |
| return ret; |
| } |
| |
| static void __ref do_freq_control(long temp) |
| { |
| uint32_t cpu = 0; |
| uint32_t max_freq = cpus[cpu].limited_max_freq; |
| |
| if (temp >= msm_thermal_info.limit_temp_degC) { |
| if (limit_idx == limit_idx_low) |
| return; |
| |
| limit_idx -= msm_thermal_info.bootup_freq_step; |
| if (limit_idx < limit_idx_low) |
| limit_idx = limit_idx_low; |
| max_freq = table[limit_idx].frequency; |
| } else if (temp < msm_thermal_info.limit_temp_degC - |
| msm_thermal_info.temp_hysteresis_degC) { |
| if (limit_idx == limit_idx_high) |
| return; |
| |
| limit_idx += msm_thermal_info.bootup_freq_step; |
| if (limit_idx >= limit_idx_high) { |
| limit_idx = limit_idx_high; |
| max_freq = UINT_MAX; |
| } else |
| max_freq = table[limit_idx].frequency; |
| } |
| |
| if (max_freq == cpus[cpu].limited_max_freq) |
| return; |
| |
| /* Update new limits */ |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| if (!(msm_thermal_info.bootup_freq_control_mask & BIT(cpu))) |
| continue; |
| cpus[cpu].limited_max_freq = max_freq; |
| update_cpu_freq(cpu); |
| } |
| put_online_cpus(); |
| } |
| |
| static void __ref check_temp(struct work_struct *work) |
| { |
| static int limit_init; |
| struct tsens_device tsens_dev; |
| long temp = 0; |
| int ret = 0; |
| |
| tsens_dev.sensor_num = msm_thermal_info.sensor_id; |
| ret = tsens_get_temp(&tsens_dev, &temp); |
| if (ret) { |
| pr_debug("%s: Unable to read TSENS sensor %d\n", |
| KBUILD_MODNAME, tsens_dev.sensor_num); |
| goto reschedule; |
| } |
| |
| if (!limit_init) { |
| ret = msm_thermal_get_freq_table(); |
| if (ret) |
| goto reschedule; |
| else |
| limit_init = 1; |
| } |
| |
| do_core_control(temp); |
| do_vdd_restriction(); |
| do_psm(); |
| do_ocr(); |
| do_freq_control(temp); |
| |
| reschedule: |
| if (enabled) |
| schedule_delayed_work(&check_temp_work, |
| msecs_to_jiffies(msm_thermal_info.poll_ms)); |
| } |
| |
| static int __ref msm_thermal_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| uint32_t cpu = (uint32_t)hcpu; |
| |
| if (action == CPU_UP_PREPARE || action == CPU_UP_PREPARE_FROZEN) { |
| if (core_control_enabled && |
| (msm_thermal_info.core_control_mask & BIT(cpu)) && |
| (cpus_offlined & BIT(cpu))) { |
| pr_debug( |
| "%s: Preventing cpu%d from coming online.\n", |
| KBUILD_MODNAME, cpu); |
| return NOTIFY_BAD; |
| } |
| } |
| |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __refdata msm_thermal_cpu_notifier = { |
| .notifier_call = msm_thermal_cpu_callback, |
| }; |
| |
| static void thermal_rtc_setup(void) |
| { |
| ktime_t wakeup_time; |
| ktime_t curr_time; |
| |
| curr_time = alarm_get_elapsed_realtime(); |
| wakeup_time = ktime_add_us(curr_time, |
| (wakeup_ms * USEC_PER_MSEC)); |
| alarm_start_range(&thermal_rtc, wakeup_time, |
| wakeup_time); |
| pr_debug("%s: Current Time: %ld %ld, Alarm set to: %ld %ld\n", |
| KBUILD_MODNAME, |
| ktime_to_timeval(curr_time).tv_sec, |
| ktime_to_timeval(curr_time).tv_usec, |
| ktime_to_timeval(wakeup_time).tv_sec, |
| ktime_to_timeval(wakeup_time).tv_usec); |
| |
| } |
| |
| static void timer_work_fn(struct work_struct *work) |
| { |
| sysfs_notify(tt_kobj, NULL, "wakeup_ms"); |
| } |
| |
| static void thermal_rtc_callback(struct alarm *al) |
| { |
| struct timeval ts; |
| ts = ktime_to_timeval(alarm_get_elapsed_realtime()); |
| schedule_work(&timer_work); |
| pr_debug("%s: Time on alarm expiry: %ld %ld\n", KBUILD_MODNAME, |
| ts.tv_sec, ts.tv_usec); |
| } |
| |
| static int hotplug_notify(enum thermal_trip_type type, int temp, void *data) |
| { |
| struct cpu_info *cpu_node = (struct cpu_info *)data; |
| |
| pr_info("%s: %s reach temp threshold: %d\n", KBUILD_MODNAME, |
| cpu_node->sensor_type, temp); |
| |
| if (!(msm_thermal_info.core_control_mask & BIT(cpu_node->cpu))) |
| return 0; |
| switch (type) { |
| case THERMAL_TRIP_CONFIGURABLE_HI: |
| if (!(cpu_node->offline)) |
| cpu_node->offline = 1; |
| break; |
| case THERMAL_TRIP_CONFIGURABLE_LOW: |
| if (cpu_node->offline) |
| cpu_node->offline = 0; |
| break; |
| default: |
| break; |
| } |
| if (hotplug_task) { |
| cpu_node->hotplug_thresh_clear = true; |
| complete(&hotplug_notify_complete); |
| } else { |
| pr_err("%s: Hotplug task is not initialized\n", KBUILD_MODNAME); |
| } |
| return 0; |
| } |
| /* Adjust cpus offlined bit based on temperature reading. */ |
| static int hotplug_init_cpu_offlined(void) |
| { |
| struct tsens_device tsens_dev; |
| long temp = 0; |
| uint32_t cpu = 0; |
| |
| if (!hotplug_enabled) |
| return 0; |
| |
| mutex_lock(&core_control_mutex); |
| for_each_possible_cpu(cpu) { |
| if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu))) |
| continue; |
| tsens_dev.sensor_num = cpus[cpu].sensor_id; |
| if (tsens_get_temp(&tsens_dev, &temp)) { |
| pr_err("%s: Unable to read TSENS sensor %d\n", |
| KBUILD_MODNAME, tsens_dev.sensor_num); |
| mutex_unlock(&core_control_mutex); |
| return -EINVAL; |
| } |
| |
| if (temp >= msm_thermal_info.hotplug_temp_degC) |
| cpus[cpu].offline = 1; |
| else if (temp <= (msm_thermal_info.hotplug_temp_degC - |
| msm_thermal_info.hotplug_temp_hysteresis_degC)) |
| cpus[cpu].offline = 0; |
| } |
| mutex_unlock(&core_control_mutex); |
| |
| if (hotplug_task) |
| complete(&hotplug_notify_complete); |
| else { |
| pr_err("%s: Hotplug task is not initialized\n", |
| KBUILD_MODNAME); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void hotplug_init(void) |
| { |
| uint32_t cpu = 0; |
| struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL; |
| |
| if (hotplug_task) |
| return; |
| |
| if (!hotplug_enabled) |
| goto init_kthread; |
| |
| for_each_possible_cpu(cpu) { |
| cpus[cpu].sensor_id = |
| sensor_get_id((char *)cpus[cpu].sensor_type); |
| if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu))) |
| continue; |
| |
| hi_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]; |
| low_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_LOW]; |
| hi_thresh->temp = msm_thermal_info.hotplug_temp_degC; |
| hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI; |
| low_thresh->temp = msm_thermal_info.hotplug_temp_degC - |
| msm_thermal_info.hotplug_temp_hysteresis_degC; |
| low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW; |
| hi_thresh->notify = low_thresh->notify = hotplug_notify; |
| hi_thresh->data = low_thresh->data = (void *)&cpus[cpu]; |
| |
| set_threshold(cpus[cpu].sensor_id, hi_thresh); |
| } |
| init_kthread: |
| init_completion(&hotplug_notify_complete); |
| hotplug_task = kthread_run(do_hotplug, NULL, "msm_thermal:hotplug"); |
| if (IS_ERR(hotplug_task)) { |
| pr_err("%s: Failed to create do_hotplug thread\n", |
| KBUILD_MODNAME); |
| return; |
| } |
| /* |
| * Adjust cpus offlined bit when hotplug intitializes so that the new |
| * cpus offlined state is based on hotplug threshold range |
| */ |
| if (hotplug_init_cpu_offlined()) |
| kthread_stop(hotplug_task); |
| } |
| |
| static __ref int do_freq_mitigation(void *data) |
| { |
| int ret = 0; |
| uint32_t cpu = 0, max_freq_req = 0, min_freq_req = 0; |
| |
| while (!kthread_should_stop()) { |
| wait_for_completion(&freq_mitigation_complete); |
| INIT_COMPLETION(freq_mitigation_complete); |
| |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| max_freq_req = (cpus[cpu].max_freq) ? |
| msm_thermal_info.freq_limit : |
| UINT_MAX; |
| max_freq_req = min(max_freq_req, |
| cpus[cpu].user_max_freq); |
| |
| min_freq_req = max(min_freq_limit, |
| cpus[cpu].user_min_freq); |
| |
| if ((max_freq_req == cpus[cpu].limited_max_freq) |
| && (min_freq_req == |
| cpus[cpu].limited_min_freq)) |
| goto reset_threshold; |
| |
| cpus[cpu].limited_max_freq = max_freq_req; |
| cpus[cpu].limited_min_freq = min_freq_req; |
| update_cpu_freq(cpu); |
| reset_threshold: |
| if (freq_mitigation_enabled && |
| cpus[cpu].freq_thresh_clear) { |
| set_threshold(cpus[cpu].sensor_id, |
| &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]); |
| |
| cpus[cpu].freq_thresh_clear = false; |
| } |
| } |
| put_online_cpus(); |
| } |
| return ret; |
| } |
| |
| static int freq_mitigation_notify(enum thermal_trip_type type, |
| int temp, void *data) |
| { |
| struct cpu_info *cpu_node = (struct cpu_info *) data; |
| |
| pr_debug("%s: %s reached temp threshold: %d\n", KBUILD_MODNAME, |
| cpu_node->sensor_type, temp); |
| |
| if (!(msm_thermal_info.freq_mitig_control_mask & |
| BIT(cpu_node->cpu))) |
| return 0; |
| |
| switch (type) { |
| case THERMAL_TRIP_CONFIGURABLE_HI: |
| if (!cpu_node->max_freq) { |
| pr_info("%s: Mitigating cpu %d frequency to %d\n", |
| KBUILD_MODNAME, cpu_node->cpu, |
| msm_thermal_info.freq_limit); |
| |
| cpu_node->max_freq = true; |
| } |
| break; |
| case THERMAL_TRIP_CONFIGURABLE_LOW: |
| if (cpu_node->max_freq) { |
| pr_info("%s: Removing frequency mitigation for cpu%d\n", |
| KBUILD_MODNAME, cpu_node->cpu); |
| |
| cpu_node->max_freq = false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (freq_mitigation_task) { |
| cpu_node->freq_thresh_clear = true; |
| complete(&freq_mitigation_complete); |
| } else { |
| pr_err("%s: Frequency mitigation task is not initialized\n", |
| KBUILD_MODNAME); |
| } |
| |
| return 0; |
| } |
| |
| static void freq_mitigation_init(void) |
| { |
| uint32_t cpu = 0; |
| struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL; |
| |
| if (freq_mitigation_task) |
| return; |
| if (!freq_mitigation_enabled) |
| goto init_freq_thread; |
| |
| for_each_possible_cpu(cpu) { |
| if (!(msm_thermal_info.freq_mitig_control_mask & BIT(cpu))) |
| continue; |
| hi_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]; |
| low_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_LOW]; |
| |
| hi_thresh->temp = msm_thermal_info.freq_mitig_temp_degc; |
| hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI; |
| low_thresh->temp = msm_thermal_info.freq_mitig_temp_degc - |
| msm_thermal_info.freq_mitig_temp_hysteresis_degc; |
| low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW; |
| hi_thresh->notify = low_thresh->notify = |
| freq_mitigation_notify; |
| hi_thresh->data = low_thresh->data = (void *)&cpus[cpu]; |
| |
| set_threshold(cpus[cpu].sensor_id, hi_thresh); |
| } |
| init_freq_thread: |
| init_completion(&freq_mitigation_complete); |
| freq_mitigation_task = kthread_run(do_freq_mitigation, NULL, |
| "msm_thermal:freq_mitig"); |
| |
| if (IS_ERR(freq_mitigation_task)) { |
| pr_err("%s: Failed to create frequency mitigation thread\n", |
| KBUILD_MODNAME); |
| return; |
| } |
| } |
| |
| int msm_thermal_set_frequency(uint32_t cpu, uint32_t freq, bool is_max) |
| { |
| int ret = 0; |
| |
| if (cpu >= num_possible_cpus()) { |
| pr_err("%s: Invalid input\n", KBUILD_MODNAME); |
| ret = -EINVAL; |
| goto set_freq_exit; |
| } |
| |
| if (is_max) { |
| if (cpus[cpu].user_max_freq == freq) |
| goto set_freq_exit; |
| |
| cpus[cpu].user_max_freq = freq; |
| } else { |
| if (cpus[cpu].user_min_freq == freq) |
| goto set_freq_exit; |
| |
| cpus[cpu].user_min_freq = freq; |
| } |
| |
| if (freq_mitigation_task) { |
| complete(&freq_mitigation_complete); |
| } else { |
| pr_err("%s: Frequency mitigation task is not initialized\n", |
| KBUILD_MODNAME); |
| ret = -ESRCH; |
| goto set_freq_exit; |
| } |
| |
| set_freq_exit: |
| return ret; |
| } |
| |
| /* |
| * We will reset the cpu frequencies limits here. The core online/offline |
| * status will be carried over to the process stopping the msm_thermal, as |
| * we dont want to online a core and bring in the thermal issues. |
| */ |
| static void __ref disable_msm_thermal(void) |
| { |
| uint32_t cpu = 0; |
| |
| /* make sure check_temp is no longer running */ |
| cancel_delayed_work(&check_temp_work); |
| flush_scheduled_work(); |
| |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| if (cpus[cpu].limited_max_freq == UINT_MAX && |
| cpus[cpu].limited_min_freq == 0) |
| continue; |
| cpus[cpu].limited_max_freq = UINT_MAX; |
| cpus[cpu].limited_min_freq = 0; |
| update_cpu_freq(cpu); |
| } |
| put_online_cpus(); |
| } |
| |
| static int __ref set_enabled(const char *val, const struct kernel_param *kp) |
| { |
| int ret = 0; |
| |
| ret = param_set_bool(val, kp); |
| if (!enabled) { |
| disable_msm_thermal(); |
| hotplug_init(); |
| freq_mitigation_init(); |
| } else |
| pr_info("%s: no action for enabled = %d\n", |
| KBUILD_MODNAME, enabled); |
| |
| pr_info("%s: enabled = %d\n", KBUILD_MODNAME, enabled); |
| |
| return ret; |
| } |
| |
| static struct kernel_param_ops module_ops = { |
| .set = set_enabled, |
| .get = param_get_bool, |
| }; |
| |
| module_param_cb(enabled, &module_ops, &enabled, 0644); |
| MODULE_PARM_DESC(enabled, "enforce thermal limit on cpu"); |
| |
| static ssize_t show_cc_enabled(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", core_control_enabled); |
| } |
| |
| static ssize_t __ref store_cc_enabled(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| int val = 0; |
| |
| ret = kstrtoint(buf, 10, &val); |
| if (ret) { |
| pr_err("%s: Invalid input %s\n", KBUILD_MODNAME, buf); |
| goto done_store_cc; |
| } |
| |
| if (core_control_enabled == !!val) |
| goto done_store_cc; |
| |
| core_control_enabled = !!val; |
| if (core_control_enabled) { |
| pr_info("%s: Core control enabled\n", KBUILD_MODNAME); |
| register_cpu_notifier(&msm_thermal_cpu_notifier); |
| if (hotplug_task) |
| complete(&hotplug_notify_complete); |
| else |
| pr_err("%s: Hotplug task is not initialized\n", |
| KBUILD_MODNAME); |
| } else { |
| pr_info("%s: Core control disabled\n", KBUILD_MODNAME); |
| unregister_cpu_notifier(&msm_thermal_cpu_notifier); |
| } |
| |
| done_store_cc: |
| return count; |
| } |
| |
| static ssize_t show_cpus_offlined(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", cpus_offlined); |
| } |
| |
| static ssize_t __ref store_cpus_offlined(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = 0; |
| uint32_t val = 0; |
| uint32_t cpu; |
| |
| mutex_lock(&core_control_mutex); |
| ret = kstrtouint(buf, 10, &val); |
| if (ret) { |
| pr_err("%s: Invalid input %s\n", KBUILD_MODNAME, buf); |
| goto done_cc; |
| } |
| |
| if (enabled) { |
| pr_err("%s: Ignoring request; polling thread is enabled.\n", |
| KBUILD_MODNAME); |
| goto done_cc; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| if (!(msm_thermal_info.core_control_mask & BIT(cpu))) |
| continue; |
| cpus[cpu].user_offline = !!(val & BIT(cpu)); |
| } |
| |
| if (hotplug_task) |
| complete(&hotplug_notify_complete); |
| else |
| pr_err("%s: Hotplug task is not initialized\n", KBUILD_MODNAME); |
| done_cc: |
| mutex_unlock(&core_control_mutex); |
| return count; |
| } |
| |
| static __refdata struct kobj_attribute cc_enabled_attr = |
| __ATTR(enabled, 0644, show_cc_enabled, store_cc_enabled); |
| |
| static __refdata struct kobj_attribute cpus_offlined_attr = |
| __ATTR(cpus_offlined, 0644, show_cpus_offlined, store_cpus_offlined); |
| |
| static __refdata struct attribute *cc_attrs[] = { |
| &cc_enabled_attr.attr, |
| &cpus_offlined_attr.attr, |
| NULL, |
| }; |
| |
| static __refdata struct attribute_group cc_attr_group = { |
| .attrs = cc_attrs, |
| }; |
| |
| static ssize_t show_wakeup_ms(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", wakeup_ms); |
| } |
| |
| static ssize_t store_wakeup_ms(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret; |
| ret = kstrtouint(buf, 10, &wakeup_ms); |
| |
| if (ret) { |
| pr_err("%s: Trying to set invalid wakeup timer\n", |
| KBUILD_MODNAME); |
| return ret; |
| } |
| |
| if (wakeup_ms > 0) { |
| thermal_rtc_setup(); |
| pr_debug("%s: Timer started for %ums\n", KBUILD_MODNAME, |
| wakeup_ms); |
| } else { |
| ret = alarm_cancel(&thermal_rtc); |
| if (ret) |
| pr_debug("%s: Timer canceled\n", KBUILD_MODNAME); |
| else |
| pr_debug("%s: No active timer present to cancel\n", |
| KBUILD_MODNAME); |
| |
| } |
| return count; |
| } |
| |
| static __refdata struct kobj_attribute timer_attr = |
| __ATTR(wakeup_ms, 0644, show_wakeup_ms, store_wakeup_ms); |
| |
| static __refdata struct attribute *tt_attrs[] = { |
| &timer_attr.attr, |
| NULL, |
| }; |
| |
| static __refdata struct attribute_group tt_attr_group = { |
| .attrs = tt_attrs, |
| }; |
| |
| static __init int msm_thermal_add_cc_nodes(void) |
| { |
| struct kobject *module_kobj = NULL; |
| int ret = 0; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module\n", |
| KBUILD_MODNAME); |
| ret = -ENOENT; |
| goto done_cc_nodes; |
| } |
| |
| cc_kobj = kobject_create_and_add("core_control", module_kobj); |
| if (!cc_kobj) { |
| pr_err("%s: cannot create core control kobj\n", |
| KBUILD_MODNAME); |
| ret = -ENOMEM; |
| goto done_cc_nodes; |
| } |
| |
| ret = sysfs_create_group(cc_kobj, &cc_attr_group); |
| if (ret) { |
| pr_err("%s: cannot create group\n", KBUILD_MODNAME); |
| goto done_cc_nodes; |
| } |
| |
| return 0; |
| |
| done_cc_nodes: |
| if (cc_kobj) |
| kobject_del(cc_kobj); |
| return ret; |
| } |
| |
| static __init int msm_thermal_add_timer_nodes(void) |
| { |
| struct kobject *module_kobj = NULL; |
| int ret = 0; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module\n", |
| KBUILD_MODNAME); |
| ret = -ENOENT; |
| goto failed; |
| } |
| |
| tt_kobj = kobject_create_and_add("thermal_timer", module_kobj); |
| if (!tt_kobj) { |
| pr_err("%s: cannot create timer kobj\n", |
| KBUILD_MODNAME); |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| ret = sysfs_create_group(tt_kobj, &tt_attr_group); |
| if (ret) { |
| pr_err("%s: cannot create group\n", KBUILD_MODNAME); |
| goto failed; |
| } |
| |
| return 0; |
| |
| failed: |
| if (tt_kobj) |
| kobject_del(tt_kobj); |
| return ret; |
| } |
| |
| int __devinit msm_thermal_init(struct msm_thermal_data *pdata) |
| { |
| int ret = 0; |
| uint32_t cpu; |
| |
| BUG_ON(!pdata); |
| tsens_get_max_sensor_num(&max_tsens_num); |
| memcpy(&msm_thermal_info, pdata, sizeof(struct msm_thermal_data)); |
| |
| if (create_sensor_id_map()) |
| return -EINVAL; |
| if (check_sensor_id(msm_thermal_info.sensor_id)) |
| return -EINVAL; |
| |
| enabled = 1; |
| for_each_possible_cpu(cpu) { |
| cpus[cpu].limited_max_freq = UINT_MAX; |
| cpus[cpu].limited_min_freq = 0; |
| } |
| ret = cpufreq_register_notifier(&msm_thermal_cpufreq_notifier, |
| CPUFREQ_POLICY_NOTIFIER); |
| if (ret) |
| pr_err("%s: cannot register cpufreq notifier\n", |
| KBUILD_MODNAME); |
| INIT_DELAYED_WORK(&check_temp_work, check_temp); |
| schedule_delayed_work(&check_temp_work, 0); |
| |
| if (num_possible_cpus() > 1) |
| register_cpu_notifier(&msm_thermal_cpu_notifier); |
| |
| return ret; |
| } |
| |
| static int ocr_reg_init(struct platform_device *pdev) |
| { |
| int ret = 0; |
| int i, j; |
| |
| for (i = 0; i < ocr_rail_cnt; i++) { |
| /* Check if vdd_restriction has already initialized any |
| * regualtor handle. If so use the same handle.*/ |
| for (j = 0; j < rails_cnt; j++) { |
| if (!strcmp(ocr_rails[i].name, rails[j].name)) { |
| if (rails[j].reg == NULL) |
| break; |
| ocr_rails[i].phase_reg = rails[j].reg; |
| goto reg_init; |
| } |
| |
| } |
| ocr_rails[i].phase_reg = devm_regulator_get(&pdev->dev, |
| ocr_rails[i].name); |
| if (IS_ERR_OR_NULL(ocr_rails[i].phase_reg)) { |
| ret = PTR_ERR(ocr_rails[i].phase_reg); |
| if (ret != -EPROBE_DEFER) { |
| pr_err("%s, could not get regulator: %s\n", |
| __func__, ocr_rails[i].name); |
| ocr_rails[i].phase_reg = NULL; |
| ocr_rails[i].mode = 0; |
| ocr_rails[i].init = 0; |
| } |
| return ret; |
| } |
| reg_init: |
| ocr_rails[i].mode = OPTIMUM_CURRENT_MIN; |
| } |
| return ret; |
| } |
| |
| static int vdd_restriction_reg_init(struct platform_device *pdev) |
| { |
| int ret = 0; |
| int i; |
| |
| for (i = 0; i < rails_cnt; i++) { |
| if (rails[i].freq_req == 1) { |
| usefreq |= BIT(i); |
| check_freq_table(); |
| /* |
| * Restrict frequency by default until we have made |
| * our first temp reading |
| */ |
| if (freq_table_get) |
| ret = vdd_restriction_apply_freq(&rails[i], 0); |
| else |
| pr_info("%s:Defer vdd rstr freq init\n", |
| __func__); |
| } else { |
| rails[i].reg = devm_regulator_get(&pdev->dev, |
| rails[i].name); |
| if (IS_ERR_OR_NULL(rails[i].reg)) { |
| ret = PTR_ERR(rails[i].reg); |
| if (ret != -EPROBE_DEFER) { |
| pr_err( \ |
| "%s, could not get regulator: %s\n", |
| rails[i].name, __func__); |
| rails[i].reg = NULL; |
| rails[i].curr_level = -2; |
| return ret; |
| } |
| return ret; |
| } |
| /* |
| * Restrict votlage by default until we have made |
| * our first temp reading |
| */ |
| ret = vdd_restriction_apply_voltage(&rails[i], 0); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int psm_reg_init(struct platform_device *pdev) |
| { |
| int ret = 0; |
| int i = 0; |
| int j = 0; |
| |
| for (i = 0; i < psm_rails_cnt; i++) { |
| psm_rails[i].reg = rpm_regulator_get(&pdev->dev, |
| psm_rails[i].name); |
| if (IS_ERR_OR_NULL(psm_rails[i].reg)) { |
| ret = PTR_ERR(psm_rails[i].reg); |
| if (ret != -EPROBE_DEFER) { |
| pr_err("%s, could not get rpm regulator: %s\n", |
| psm_rails[i].name, __func__); |
| psm_rails[i].reg = NULL; |
| goto psm_reg_exit; |
| } |
| return ret; |
| } |
| /* Apps default vote for PWM mode */ |
| psm_rails[i].init = PMIC_PWM_MODE; |
| ret = rpm_regulator_set_mode(psm_rails[i].reg, |
| psm_rails[i].init); |
| if (ret) { |
| pr_err("%s: Cannot set PMIC PWM mode\n", __func__); |
| return ret; |
| } else |
| psm_rails[i].mode = PMIC_PWM_MODE; |
| } |
| |
| return ret; |
| |
| psm_reg_exit: |
| if (ret) { |
| for (j = 0; j < i; j++) { |
| if (psm_rails[j].reg != NULL) |
| rpm_regulator_put(psm_rails[j].reg); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int msm_thermal_add_vdd_rstr_nodes(void) |
| { |
| struct kobject *module_kobj = NULL; |
| struct kobject *vdd_rstr_kobj = NULL; |
| struct kobject *vdd_rstr_reg_kobj[MAX_RAILS] = {0}; |
| int rc = 0; |
| int i = 0; |
| |
| if (!vdd_rstr_probed) { |
| vdd_rstr_nodes_called = true; |
| return rc; |
| } |
| |
| if (vdd_rstr_probed && rails_cnt == 0) |
| return rc; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module %s\n", |
| __func__, KBUILD_MODNAME); |
| rc = -ENOENT; |
| goto thermal_sysfs_add_exit; |
| } |
| |
| vdd_rstr_kobj = kobject_create_and_add("vdd_restriction", module_kobj); |
| if (!vdd_rstr_kobj) { |
| pr_err("%s: cannot create vdd_restriction kobject\n", __func__); |
| rc = -ENOMEM; |
| goto thermal_sysfs_add_exit; |
| } |
| |
| rc = sysfs_create_group(vdd_rstr_kobj, &vdd_rstr_en_attribs_gp); |
| if (rc) { |
| pr_err("%s: cannot create kobject attribute group\n", __func__); |
| rc = -ENOMEM; |
| goto thermal_sysfs_add_exit; |
| } |
| |
| for (i = 0; i < rails_cnt; i++) { |
| vdd_rstr_reg_kobj[i] = kobject_create_and_add(rails[i].name, |
| vdd_rstr_kobj); |
| if (!vdd_rstr_reg_kobj[i]) { |
| pr_err("%s: cannot create for kobject for %s\n", |
| __func__, rails[i].name); |
| rc = -ENOMEM; |
| goto thermal_sysfs_add_exit; |
| } |
| |
| rails[i].attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 3, |
| GFP_KERNEL); |
| if (!rails[i].attr_gp.attrs) { |
| rc = -ENOMEM; |
| goto thermal_sysfs_add_exit; |
| } |
| |
| VDD_RES_RW_ATTRIB(rails[i], rails[i].level_attr, 0, level); |
| VDD_RES_RO_ATTRIB(rails[i], rails[i].value_attr, 1, value); |
| rails[i].attr_gp.attrs[2] = NULL; |
| |
| rc = sysfs_create_group(vdd_rstr_reg_kobj[i], |
| &rails[i].attr_gp); |
| if (rc) { |
| pr_err("%s: cannot create attribute group for %s\n", |
| __func__, rails[i].name); |
| goto thermal_sysfs_add_exit; |
| } |
| } |
| |
| return rc; |
| |
| thermal_sysfs_add_exit: |
| if (rc) { |
| for (i = 0; i < rails_cnt; i++) { |
| kobject_del(vdd_rstr_reg_kobj[i]); |
| kfree(rails[i].attr_gp.attrs); |
| } |
| if (vdd_rstr_kobj) |
| kobject_del(vdd_rstr_kobj); |
| } |
| return rc; |
| } |
| |
| static int msm_thermal_add_ocr_nodes(void) |
| { |
| struct kobject *module_kobj = NULL; |
| struct kobject *ocr_kobj = NULL; |
| struct kobject *ocr_reg_kobj[MAX_RAILS] = {0}; |
| int rc = 0; |
| int i = 0; |
| |
| if (!ocr_probed) { |
| ocr_nodes_called = true; |
| return rc; |
| } |
| |
| if (ocr_probed && ocr_rail_cnt == 0) |
| return rc; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module %s\n", |
| __func__, KBUILD_MODNAME); |
| rc = -ENOENT; |
| goto ocr_node_exit; |
| } |
| |
| ocr_kobj = kobject_create_and_add("opt_curr_req", module_kobj); |
| if (!ocr_kobj) { |
| pr_err("%s: cannot create ocr kobject\n", KBUILD_MODNAME); |
| rc = -ENOMEM; |
| goto ocr_node_exit; |
| } |
| |
| for (i = 0; i < ocr_rail_cnt; i++) { |
| ocr_reg_kobj[i] = kobject_create_and_add(ocr_rails[i].name, |
| ocr_kobj); |
| if (!ocr_reg_kobj[i]) { |
| pr_err("%s: cannot create for kobject for %s\n", |
| KBUILD_MODNAME, ocr_rails[i].name); |
| rc = -ENOMEM; |
| goto ocr_node_exit; |
| } |
| ocr_rails[i].attr_gp.attrs = kzalloc( \ |
| sizeof(struct attribute *) * 2, GFP_KERNEL); |
| if (!ocr_rails[i].attr_gp.attrs) { |
| rc = -ENOMEM; |
| goto ocr_node_exit; |
| } |
| |
| OCR_RW_ATTRIB(ocr_rails[i], ocr_rails[i].mode_attr, 0, mode); |
| ocr_rails[i].attr_gp.attrs[1] = NULL; |
| |
| rc = sysfs_create_group(ocr_reg_kobj[i], &ocr_rails[i].attr_gp); |
| if (rc) { |
| pr_err("%s: cannot create attribute group for %s\n", |
| KBUILD_MODNAME, ocr_rails[i].name); |
| goto ocr_node_exit; |
| } |
| } |
| |
| ocr_node_exit: |
| if (rc) { |
| for (i = 0; i < ocr_rail_cnt; i++) { |
| if (ocr_reg_kobj[i]) |
| kobject_del(ocr_reg_kobj[i]); |
| if (ocr_rails[i].attr_gp.attrs) { |
| kfree(ocr_rails[i].attr_gp.attrs); |
| ocr_rails[i].attr_gp.attrs = NULL; |
| } |
| } |
| if (ocr_kobj) |
| kobject_del(ocr_kobj); |
| } |
| return rc; |
| } |
| |
| static int msm_thermal_add_psm_nodes(void) |
| { |
| struct kobject *module_kobj = NULL; |
| struct kobject *psm_kobj = NULL; |
| struct kobject *psm_reg_kobj[MAX_RAILS] = {0}; |
| int rc = 0; |
| int i = 0; |
| |
| if (!psm_probed) { |
| psm_nodes_called = true; |
| return rc; |
| } |
| |
| if (psm_probed && psm_rails_cnt == 0) |
| return rc; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module %s\n", |
| __func__, KBUILD_MODNAME); |
| rc = -ENOENT; |
| goto psm_node_exit; |
| } |
| |
| psm_kobj = kobject_create_and_add("pmic_sw_mode", module_kobj); |
| if (!psm_kobj) { |
| pr_err("%s: cannot create psm kobject\n", KBUILD_MODNAME); |
| rc = -ENOMEM; |
| goto psm_node_exit; |
| } |
| |
| for (i = 0; i < psm_rails_cnt; i++) { |
| psm_reg_kobj[i] = kobject_create_and_add(psm_rails[i].name, |
| psm_kobj); |
| if (!psm_reg_kobj[i]) { |
| pr_err("%s: cannot create for kobject for %s\n", |
| KBUILD_MODNAME, psm_rails[i].name); |
| rc = -ENOMEM; |
| goto psm_node_exit; |
| } |
| psm_rails[i].attr_gp.attrs = kzalloc( \ |
| sizeof(struct attribute *) * 2, GFP_KERNEL); |
| if (!psm_rails[i].attr_gp.attrs) { |
| rc = -ENOMEM; |
| goto psm_node_exit; |
| } |
| |
| PSM_RW_ATTRIB(psm_rails[i], psm_rails[i].mode_attr, 0, mode); |
| psm_rails[i].attr_gp.attrs[1] = NULL; |
| |
| rc = sysfs_create_group(psm_reg_kobj[i], &psm_rails[i].attr_gp); |
| if (rc) { |
| pr_err("%s: cannot create attribute group for %s\n", |
| KBUILD_MODNAME, psm_rails[i].name); |
| goto psm_node_exit; |
| } |
| } |
| |
| return rc; |
| |
| psm_node_exit: |
| if (rc) { |
| for (i = 0; i < psm_rails_cnt; i++) { |
| kobject_del(psm_reg_kobj[i]); |
| kfree(psm_rails[i].attr_gp.attrs); |
| } |
| if (psm_kobj) |
| kobject_del(psm_kobj); |
| } |
| return rc; |
| } |
| |
| static int probe_vdd_rstr(struct device_node *node, |
| struct msm_thermal_data *data, struct platform_device *pdev) |
| { |
| int ret = 0; |
| int i = 0; |
| int arr_size; |
| char *key = NULL; |
| struct device_node *child_node = NULL; |
| |
| rails = NULL; |
| |
| key = "qcom,vdd-restriction-temp"; |
| ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,vdd-restriction-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_hyst_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| for_each_child_of_node(node, child_node) { |
| rails_cnt++; |
| } |
| |
| if (rails_cnt == 0) |
| goto read_node_fail; |
| if (rails_cnt >= MAX_RAILS) { |
| pr_err("%s: Too many rails.\n", __func__); |
| return -EFAULT; |
| } |
| |
| rails = kzalloc(sizeof(struct rail) * rails_cnt, |
| GFP_KERNEL); |
| if (!rails) { |
| pr_err("%s: Fail to allocate memory for rails.\n", __func__); |
| return -ENOMEM; |
| } |
| |
| i = 0; |
| for_each_child_of_node(node, child_node) { |
| key = "qcom,vdd-rstr-reg"; |
| ret = of_property_read_string(child_node, key, &rails[i].name); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,levels"; |
| if (!of_get_property(child_node, key, &arr_size)) |
| goto read_node_fail; |
| rails[i].num_levels = arr_size/sizeof(__be32); |
| if (rails[i].num_levels > |
| sizeof(rails[i].levels)/sizeof(uint32_t)) { |
| pr_err("%s: Array size too large\n", __func__); |
| return -EFAULT; |
| } |
| ret = of_property_read_u32_array(child_node, key, |
| rails[i].levels, rails[i].num_levels); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,freq-req"; |
| rails[i].freq_req = of_property_read_bool(child_node, key); |
| if (rails[i].freq_req) |
| rails[i].min_level = 0; |
| else { |
| key = "qcom,min-level"; |
| ret = of_property_read_u32(child_node, key, |
| &rails[i].min_level); |
| if (ret) |
| goto read_node_fail; |
| } |
| |
| rails[i].curr_level = -1; |
| rails[i].reg = NULL; |
| i++; |
| } |
| |
| if (rails_cnt) { |
| ret = vdd_restriction_reg_init(pdev); |
| if (ret) { |
| pr_info("%s:Failed to get regulators. KTM continues.\n", |
| __func__); |
| goto read_node_fail; |
| } |
| vdd_rstr_enabled = true; |
| } |
| read_node_fail: |
| vdd_rstr_probed = true; |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| __func__, node->full_name, key); |
| kfree(rails); |
| rails_cnt = 0; |
| } |
| if (ret == -EPROBE_DEFER) |
| vdd_rstr_probed = false; |
| return ret; |
| } |
| |
| static int probe_ocr(struct device_node *node, struct msm_thermal_data *data, |
| struct platform_device *pdev) |
| { |
| int ret = 0; |
| int j = 0; |
| char *key = NULL; |
| |
| if (ocr_probed) { |
| pr_info("%s: Nodes already probed\n", |
| __func__); |
| goto read_ocr_exit; |
| } |
| ocr_rails = NULL; |
| |
| key = "qti,pmic-opt-curr-temp"; |
| ret = of_property_read_u32(node, key, &data->ocr_temp_degC); |
| if (ret) |
| goto read_ocr_fail; |
| |
| key = "qti,pmic-opt-curr-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, &data->ocr_temp_hyst_degC); |
| if (ret) |
| goto read_ocr_fail; |
| |
| key = "qti,pmic-opt-curr-regs"; |
| ocr_rail_cnt = of_property_count_strings(node, key); |
| ocr_rails = kzalloc(sizeof(struct psm_rail) * ocr_rail_cnt, |
| GFP_KERNEL); |
| if (!ocr_rails) { |
| pr_err("%s: Fail to allocate memory for ocr rails\n", __func__); |
| ocr_rail_cnt = 0; |
| return -ENOMEM; |
| } |
| |
| for (j = 0; j < ocr_rail_cnt; j++) { |
| ret = of_property_read_string_index(node, key, j, |
| &ocr_rails[j].name); |
| if (ret) |
| goto read_ocr_fail; |
| ocr_rails[j].phase_reg = NULL; |
| ocr_rails[j].init = OPTIMUM_CURRENT_MAX; |
| } |
| |
| if (ocr_rail_cnt) { |
| ret = ocr_reg_init(pdev); |
| if (ret) { |
| pr_info("%s:Failed to get regulators. KTM continues.\n", |
| __func__); |
| goto read_ocr_fail; |
| } |
| ocr_enabled = true; |
| ocr_nodes_called = false; |
| /* |
| * Vote for max optimum current by default until we have made |
| * our first temp reading |
| */ |
| if (ocr_set_mode_all(OPTIMUM_CURRENT_MAX)) |
| pr_err("Set max optimum current failed\n"); |
| } |
| |
| read_ocr_fail: |
| ocr_probed = true; |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| __func__, node->full_name, key); |
| if (ocr_rails) |
| kfree(ocr_rails); |
| ocr_rails = NULL; |
| ocr_rail_cnt = 0; |
| } |
| if (ret == -EPROBE_DEFER) |
| ocr_probed = false; |
| read_ocr_exit: |
| return ret; |
| } |
| |
| static int probe_psm(struct device_node *node, struct msm_thermal_data *data, |
| struct platform_device *pdev) |
| { |
| int ret = 0; |
| int j = 0; |
| char *key = NULL; |
| |
| psm_rails = NULL; |
| |
| key = "qcom,pmic-sw-mode-temp"; |
| ret = of_property_read_u32(node, key, &data->psm_temp_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,pmic-sw-mode-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, &data->psm_temp_hyst_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,pmic-sw-mode-regs"; |
| psm_rails_cnt = of_property_count_strings(node, key); |
| psm_rails = kzalloc(sizeof(struct psm_rail) * psm_rails_cnt, |
| GFP_KERNEL); |
| if (!psm_rails) { |
| pr_err("%s: Fail to allocate memory for psm rails\n", __func__); |
| psm_rails_cnt = 0; |
| return -ENOMEM; |
| } |
| |
| for (j = 0; j < psm_rails_cnt; j++) { |
| ret = of_property_read_string_index(node, key, j, |
| &psm_rails[j].name); |
| if (ret) |
| goto read_node_fail; |
| } |
| |
| if (psm_rails_cnt) { |
| ret = psm_reg_init(pdev); |
| if (ret) { |
| pr_info("%s:Failed to get regulators. KTM continues.\n", |
| __func__); |
| goto read_node_fail; |
| } |
| psm_enabled = true; |
| } |
| |
| read_node_fail: |
| psm_probed = true; |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| __func__, node->full_name, key); |
| kfree(psm_rails); |
| psm_rails_cnt = 0; |
| } |
| if (ret == -EPROBE_DEFER) |
| psm_probed = false; |
| return ret; |
| } |
| |
| static int probe_cc(struct device_node *node, struct msm_thermal_data *data, |
| struct platform_device *pdev) |
| { |
| char *key = NULL; |
| uint32_t cpu_cnt = 0; |
| int ret = 0; |
| uint32_t cpu = 0; |
| |
| if (num_possible_cpus() > 1) { |
| core_control_enabled = 1; |
| hotplug_enabled = 1; |
| } |
| |
| key = "qcom,core-limit-temp"; |
| ret = of_property_read_u32(node, key, &data->core_limit_temp_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,core-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, &data->core_temp_hysteresis_degC); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,core-control-mask"; |
| ret = of_property_read_u32(node, key, &data->core_control_mask); |
| if (ret) |
| goto read_node_fail; |
| |
| key = "qcom,hotplug-temp"; |
| ret = of_property_read_u32(node, key, &data->hotplug_temp_degC); |
| if (ret) |
| goto hotplug_node_fail; |
| |
| key = "qcom,hotplug-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, |
| &data->hotplug_temp_hysteresis_degC); |
| if (ret) |
| goto hotplug_node_fail; |
| |
| key = "qcom,cpu-sensors"; |
| cpu_cnt = of_property_count_strings(node, key); |
| if (cpu_cnt < num_possible_cpus()) { |
| pr_err("%s: Wrong number of cpu sensors\n", KBUILD_MODNAME); |
| ret = -EINVAL; |
| goto hotplug_node_fail; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| cpus[cpu].cpu = cpu; |
| cpus[cpu].offline = 0; |
| cpus[cpu].user_offline = 0; |
| cpus[cpu].hotplug_thresh_clear = false; |
| ret = of_property_read_string_index(node, key, cpu, |
| &cpus[cpu].sensor_type); |
| if (ret) |
| goto hotplug_node_fail; |
| } |
| |
| read_node_fail: |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| KBUILD_MODNAME, node->full_name, key); |
| core_control_enabled = 0; |
| } |
| |
| return ret; |
| |
| hotplug_node_fail: |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| KBUILD_MODNAME, node->full_name, key); |
| hotplug_enabled = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int probe_freq_mitigation(struct device_node *node, |
| struct msm_thermal_data *data, |
| struct platform_device *pdev) |
| { |
| char *key = NULL; |
| int ret = 0; |
| uint32_t cpu; |
| |
| key = "qcom,freq-mitigation-temp"; |
| ret = of_property_read_u32(node, key, &data->freq_mitig_temp_degc); |
| if (ret) |
| goto PROBE_FREQ_EXIT; |
| |
| key = "qcom,freq-mitigation-temp-hysteresis"; |
| ret = of_property_read_u32(node, key, |
| &data->freq_mitig_temp_hysteresis_degc); |
| if (ret) |
| goto PROBE_FREQ_EXIT; |
| |
| key = "qcom,freq-mitigation-value"; |
| ret = of_property_read_u32(node, key, &data->freq_limit); |
| if (ret) |
| goto PROBE_FREQ_EXIT; |
| |
| key = "qcom,freq-mitigation-control-mask"; |
| ret = of_property_read_u32(node, key, &data->freq_mitig_control_mask); |
| if (ret) |
| goto PROBE_FREQ_EXIT; |
| |
| freq_mitigation_enabled = 1; |
| for_each_possible_cpu(cpu) { |
| cpus[cpu].max_freq = false; |
| cpus[cpu].user_max_freq = UINT_MAX; |
| cpus[cpu].user_min_freq = 0; |
| cpus[cpu].limited_max_freq = UINT_MAX; |
| cpus[cpu].limited_min_freq = 0; |
| cpus[cpu].freq_thresh_clear = false; |
| } |
| |
| PROBE_FREQ_EXIT: |
| if (ret) { |
| dev_info(&pdev->dev, |
| "%s:Failed reading node=%s, key=%s. KTM continues\n", |
| __func__, node->full_name, key); |
| freq_mitigation_enabled = 0; |
| } |
| return ret; |
| } |
| |
| static int __devinit msm_thermal_dev_probe(struct platform_device *pdev) |
| { |
| int ret = 0; |
| char *key = NULL; |
| struct device_node *node = pdev->dev.of_node; |
| struct msm_thermal_data data; |
| |
| memset(&data, 0, sizeof(struct msm_thermal_data)); |
| |
| key = "qcom,sensor-id"; |
| ret = of_property_read_u32(node, key, &data.sensor_id); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,poll-ms"; |
| ret = of_property_read_u32(node, key, &data.poll_ms); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,limit-temp"; |
| ret = of_property_read_u32(node, key, &data.limit_temp_degC); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,temp-hysteresis"; |
| ret = of_property_read_u32(node, key, &data.temp_hysteresis_degC); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,freq-step"; |
| ret = of_property_read_u32(node, key, &data.bootup_freq_step); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,freq-control-mask"; |
| ret = of_property_read_u32(node, key, &data.bootup_freq_control_mask); |
| |
| ret = probe_cc(node, &data, pdev); |
| |
| ret = probe_freq_mitigation(node, &data, pdev); |
| /* |
| * Probe optional properties below. Call probe_psm before |
| * probe_vdd_rstr because rpm_regulator_get has to be called |
| * before devm_regulator_get |
| * probe_ocr should be called after probe_vdd_rstr to reuse the |
| * regualtor handle. calling devm_regulator_get more than once |
| * will fail. |
| */ |
| ret = probe_psm(node, &data, pdev); |
| if (ret == -EPROBE_DEFER) |
| goto fail; |
| ret = probe_vdd_rstr(node, &data, pdev); |
| if (ret == -EPROBE_DEFER) |
| goto fail; |
| ret = probe_ocr(node, &data, pdev); |
| if (ret == -EPROBE_DEFER) |
| goto fail; |
| |
| /* |
| * In case sysfs add nodes get called before probe function. |
| * Need to make sure sysfs node is created again |
| */ |
| if (psm_nodes_called) { |
| msm_thermal_add_psm_nodes(); |
| psm_nodes_called = false; |
| } |
| if (vdd_rstr_nodes_called) { |
| msm_thermal_add_vdd_rstr_nodes(); |
| vdd_rstr_nodes_called = false; |
| } |
| if (ocr_nodes_called) { |
| msm_thermal_add_ocr_nodes(); |
| ocr_nodes_called = false; |
| } |
| msm_thermal_ioctl_init(); |
| ret = msm_thermal_init(&data); |
| |
| return ret; |
| fail: |
| if (ret) |
| pr_err("%s: Failed reading node=%s, key=%s\n", |
| __func__, node->full_name, key); |
| |
| return ret; |
| } |
| |
| static int msm_thermal_dev_exit(struct platform_device *inp_dev) |
| { |
| msm_thermal_ioctl_cleanup(); |
| return 0; |
| } |
| |
| static struct of_device_id msm_thermal_match_table[] = { |
| {.compatible = "qcom,msm-thermal"}, |
| {}, |
| }; |
| |
| static struct platform_driver msm_thermal_device_driver = { |
| .probe = msm_thermal_dev_probe, |
| .driver = { |
| .name = "msm-thermal", |
| .owner = THIS_MODULE, |
| .of_match_table = msm_thermal_match_table, |
| }, |
| .remove = msm_thermal_dev_exit, |
| }; |
| |
| int __init msm_thermal_device_init(void) |
| { |
| return platform_driver_register(&msm_thermal_device_driver); |
| } |
| |
| int __init msm_thermal_late_init(void) |
| { |
| if (num_possible_cpus() > 1) |
| msm_thermal_add_cc_nodes(); |
| msm_thermal_add_psm_nodes(); |
| msm_thermal_add_vdd_rstr_nodes(); |
| msm_thermal_add_ocr_nodes(); |
| alarm_init(&thermal_rtc, ANDROID_ALARM_ELAPSED_REALTIME_WAKEUP, |
| thermal_rtc_callback); |
| INIT_WORK(&timer_work, timer_work_fn); |
| msm_thermal_add_timer_nodes(); |
| |
| return 0; |
| } |
| late_initcall(msm_thermal_late_init); |
| |